Combining Deep Learning and Graph-Theoretic Brain Features to Detect Posttraumatic Stress Disorder at the Individual Level
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Image Acquisition
2.3. Data Preprocessing
2.4. Network Construction
2.5. Machine Learning Model
2.6. Identification of Features with the Greatest Contribution
2.7. Correlation Analysis
3. Results
3.1. Demographic and Clinical Characteristics
3.2. Classification Performance
3.3. Regions with the Greatest Contribution to Single-Subject Classification
3.4. Relationship between Topological Metrics and Clinical Variables
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Goldmann, E.; Galea, S. Mental Health Consequences of Disasters. Annu. Rev. Public Health 2014, 35, 169–183. [Google Scholar] [CrossRef] [PubMed]
- Perrin, M.A.; DiGrande, L.; Wheeler, K.; Thorpe, L.; Farfel, M.; Brackbill, R. Differences in PTSD prevalence and associated risk factors among world trade center disaster rescue and recovery workers. Am. J. Psychiatry 2007, 164, 1385–1394. [Google Scholar] [CrossRef]
- Santiago, P.N.; Ursano, R.J.; Gray, C.L.; Pynoos, R.S.; Spiegel, D.; Lewis-Fernandez, R.; Friedman, M.J.; Fullerton, C.S. A Systematic Review of PTSD Prevalence and Trajectories in DSM-5 Defined Trauma Exposed Populations: Intentional and Non-Intentional Traumatic Events. PLoS ONE 2013, 8. [Google Scholar] [CrossRef] [PubMed]
- Ng, Q.X.; Soh, A.Y.S.; Loke, W.; Venkatanarayanan, N.; Lim, D.Y.; Yeo, W.S. Systematic review with meta-analysis: The association between post-traumatic stress disorder and irritable bowel syndrome. J. Gastroenterol. Hepatol. 2019, 34, 68–73. [Google Scholar] [CrossRef]
- Li, F.; Sun, H.; Biswal, B.B.; Sweeney, J.A.; Gong, Q. Artificial intelligence applications in psychoradiology. Psychoradiology 2021, 1, 94–107. [Google Scholar] [CrossRef]
- Achard, S.; Bullmore, E.T. Efficiency and cost of economical brain functional networks. PloS Comput. Biol. 2007, 3, 174–183. [Google Scholar] [CrossRef] [PubMed]
- He, Y.; Chen, Z.J.; Evans, A.C. Small-world anatomical networks in the human brain revealed by cortical thickness from MRI. Cereb. Cortex 2007, 17, 2407–2419. [Google Scholar] [CrossRef] [Green Version]
- van den Heuvel, M.P.; Stam, C.J.; Boersma, M.; Pol, H.E.H. Small-world and scale-free organization of voxel-based resting-state functional connectivity in the human brain. Neuroimage 2008, 43, 528–539. [Google Scholar] [CrossRef]
- Achard, S.; Salvador, R.; Whitcher, B.; Suckling, J.; Bullmore, E.T. A resilient, low-frequency, small-world human brain functional network with highly connected association cortical hubs. J. Neurosci. 2006, 26, 63–72. [Google Scholar] [CrossRef]
- Eguiluz, V.M.; Chialvo, D.R.; Cecchi, G.A.; Baliki, M.; Apkarian, A.V. Scale-free brain functional networks. Phys. Rev. Lett. 2005, 94. [Google Scholar] [CrossRef] [Green Version]
- Lei, D.; Li, K.; Li, L.; Chen, F.; Huang, X.; Lui, S.; Li, J.; Bi, F.; Gong, Q. Disrupted Functional Brain Connectome in Patients with Posttraumatic Stress Disorder. Radiology 2015, 276, 818–827. [Google Scholar] [CrossRef] [Green Version]
- Sheline, Y.I.; Barch, D.M.; Price, J.L.; Rundle, M.M.; Vaishnavi, S.N.; Snyder, A.Z.; Mintun, M.A.; Wang, S.; Coalson, R.S.; Raichle, M.E. The default mode network and self-referential processes in depression. Proc. Natl. Acad. Sci. USA 2009, 106, 1942–1947. [Google Scholar] [CrossRef] [Green Version]
- Seeley, W.W.; Menon, V.; Schatzberg, A.F.; Keller, J.; Glover, G.H.; Kenna, H.; Reiss, A.L.; Greicius, M.D. Dissociable intrinsic connectivity networks for salience processing and executive control. J. Neurosci. 2007, 27, 2349–2356. [Google Scholar] [CrossRef]
- Spielberg, J.M.; McGlinchey, R.E.; Milberg, W.P.; Salat, D.H. Brain Network Disturbance Related to Posttraumatic Stress and Traumatic Brain Injury in Veterans. Biol. Psychiatry 2015, 78, 210–216. [Google Scholar] [CrossRef] [PubMed]
- Stam, C.J.; de Haan, W.; Daffertshofer, A.; Jones, B.F.; Manshanden, I.; van Walsum, A.M.v.C.; Montez, T.; Verbunt, J.P.A.; de Munck, J.C.; van Dijk, B.W.; et al. Graph theoretical analysis of magnetoencephalographic functional connectivity in Alzheimers disease. Brain 2009, 132, 213–224. [Google Scholar] [CrossRef] [PubMed]
- Chaitra, N.; Vijaya, P.A.; Deshpande, G. Diagnostic prediction of autism spectrum disorder using complex network measures in a machine learning framework. Biomed. Signal Process. Control 2020, 62. [Google Scholar] [CrossRef]
- Yu, Q.; Sui, J.; Rachakonda, S.; He, H.; Pearlson, G.; Calhoun, V.D. Altered small-world brain networks in temporal lobe in patients with schizophrenia performing an auditory oddball task. Front. Syst. Neurosci. 2011, 5, 7. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guo, H.; Cao, X.; Liu, Z.; Li, H.; Chen, J.; Zhang, K. Machine learning classifier using abnormal brain network topological metrics in major depressive disorder. Neuroreport 2012, 23, 1006–1011. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Cao, Q.; Wang, J.; Wu, Z.; Wang, P.; Sun, L.; Cai, T.; Wang, Y. The effects of cognitive-behavioral therapy on intrinsic functional brain networks in adults with attention-deficit/hyperactivity disorder. Behav. Res. Ther. 2016, 76, 32–39. [Google Scholar] [CrossRef] [Green Version]
- Bullmore, E.T.; Sporns, O. Complex brain networks: Graph theoretical analysis of structural and functional systems. Nat. Rev. Neurosci. 2009, 10, 186–198. [Google Scholar] [CrossRef]
- Vieira, S.; Pinaya, W.H.L.; Mechelli, A. Using deep learning to investigate the neuroimaging correlates of psychiatric and neurological disorders: Methods and applications. Neurosci. Biobehav. Rev. 2017, 74, 58–75. [Google Scholar] [CrossRef] [Green Version]
- Hazlett, H.C.; Gu, H.; Munsell, B.C.; Kim, S.H.; Styner, M.; Wolff, J.J.; Elison, J.T.; Swanson, M.R.; Zhu, H.; Otteron, K.N.B.; et al. Early brain development in infants at high risk for autism spectrum disorder. Nature 2017, 542, 348–351. [Google Scholar] [CrossRef] [PubMed]
- Cortes, C.; Vapnik, V. Support-vector networks. Mach. Learn. 1995, 20, 273–297. [Google Scholar] [CrossRef]
- Pinaya, W.H.L.; Gadelha, A.; Doyle, O.M.; Noto, C.; Zugman, A.; Cordeiro, Q.; Jackowski, A.P.; Bressan, R.A.; Sato, J.R. Using deep belief network modelling to characterize differences in brain morphometry in schizophrenia. Sci. Rep. 2016, 6, 38897. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Payan, A.; Montana, G. Predicting Alzheimer’s disease: A neuroimaging study with 3D convolutional neural networks. arXiv 2015, arXiv:1502.02506. [Google Scholar]
- Zeng, L.-L.; Wang, H.; Hu, P.; Yang, B.; Pu, W.; Shen, H.; Chen, X.; Liu, Z.; Yin, H.; Tan, Q.; et al. Multi-Site Diagnostic Classification of Schizophrenia Using Discriminant Deep Learning with Functional Connectivity MRI. Ebiomedicine 2018, 30, 74–85. [Google Scholar] [CrossRef] [Green Version]
- Sarraf, S.; DeSouza, D.D.; Anderson, J.; Tofighi, G. DeepAD: Alzheimer’s Disease Classification via Deep Convolutional Neural Networks using MRI and fMRI. bioRxiv 2017. [Google Scholar] [CrossRef] [Green Version]
- Suk, H.-I.; Lee, S.-W.; Shen, D.; Alzheimer’s Dis Neuroimaging, I. Hierarchical feature representation and multimodal fusion with deep learning for AD/MCI diagnosis. Neuroimage 2014, 101, 569–582. [Google Scholar] [CrossRef] [Green Version]
- Luo, Y.; Qi, R.; Zhang, L.; Qing, Z.; Weng, Y.; Wang, W.; Zhang, X.; Shan, H.; Li, L.; Cao, Z.; et al. Functional brain network topology in parents who lost their only child in China: Post-traumatic stress disorder and sex effects. J. Affect. Disord. 2019, 257, 632–639. [Google Scholar] [CrossRef]
- Suo, X.; Lei, D.; Li, K.; Chen, F.; Li, F.; Li, L.; Huang, X.; Lui, S.; Li, L.; Kemp, G.J.; et al. Disrupted brain network topology in pediatric posttraumatic stress disorder: A resting-state fMRI study. Hum. Brain Mapp. 2015, 36, 3677–3686. [Google Scholar] [CrossRef]
- Koch, S.B.J.; van Zuiden, M.; Nawijn, L.; Frijling, J.L.; Veltman, D.J.; Olff, M. Aberrant resting-state brain activity in posttraumatic stress disorder: A meta-analysis and systematic review. Depress. Anxiety 2016, 33, 592–605. [Google Scholar] [CrossRef] [PubMed]
- Lui, S.; Huang, X.; Chen, L.; Tang, H.; Zhang, T.; Li, X.; Li, D.; Kuang, W.; Chan, R.C.; Mechelli, A.; et al. High-field MRI reveals an acute impact on brain function in survivors of the magnitude 8.0 earthquake in China. Proc. Natl. Acad. Sci. USA 2009, 106, 15412–15417. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Blanchard, E.B.; JonesAlexander, J.; Buckley, T.C.; Forneris, C.A. Psychometric properties of the PTSD checklist (PCL). Behav. Res. Ther. 1996, 34, 669–673. [Google Scholar] [CrossRef]
- Blake, D.D.; Weathers, F.W.; Nagy, L.M.; Kaloupek, D.G.; Gusman, F.D.; Charney, D.S.; Keane, T.M. The development of a clinician-administered ptsd scale. J. Trauma. Stress 1995, 8, 75–90. [Google Scholar] [CrossRef] [PubMed]
- Jin, C.; Qi, R.; Yin, Y.; Hu, X.; Duan, L.; Xu, Q.; Zhang, Z.; Zhong, Y.; Feng, B.; Xiang, H.; et al. Abnormalities in whole-brain functional connectivity observed in treatment-naive post-traumatic stress disorder patients following an earthquake. Psychol. Med. 2014, 44, 1927–1936. [Google Scholar] [CrossRef] [PubMed]
- Gorgens, K.A. Structured Clinical Interview For DSM-IV (SCID-I/SCID-II). In Encyclopedia of Clinical Neuropsychology; Kreutzer, J.S., DeLuca, J., Caplan, B., Eds.; Springer: New York, NY, USA, 2011; pp. 2410–2417. [Google Scholar] [CrossRef]
- Gargouri, F.; Delphine, S.; Lehericy, S.; Ben Hamida, A. The influence of preprocessing steps on functional connectivity in resting state fMRI. In Proceedings of the 2016 2nd International Conference on Advanced Technologies for Signal and Image Processing, Monastir, Tunisia, 21–23 March 2016; pp. 103–107. [Google Scholar]
- Strother, S.C. Evaluating fMRI preprocessing pipelines-Review of preprocessing steps for BOLD fMRI. IEEE Eng. Med. Biol. Mag. 2006, 25, 27–41. [Google Scholar] [CrossRef]
- Todtenkopf, M.S.; Vincent, S.L.; Benes, F.M. A cross-study meta-analysis and three-dimensional comparison of cell counting in the anterior cingulate cortex of schizophrenic and bipolar brain. Schizophr. Res. 2005, 73, 79–89. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Wang, L.; Zang, Y.; Yang, H.; Tang, H.; Gong, Q.; Chen, Z.; Zhu, C.; He, Y. Parcellation-Dependent Small-World Brain Functional Networks: A Resting-State fMRI Study. Hum. Brain Mapp. 2009, 30, 1511–1523. [Google Scholar] [CrossRef]
- Zhang, J.; Wang, J.; Wu, Q.; Kuang, W.; Huang, X.; He, Y.; Gong, Q. Disrupted Brain Connectivity Networks in Drug-Naive, First-Episode Major Depressive Disorder. Biol. Psychiatry 2011, 70, 334–342. [Google Scholar] [CrossRef]
- Braun, U.; Plichta, M.M.; Esslinger, C.; Sauer, C.; Haddad, L.; Grimm, O.; Mier, D.; Mohnke, S.; Heinz, A.; Erk, S.; et al. Test-retest reliability of resting-state connectivity network characteristics using fMRI and graph theoretical measures. Neuroimage 2012, 59, 1404–1412. [Google Scholar] [CrossRef] [PubMed]
- Zalesky, A.; Fornito, A.; Bullmore, E.T. Network-based statistic: Identifying differences in brain networks. Neuroimage 2010, 53, 1197–1207. [Google Scholar] [CrossRef]
- Paszke, A.; Gross, S.; Massa, F.; Lerer, A.; Bradbury, J.; Chanan, G.; Killeen, T.; Zeming, L.; Gimelshein, N.; Antiga, L.; et al. PyTorch: An Imperative Style, High-Performance Deep Learning Library. Adv. Neural Inf. Process. Syst. 2019, 32, 8026–8037. [Google Scholar]
- Rubinov, M.; Sporns, O. Complex network measures of brain connectivity: Uses and interpretations. Neuroimage 2010, 52, 1059–1069. [Google Scholar] [CrossRef]
- Gong, Q.; Li, L.; Tognin, S.; Wu, Q.; Pettersson-Yeo, W.; Lui, S.; Huang, X.; Marquand, A.F.; Mechelli, A. Using structural neuroanatomy to identify trauma survivors with and without post-traumatic stress disorder at the individual level. Psychol. Med. 2014, 44, 195–203. [Google Scholar] [CrossRef] [Green Version]
- Jin, C.; Jia, H.; Lanka, P.; Rangaprakash, D.; Li, L.; Liu, T.; Hu, X.; Deshpande, G. Dynamic Brain Connectivity Is a Better Predictor of PTSD than Static Connectivity. Hum. Brain Mapp. 2017, 38, 4479–4496. [Google Scholar] [CrossRef] [Green Version]
- Liu, F.; Xie, B.; Wang, Y.; Guo, W.; Fouche, J.-P.; Long, Z.; Wang, W.; Chen, H.; Li, M.; Duan, X.; et al. Characterization of Post-traumatic Stress Disorder Using Resting-State fMRI with a Multi-level Parametric Classification Approach. Brain Topogr. 2015, 28, 221–237. [Google Scholar] [CrossRef]
- Rangaprakash, D.; Dretsch, M.N.; Katz, J.S.; Denney, T.S., Jr.; Deshpande, G. Dynamics of Segregation and Integration in Directional Brain Networks: Illustration in Soldiers With PTSD and Neurotrauma. Front. Neurosci. 2019, 13. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, Q.M.; Wu, Q.Z.; Zhu, H.R.; He, L.; Huang, H.; Zhang, J.R.; Zhang, W. Multimodal MRI-Based Classification of Trauma Survivors with and without Post-Traumatic Stress Disorder. Front. Neurosci. 2016, 10, 9. [Google Scholar] [CrossRef] [PubMed]
- Algunaid, R.F.; Algumaei, A.H.; Rushdi, M.A.; Yassine, I.A. Schizophrenic patient identification using graph-theoretic features of resting-state fMRI data. Biomed. Signal Process. Control 2018, 43, 289–299. [Google Scholar] [CrossRef]
- Khazaee, A.; Ebrahimzadeh, A.; Babajani-Feremi, A.; Alzheimers Dis Neuroimaging, I. Classification of patients with MCI and AD from healthy controls using directed graph measures of resting-state fMRI. Behav. Brain Res. 2017, 322, 339–350. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Friston, K.J. Modalities, Modes, and Models in Functional Neuroimaging. Science 2009, 326, 399–403. [Google Scholar] [CrossRef] [Green Version]
- Brunetti, M.; Marzetti, L.; Sepede, G.; Zappasodi, F.; Pizzella, V.; Sarchione, F.; Vellante, F.; Martinotti, G.; Di Giannantonio, M. Resilience and cross-network connectivity: A neural model for post-trauma survival. Prog. Neuro Psychopharmacol. Biol. Psychiatry 2017, 77, 110–119. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Wu, M.; Liao, Y.; Luo, O.; Du, M.; Lei, D.; Chen, L.; Yao, L.; Huang, X.; Gong, Q. Grey matter reduction associated with posttraumatic stress disorder and traumatic stress. Neurosci. Biobehav. Rev. 2014, 43, 163–172. [Google Scholar] [CrossRef]
- Zhang, L.; Lu, L.; Bu, X.; Li, H.; Tang, S.; Gao, Y.; Liang, K.; Zhang, S.; Hu, X.; Wang, Y.; et al. Alterations in hippocampal subfield and amygdala subregion volumes in posttraumatic subjects with and without posttraumatic stress disorder. Hum. Brain Mapp. 2021, 42, 2147–2158. [Google Scholar] [CrossRef]
- Canseco, J.A.; Schroeder, G.D.; Patel, P.D.; Grasso, G.; Chang, M.; Kandziora, F.; Vialle, E.N.; Oner, F.C.; Schnake, K.J.; Dvorak, M.F.; et al. Regional and experiential differences in surgeon preference for the treatment of cervical facet injuries: A case study survey with the AO Spine Cervical Classification Validation Group. Eur. Spine J. 2021, 30, 517–523. [Google Scholar] [CrossRef]
- Hawryluk, G.W.J.; Aguilera, S.; Buki, A.; Bulger, E.; Citerio, G.; Cooper, D.J.; Arrastia, R.D.; Diringer, M.; Figaji, A.; Gao, G.Y.; et al. A management algorithm for patients with intracranial pressure monitoring: The Seattle International Severe Traumatic Brain Injury Consensus Conference (SIBICC). Intensive Care Med. 2019, 45. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thesleff, T.; Kataja, A.; Ohman, J.; Luoto, T.M. Head injuries and the risk of concurrent cervical spine fractures. Acta Neurochir. 2017, 159, 907–914. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, D.; Wang, J.; Liu, X.; Chen, J.; Liu, B. Aberrant brain network efficiency in parkison’s disease with tremor: A multi-modality study. Front. Aging Neurosci. 2015, 7. [Google Scholar] [CrossRef]
- Dosenbach, N.U.F.; Nardos, B.; Cohen, A.L.; Fair, D.A.; Power, J.D.; Church, J.A.; Nelson, S.M.; Wig, G.S.; Vogel, A.C.; Lessov-Schlaggar, C.N.; et al. Prediction of Individual Brain Maturity Using fMRI. Science 2010, 329, 1358–1361. [Google Scholar] [CrossRef] [Green Version]
- Galatzer-Levy, I.R.; Karstoft, K.-I.; Statnikov, A.; Shalev, A.Y. Quantitative forecasting of PTSD from early trauma responses: A Machine Learning application. J. Psychiatr. Res. 2014, 59, 68–76. [Google Scholar] [CrossRef] [Green Version]
- Karstoft, K.-I.; Statnikov, A.; Andersen, S.B.; Madsen, T.; Galatzer-Levy, I.R. Early identification of posttraumatic stress following military deployment: Application of machine learning methods to a prospective study of Danish soldiers. J. Affect. Disord. 2015, 184, 170–175. [Google Scholar] [CrossRef] [PubMed]
- Papini, S.; Pisner, D.; Shumake, J.; Powers, M.B.; Beevers, C.G.; Rainey, E.E.; Smits, J.A.J.; Warren, A.M. Ensemble machine learning prediction of posttraumatic stress disorder screening status after emergency room hospitalization. J. Anxiety Disord. 2018, 60, 35–42. [Google Scholar] [CrossRef] [PubMed]
Variables | PTSD | TENP | p Value |
---|---|---|---|
Sample size | 91 | 126 | - |
Age (years) b | 42.4 ± 10.2 | 43.1 ± 9.6 | p = 0.58 c |
Gender (male/female) | 29/62 | 40/86 | p = 0.985 d |
Handedness (right/left) | 91/0 | 126/0 | - |
Education (years) | 7.1 ± 3.0 | 7.9 ± 3.8 | p = 0.09 c |
PCL | 47.7 ± 12.3 | 28.2 ± 6.0 | p < 0.001 c |
CAPS | 56.1 ± 14.9 | 22.8 ± 8.7 | p < 0.001 c |
DL | SVM | ||
---|---|---|---|
Topological Property | Brain Regions | Topological Property | Brain Regions |
Characteristic path length | - | Nodal degree | Inferior temporal gyrus, L |
Nodal betweenness | Inferior frontal gyrus, triangular part, L (CEN) | Nodal betweenness | Lingual gyrus, L |
Nodal betweenness | Lenticular nucleus, putamen, R (SN) | Nodal degree | Inferior temporal gyrus, R |
Nodal betweenness | Angular gyrus, R (DMN) | Nodal degree | Temporal pole: middle temporal gyrus, L |
Nodal efficiency | Superior temporal gyrus, R (DMN) | Nodal betweenness | Inferior frontal gyrus, triangular part, R (CEN) |
Nodal betweenness | Rolandic operculum, L | Nodal betweenness | Paracentral lobule, R |
Nodal betweenness | Calcarine fissure and surrounding cortex, R | Nodal degree | Temporal pole: middle temporal gyrus, R |
Nodal efficiency | Fusiform gyrus, L | Nodal betweenness | Superior frontal gyrus, orbital part, L (DMN) |
Nodal betweenness | Lenticular nucleus, pallidum, R (SN) | Nodal degree | Middle temporal gyrus, R (DMN) |
Nodal betweenness | Middle frontal gyrus, R (CEN) | Nodal betweenness | Middle frontal gyrus, orbital part, R (CEN) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhu, Z.; Lei, D.; Qin, K.; Suo, X.; Li, W.; Li, L.; DelBello, M.P.; Sweeney, J.A.; Gong, Q. Combining Deep Learning and Graph-Theoretic Brain Features to Detect Posttraumatic Stress Disorder at the Individual Level. Diagnostics 2021, 11, 1416. https://doi.org/10.3390/diagnostics11081416
Zhu Z, Lei D, Qin K, Suo X, Li W, Li L, DelBello MP, Sweeney JA, Gong Q. Combining Deep Learning and Graph-Theoretic Brain Features to Detect Posttraumatic Stress Disorder at the Individual Level. Diagnostics. 2021; 11(8):1416. https://doi.org/10.3390/diagnostics11081416
Chicago/Turabian StyleZhu, Ziyu, Du Lei, Kun Qin, Xueling Suo, Wenbin Li, Lingjiang Li, Melissa P. DelBello, John A. Sweeney, and Qiyong Gong. 2021. "Combining Deep Learning and Graph-Theoretic Brain Features to Detect Posttraumatic Stress Disorder at the Individual Level" Diagnostics 11, no. 8: 1416. https://doi.org/10.3390/diagnostics11081416
APA StyleZhu, Z., Lei, D., Qin, K., Suo, X., Li, W., Li, L., DelBello, M. P., Sweeney, J. A., & Gong, Q. (2021). Combining Deep Learning and Graph-Theoretic Brain Features to Detect Posttraumatic Stress Disorder at the Individual Level. Diagnostics, 11(8), 1416. https://doi.org/10.3390/diagnostics11081416