Effect of Loading Changes on the Intraventricular Pressure Measured by Color M-Mode Echocardiography in Rats
Abstract
:1. Introduction
2. Materials and Methods
2.1. Animal Preparation and Experimental Protocol
2.2. Conventional Echocardiography
2.3. Two-Dimensional Speckle Tracking Echocardiography (2DSTE)
2.4. Color M-Mode Echocardiography (CMME)
2.5. Statistical Analysis
3. Results
3.1. Conventional Echocardiography
3.2. Two-Dimensional Speckle Tracking Echocardiography
3.3. Color M-Mode Echocardiography
3.3.1. Effect of Loading Condition on IVPD
3.3.2. Effect of Loading Condition on IVPG
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Roger, V.L. Epidemiology of Heart Failure. Circ. Res. 2013, 113, 646–659. [Google Scholar] [CrossRef] [PubMed]
- Yamamoto, K.; Sakata, Y.; Ohtani, T.; Takeda, Y.; Mano, T. Heart failure with preserved ejection fraction. Circ. J. 2009, 73, 404–410. [Google Scholar] [CrossRef] [Green Version]
- Bruch, C.; Schmermund, A.; Bartel, T.; Schaar, J.; Erbel, R. Tissue Doppler imaging: A new technique for assessment of pseudonormalization of the mitral inflow pattern. Echocardiography 2000, 17, 539–546. [Google Scholar] [CrossRef] [PubMed]
- DiLorenzo, M.; Hwang, W.T.; Goldmuntz, E.; Ky, B.; Mercer-Rosa, L. Diastolic dysfunction in tetralogy of Fallot: Comparison of echocardiography with catheterization. Echocardiography 2018, 35, 1641–1648. [Google Scholar] [CrossRef]
- Little, W.C. Diastolic dysfunction beyond distensibility: Adverse effects of ventricular dilatation. Circulation 2005, 112, 2888–2890. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Greenberg, N.L.; Vandervoort, P.M.; Firstenberg, M.S.; Garcia, M.J.; Thomas, J.D. Estimation of diastolic intraventricular pressure gradients by Doppler M-mode echocardiography. Am. J. Physiol. Heart Circ. Physiol. 2001, 280, H2507–H2515. [Google Scholar] [CrossRef] [PubMed]
- Yotti, R.; Bermejo, J.; Antoranz, J.C.; Desco, M.M.; Cortina, C.; Rojo-Alvarez, J.L.; Allué, C.; Martín, L.; Moreno, M.; Serrano, J.A.; et al. A noninvasive method for assessing impaired diastolic suction in patients with dilated cardiomyopathy. Circulation 2005, 112, 2921–2929. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Matsuura, K.; Sato, K.; Shimada, K.; Goya, S.; Uemura, A.; Iso, T.; Yazaki, K.; Yilmaz, Z.; Takahashi, K.; Tanaka, R. Changes in left ventricular blood flow during diastole due to differences in chamber size in healthy dogs. Sci. Rep. 2020, 10, 1106. [Google Scholar] [CrossRef] [Green Version]
- Matsuura, K.; Shiraishi, K.; Mandour, A.S.; Sato, K.; Shimada, K.; Goya, S.; Yoshida, T.; Kitpipatkun, P.; Hamabe, L.; Uemura, A.; et al. The Utility of Intraventricular Pressure Gradient for Early Detection of Chemotherapy-Induced Subclinical Cardiac Dysfunction in Dogs. Animals 2021, 11, 1122. [Google Scholar] [CrossRef]
- Ma, D.; Mandour, A.S.; Yoshida, T.; Matsuura, K.; Shimada, K.; Kitpipatkun, P.; Uemura, A.; Ifuku, M.; Takahashi, K.; Tanaka, R. Intraventricular pressure gradients change during the development of left ventricular hypertrophy: Effect of salvianolic acid B and beta-blocker. Ultrasound 2021. [Google Scholar] [CrossRef]
- Popović, Z.B.; Richards, K.E.; Greenberg, N.L.; Rovner, A.; Drinko, J.; Cheng, Y.; Penn, M.S.; Fukamachi, K.; Mal, N.; Levine, B.D.; et al. Scaling of diastolic intraventricular pressure gradients is related to filling time duration. Am. J. Physiol. Heart Circ. Physiol. 2006, 291, H762–H769. [Google Scholar] [CrossRef]
- Ohara, T.; Niebel, C.L.; Stewart, K.C.; Charonko, J.J.; Pu, M.; Vlachos, P.P.; Little, W.C. Loss of adrenergic augmentation of diastolic intra-LV pressure difference in patients with diastolic dysfunction: Evaluation by color M-mode echocardiography. JACC Cardiovasc. Imaging 2012, 5, 861–870. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shigemitsu, S.; Takahashi, K.; Yazaki, K.; Kobayashi, M.; Yamada, M.; Akimoto, K.; Tamaichi, H.; Fujimura, J.; Saito, M.; Nii, M.; et al. New insight into the intraventricular pressure gradient as a sensitive indicator of diastolic cardiac dysfunction in patients with childhood cancer after anthracycline therapy. Heart Vessel. 2019, 34, 992–1001. [Google Scholar] [CrossRef]
- Notomi, Y.; Popovic, Z.B.; Yamada, H.; Wallick, D.W.; Martin, M.G.; Oryszak, S.J.; Shiota, T.; Greenberg, N.L.; Thomas, J.D. Ventricular untwisting: A temporal link between left ventricular relaxation and suction. Am. J. Physiol. Heart Circ. Physiol. 2008, 294, H505–H513. [Google Scholar] [CrossRef] [Green Version]
- Ma, D.; Mandour, A.S.; Hendawy, H.; Yoshida, T.; El-Husseiny, H.M.; Ozai, Y.; Takeuchi, A.; Takahashi, K.; Uemura, A.; Tanaka, R. Renovascular hypertension-induced cardiac changes in a rat model: Feasibility of conventional and recent echocardiography. J. Hypertens. 2021, 39, e403–e404. [Google Scholar] [CrossRef]
- Nakata, T.M.; Suzuki, K.; Uemura, A.; Shimada, K.; Tanaka, R. Contrasting Effects of Inhibition of Phosphodiesterase 3 and 5 on Cardiac Function and Interstitial Fibrosis in Rats With Isoproterenol-Induced Cardiac Dysfunction. J. Cardiovasc. Pharmacol. 2019, 73, 195–205. [Google Scholar] [CrossRef] [PubMed]
- Monreal, G.; Sherwood, L.C.; Sobieski, M.A.; Giridharan, G.A.; Slaughter, M.S.; Koenig, S.C. Large animal models for left ventricular assist device research and development. ASAIO J. 2014, 60, 2–8. [Google Scholar] [CrossRef] [PubMed]
- Mandour, A.S.; Samir, H.; Yoshida, T.; Matsuura, K.; Abdelmageed, H.A.; Elbadawy, M.; Al-Rejaie, S.; El-Husseiny, H.M.; Elfadadny, A.; Ma, D.; et al. Assessment of the Cardiac Functions Using Full Conventional Echocardiography with Tissue Doppler Imaging before and after Xylazine Sedation in Male Shiba Goats. Animals 2020, 10, 2320. [Google Scholar] [CrossRef] [PubMed]
- Mandour, A.S.; Mahmoud, A.E.; Ali, A.O.; Matsuura, K.; Samir, H.; Abdelmageed, H.A.; Ma, D.; Yoshida, T.; Hamabe, L.; Uemura, A.; et al. Expression of cardiac copper chaperone encoding genes and their correlation with cardiac function parameters in goats. Vet. Res. Commun. 2021. [Google Scholar] [CrossRef]
- Gallay-Lepoutre, J.; Bélanger, M.C.; Nadeau, M.E. Prospective evaluation of Doppler echocardiography, tissue Doppler imaging and biomarkers measurement for the detection of doxorubicin-induced cardiotoxicity in dogs: A pilot study. Res. Vet. Sci. 2016, 105, 153–159. [Google Scholar] [CrossRef]
- Hashimoto, I.; Ichida, F.; Miura, M.; Okabe, T.; Kanegane, H.; Uese, K.; Hamamichi, Y.; Misaki, T.; Koizumi, S.; Miyawaki, T. Automatic border detection identifies subclinical anthracycline cardiotoxicity in children with malignancy. Circulation 1999, 99, 2367–2370. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tassan-Mangina, S.; Codorean, D.; Metivier, M.; Costa, B.; Himberlin, C.; Jouannaud, C.; Blaise, A.M.; Elaerts, J.; Nazeyrollas, P. Tissue Doppler imaging and conventional echocardiography after anthracycline treatment in adults: Early and late alterations of left ventricular function during a prospective study. Eur. J. Echocardiogr. 2006, 7, 141–146. [Google Scholar] [CrossRef] [Green Version]
- Nagueh, S.F. Left Ventricular Diastolic Function. JACC Cardiovasc. Imaging 2020, 13, 228–244. [Google Scholar] [CrossRef]
- Flachskampf, F.A.; Biering-Sørensen, T.; Solomon, S.D.; Duvernoy, O.; Bjerner, T.; Smiseth, O.A. Cardiac Imaging to Evaluate Left Ventricular Diastolic Function. JACC Cardiovasc. Imaging 2015, 8, 1071–1093. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kitpipatkun, P.; Matsuura, K.; Shimada, K.; Uemura, A.; Goya, S.; Yoshida, T.; Ma, D.; Takahashi, K.; Tanaka, R. Key factors of diastolic dysfunction and abnormal left ventricular relaxation in diabetic rats. J. Med. Ultrason. 2020, 47, 347–356. [Google Scholar] [CrossRef] [PubMed]
- Kitpipatkun, P.; Yairo, A.; Kato, K.; Matsuura, K.; Ma, D.; Goya, S.; Uemura, A.; Takahashi, K.; Tanaka, R. Effects of Individual and Coexisting Diabetes and Cardiomyopathy on Diastolic Function in Rats (Rattus norvegicus domestica). Comp. Med. 2020, 70, 499–509. [Google Scholar] [CrossRef]
- Roof, S.R.; Ueyama, Y.; Mazhari, R.; Hamlin, R.L.; Hartman, J.C.; Ziolo, M.T.; Reardon, J.E.; Del Rio, C.L. CXL-1020, a Novel Nitroxyl (HNO) Prodrug, Is More Effective than Milrinone in Models of Diastolic Dysfunction-A Cardiovascular Therapeutic: An Efficacy and Safety Study in the Rat. Front. Physiol. 2017, 8, 894. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hines, T.; Abhyankar, S.S.; Veeh, J.M. Right atrial dimension-pressure relation during volume expansion is unaltered by pregnancy in the rat. Am. J. Physiol. Heart Circ. Physiol. 2005, 288, H116–H120. [Google Scholar] [CrossRef] [PubMed]
- Lee, H.B.; Blaufox, M.D. Blood Volume in the Rat. J. Nucl. Med. 1985, 26, 72. [Google Scholar] [CrossRef]
- Rychik, J.; Ayres, N.; Cuneo, B.; Gotteiner, N.; Hornberger, L.; Spevak, P.J.; Van Der Veld, M. American Society of Echocardiography guidelines and standards for performance of the fetal echocardiogram. J. Am. Soc. Echocardiogr. 2004, 17, 803–810. [Google Scholar] [CrossRef]
- Hamabe, L.; Fukushima, R.; Kawamura, K.; Shinoda, Y.; Huai-Che, H.; Suzuki, S.; Aytemiz, D.; Iwasaki, T.; Tanaka, R. Evaluation of changes in left ventricular myocardial function observed in canine myocardial dysfunction model using a two-dimensional tissue tracking technique. J. Vet. Sci. 2013, 14, 355–362. [Google Scholar] [CrossRef] [Green Version]
- Konecny, F. Left atrial pressure measurement in a rat is currently impossible due to size limitations of balloon occlusion catheter. J. Thorac Cardiovasc. Surg. 2018, 156, 1160–1161. [Google Scholar] [CrossRef] [Green Version]
- Constantinides, C.; Angeli, S.; Kossivas, F.; Ktorides, P. Underestimation of Murine Cardiac Hemodynamics Using Invasive Catheters: Errors, Limitations, and Remedies. Cardiovasc. Eng. Technol. 2012, 3, 179–193. [Google Scholar] [CrossRef]
- Bell, S.P.; Nyland, L.; Tischler, M.D.; McNabb, M.; Granzier, H.; LeWinter, M.M. Alterations in the determinants of diastolic suction during pacing tachycardia. Circ. Res. 2000, 87, 235–240. [Google Scholar] [CrossRef] [Green Version]
- Nakano, S.J.; Nelson, P.; Sucharov, C.C.; Miyamoto, S.D. Myocardial Response to Milrinone in Single Right Ventricle Heart Disease. J. Pediatr. 2016, 174, 199–203.e195. [Google Scholar] [CrossRef] [Green Version]
- Colucci, W.S. Cardiovascular effects of milrinone. Am. Heart J. 1991, 121, 1945–1947. [Google Scholar] [CrossRef]
- Rashid, N.; Morin, F.C.; Swartz, D.D.; Ryan, R.M.; Wynn, K.A.; Wang, H.; Lakshminrusimha, S.; Kumar, V.H. Effects of Prostacyclin and Milrinone on Pulmonary Hemodynamics in Newborn Lambs With Persistent Pulmonary Hypertension Induced by Ductal Ligation. Pediatr. Res. 2006, 60, 624–629. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Krams, R.; McFalls, E.; van der Giessen, W.J.; Serruys, P.W.; Verdoun, P.D.; Roelandt, J. Does intravenous milrinone have a direct effect on diastolic function? Am. Heart J. 1991, 121, 1951–1955. [Google Scholar] [CrossRef]
- Karlsberg, R.P.; DeWood, M.A.; DeMaria, A.N.; Berk, M.R.; Lasher, K.P. Comparative efficacy of short-term intravenous infusions of milrinone and dobutamine in acute congestive heart failure following acute myocardial infarction. Milrinone-Dobutamine Study Group. Clin. Cardiol. 1996, 19, 21–30. [Google Scholar] [CrossRef] [PubMed]
- Lina Hamabe, A.S.M.; Shimada, K.; Uemura, A.; Yilmaz, Z.; Nagaoka, K.; Tanaka, R. Role of two-dimensional speckle tracking echocardiography in early detection of left ventricular dysfunction in dogs. Animals 2021, (in press). [Google Scholar]
- Takahashi, K.; Nii, M.; Takigiku, K.; Toyono, M.; Iwashima, S.; Inoue, N.; Tanaka, N.; Matsui, K.; Shigemitsu, S.; Yamada, M.; et al. Development of suction force during early diastole from the left atrium to the left ventricle in infants, children, and adolescents. Heart Vessel. 2019, 34, 296–306. [Google Scholar] [CrossRef] [PubMed]
- Rodriguez Muñoz, D.; Markl, M.; Moya Mur, J.L.; Barker, A.; Fernández-Golfín, C.; Lancellotti, P.; Zamorano Gómez, J.L. Intracardiac flow visualization: Current status and future directions. Eur. Heart J. Cardiovasc. Imaging 2013, 14, 1029–1038. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rovner, A.; Greenberg, N.L.; Thomas, J.D.; Garcia, M.J. Relationship of diastolic intraventricular pressure gradients and aerobic capacity in patients with diastolic heart failure. Am. J. Physiol. Heart Circ. Physiol. 2005, 289, H2081–H2088. [Google Scholar] [CrossRef]
- Ramalli, A.; Bézy, S.; Orlowska, M.; Boni, E.; Voigt, J.U.; Hooge, J.D. High frame rate color Doppler to measure intraventricular pressure gradients. In Proceedings of the 2020 IEEE International Ultrasonics Symposium (IUS), Las Vegas, NV, USA, 7–11 September 2020; pp. 1–4. [Google Scholar]
- Fraysse, B.; Weinberger, F.; Bardswell, S.C.; Cuello, F.; Vignier, N.; Geertz, B.; Starbatty, J.; Krämer, E.; Coirault, C.; Eschenhagen, T.; et al. Increased myofilament Ca2+ sensitivity and diastolic dysfunction as early consequences of Mybpc3 mutation in heterozygous knock-in mice. J. Mol. Cell. Cardiol. 2012, 52, 1299–1307. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Variables | Experiment I | Experiment II | ||
---|---|---|---|---|
BL | MIL | BL | HES | |
LVIDd (mm) | 8.41 (7.10–10.6) | 7.75 (6.20–9.37) * | 6.97 (6.9–9.40) | 7.66 (7.30–10.1) † |
EDV (mL) | 0.53 (0.37–1.20) | 0.47 (0.23–0.83) * | 0.43 (0.33–0.83) | 0.65 (0.60–1.03) †† |
ESV (mL) | 0.10 (0.1–0.27) | 0.10 (0.1–0.10) | 0.13 (0.1–0.37) | 0.10 (0.08–0.20) |
CO (L/min) | 0.07 (0.03–0.13) | 0.05 (0.03–0.32) | 0.07 (0.04–0.17) | 0.08 (0.04–0.17) |
EF (%) | 78.7 (57.4–84.3) | 84.9 (72.1–89.2) * | 72.8 (57.8–87.3) | 87.7 (74.8–93.3) † |
FS (%) | 40.3 (25.2–46.6) | 47.1 (34.7–52.4) ** | 35.2 (24.8–50.0) | 44.2 (36.8–60.0) † |
E (cm/s) | 80.7 (66.3–102) | 76.3 (71.3–85.5) | 74.6 (65.7–104) | 122 (83.1–138) †† |
Septal s′ (cm/s) | 4.65 (3.88–5.03) | 4.45 (3.93–5.03) | 5.08 (3.30–5.73) | 4.53 (3.93–5.15) |
Septal e′ (cm/s) | 4.95 (4.53–6.43) | 5.03 (4.23–7.93) | 4.98 (3.97–9.40) | 5.47 (4.70–6.57) |
E/Septal e′ | 17.0 (14.1–21.0) | 15.5 (9.54–20.5) | 14.8 (10.8–19.2) | 21.1 (16.1–26.0) †† |
Lateral s′ (cm/s) | 5.32 (3.87–6.63) | 5.68 (3.87–6.77) | 5.85 (4.47–6.37) | 5.58 (5.37–7.03) |
Lateral e′ (cm/s) | 5.60 (3.77–7.57) | 6.15 (3.60–7.83) | 5.70 (4.57–9.47) | 7.43 (5.90–8.40) |
E/Lateral e′ | 15.9 (10.8–19.8) | 16.0 (10.6–18.7) | 13.4 (9.95–14.5) | 16.1 (12.9–18.8) †† |
LVOT (cm/s) | 114 (78.7–136) | 99.8 (85.9–121) * | 90.0 (73.2–161) | 116 (83.9–144) |
SV (mL) | 0.80 (0.50–0.90) | 0.72 (0.60–0.80) * | 0.62 (0.37–1.07) | 0.86 (0.60–1.07) †† |
HR (bpm) | 307 (228–457) | 387 (259–466) | 247 (234–388) | 280 (221–325) |
LV (cm) | 1.12 (0.93–1.45) | 1.03 (0.91–1.38) ** | 0.89 (0.80–1.37) | 1.04 (0.64–1.37) |
Variables | Experiment I | Experiment II | ||
---|---|---|---|---|
BL | MIL | BL | HES | |
TIVPD (mmHg) | 2.13 (1.19–4.31) | 2.01 (1.35–4.30) | 1.60 (1.10–2.55) | 2.34 (1.89–2.84) †† |
BIVPD (mmHg) | 1.36 (0.68–2.42) | 1.34 (0.71–2.30) * | 0.99 (0.55–1.78) | 1.59 (1.21–2.06) †† |
Mid-to-apical IVPD (mmHg) | 0.71 (0.51–1.89) | 0.79 (0.61–1.97) ** | 0.64 (0.44–0.78) | 0.75 (0.47–0.88) |
MIVPD (mmHg) | 0.58 (0.41–1.50) | 0.66 (0.51–1.52) ** | 0.54 (0.34–0.66) | 0.59 (0.36–0.71) |
AIVPD (mmHg) | 0.14 (0.08–0.39) | 0.16 (0.09–0.44) * | 0.10 (0.05–0.14) | 0.16 (0.05–0.21) † |
% of BIVPD | 64.1 (56.2–74.1) | 58.9 (52.5–62.2) ** | 61.9 (49.6–69.5) | 69.8 (58.1–81.4) †† |
% of mid-to-apical IVPD | 35.9 (31.3–43.8) | 41.1 (37.8–47.5) ** | 38.1 (30.5–50.5) | 30.2 (18.6–41.9) †† |
% of MIVPD | 28.7 (20.8–34.8) | 34.8 (29.0–38.7) ** | 32.2 (25.9–41.8) | 22.7 (14.1–33.9) †† |
TIVPG (mmHg) | 1.89 (1.28–2.97) | 1.996 (1.42–3.09) | 1.53 (1.35–2.08) | 1.98 (1.70–2.59) †† |
BIVPG (mmHg) | 1.21 (0.74–1.67) | 1.21 (0.75–1.66) | 0.92 (0.68–1.44) | 1.44 (1.09–1.74) †† |
Mid-to-apical IVPG (mmHg) | 0.64 (0.51–1.30) | 0.81 (0.60–1.42) ** | 0.62 (0.52–0.72) | 0.64 (0.36–0.85) |
MIVPG (mmHg) | 0.51 (0.41–1.03) | 0.66 (0.51–1.10) ** | 0.52 (0.44–0.59) | 0.52 (0.28–0.73) |
AIVPG (mmHg) | 0.13 (0.08–0.27) | 0.16 (0.09–0.32) * | 0.09 (0.08–0.13) | 0.14 (0.05–0.16) |
% of AIVPG | 7.25 (4.06–9.02) | 8.46 (5.98–10.5) * | 6.06 (4.62–8.70) | 6.06 (2.64–9.61) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yairo, A.; Mandour, A.S.; Matsuura, K.; Yoshida, T.; Ma, D.; Kitpipatkun, P.; Kato, K.; Cheng, C.-J.; El-Husseiny, H.M.; Tanaka, T.; et al. Effect of Loading Changes on the Intraventricular Pressure Measured by Color M-Mode Echocardiography in Rats. Diagnostics 2021, 11, 1403. https://doi.org/10.3390/diagnostics11081403
Yairo A, Mandour AS, Matsuura K, Yoshida T, Ma D, Kitpipatkun P, Kato K, Cheng C-J, El-Husseiny HM, Tanaka T, et al. Effect of Loading Changes on the Intraventricular Pressure Measured by Color M-Mode Echocardiography in Rats. Diagnostics. 2021; 11(8):1403. https://doi.org/10.3390/diagnostics11081403
Chicago/Turabian StyleYairo, Akira, Ahmed S. Mandour, Katsuhiro Matsuura, Tomohiko Yoshida, Danfu Ma, Pitipat Kitpipatkun, Konosuke Kato, Chieh-Jen Cheng, Hussein M. El-Husseiny, Takashi Tanaka, and et al. 2021. "Effect of Loading Changes on the Intraventricular Pressure Measured by Color M-Mode Echocardiography in Rats" Diagnostics 11, no. 8: 1403. https://doi.org/10.3390/diagnostics11081403
APA StyleYairo, A., Mandour, A. S., Matsuura, K., Yoshida, T., Ma, D., Kitpipatkun, P., Kato, K., Cheng, C. -J., El-Husseiny, H. M., Tanaka, T., Shimada, K., Hamabe, L., Uemura, A., Takahashi, K., & Tanaka, R. (2021). Effect of Loading Changes on the Intraventricular Pressure Measured by Color M-Mode Echocardiography in Rats. Diagnostics, 11(8), 1403. https://doi.org/10.3390/diagnostics11081403