The Potential of Lung Epithelium Specific Proteins as Biomarkers for COVID-19-Associated Lung Injury
Abstract
:1. Introduction
2. Krebs von den Lungen-6 (KL-6) in COVID-19 Patients
3. Surfactant Proteins A, B, C, and D
4. Clara Cell Secretory Protein (CC16) as a Potential Biomarker for COVID-19
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lu, H.; Stratton, C.W.; Tang, Y.W. Outbreak of pneumonia of unknown etiology in Wuhan, China: The mystery and the miracle. J. Med. Virol. 2020, 92, 401–402. [Google Scholar] [CrossRef] [Green Version]
- Cucinotta, D.; Vanelli, M. WHO Declares COVID-19 a Pandemic. Acta Biomed. 2020, 91, 157–160. [Google Scholar] [CrossRef] [PubMed]
- Fehr, A.R.; Perlman, S. Coronaviruses: An overview of their replication and pathogenesis. Methods Mol. Biol. 2015, 1282, 1–23. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cleri, D.J.; Ricketti, A.J.; Vernaleo, J.R. Severe acute respiratory syndrome (SARS). Infect. Dis. Clin. N. Am. 2010, 24, 175–202. [Google Scholar] [CrossRef]
- Bleibtreu, A.; Bertine, M.; Bertin, C.; Houhou-Fidouh, N.; Visseaux, B. Focus on Middle East respiratory syndrome coronavirus (MERS-CoV). Med. Mal. Infect. 2020, 50, 243–251. [Google Scholar] [CrossRef] [PubMed]
- Zhao, S.; Zhuang, Z.; Ran, J.; Lin, J.; Yang, G.; Yang, L.; He, D. The association between domestic train transportation and novel coronavirus (2019-nCoV) outbreak in China from 2019 to 2020: A data-driven correlational report. Travel. Med. Infect. Dis. 2020, 33, 101568. [Google Scholar] [CrossRef]
- Chan, J.F.; Yuan, S.; Kok, K.H.; To, K.K.; Chu, H.; Yang, J.; Xing, F.; Liu, J.; Yip, C.C.; Poon, R.W.; et al. A familial cluster of pneumonia associated with the 2019 novel coronavirus indicating person-to-person transmission: A study of a family cluster. Lancet 2020, 395, 514–523. [Google Scholar] [CrossRef] [Green Version]
- Huang, C.; Wang, Y.; Li, X.; Ren, L.; Zhao, J.; Hu, Y.; Zhang, L.; Fan, G.; Xu, J.; Gu, X.; et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet 2020, 395, 497–506. [Google Scholar] [CrossRef] [Green Version]
- Whittle, J.S.; Pavlov, I.; Sacchetti, A.D.; Atwood, C.; Rosenberg, M.S. Respiratory support for adult patients with COVID-19. J. Am. Coll. Emerg. Physicians Open 2020, 1, 95–101. [Google Scholar] [CrossRef] [Green Version]
- Rodriguez-Morales, A.J.; Cardona-Ospina, J.A.; Gutierrez-Ocampo, E.; Villamizar-Pena, R.; Holguin-Rivera, Y.; Escalera-Antezana, J.P.; Alvarado-Arnez, L.E.; Bonilla-Aldana, D.K.; Franco-Paredes, C.; Henao-Martinez, A.F.; et al. Clinical, laboratory and imaging features of COVID-19: A systematic review and meta-analysis. Travel. Med. Infect. Dis. 2020, 34, 101623. [Google Scholar] [CrossRef]
- Cao, Y.; Liu, X.; Xiong, L.; Cai, K. Imaging and clinical features of patients with 2019 novel coronavirus SARS-CoV-2: A systematic review and meta-analysis. J. Med. Virol. 2020, 92, 1449–1459. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fraser, E. Long term respiratory complications of COVID-19. BMJ 2020, 370, m3001. [Google Scholar] [CrossRef]
- Ngai, J.C.; Ko, F.W.; Ng, S.S.; To, K.W.; Tong, M.; Hui, D.S. The long-term impact of severe acute respiratory syndrome on pulmonary function, exercise capacity and health status. Respirology 2010, 15, 543–550. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, P.; Li, J.; Liu, H.; Han, N.; Ju, J.; Kou, Y.; Chen, L.; Jiang, M.; Pan, F.; Zheng, Y.; et al. Long-term bone and lung consequences associated with hospital-acquired severe acute respiratory syndrome: A 15-year follow-up from a prospective cohort study. Bone Res. 2020, 8, 8. [Google Scholar] [CrossRef] [Green Version]
- Hu, Y.; Wang, L.S.; Jin, Y.P.; Du, S.S.; Du, Y.K.; He, X.; Weng, D.; Zhou, Y.; Li, Q.H.; Shen, L.; et al. Serum Krebs von den Lungen-6 level as a diagnostic biomarker for interstitial lung disease in Chinese patients. Clin. Respir. J. 2017, 11, 337–345. [Google Scholar] [CrossRef]
- Ohshimo, S.; Yokoyama, A.; Hattori, N.; Ishikawa, N.; Hirasawa, Y.; Kohno, N. KL-6, a human MUC1 mucin, promotes proliferation and survival of lung fibroblasts. Biochem. Biophys. Res. Commun. 2005, 338, 1845–1852. [Google Scholar] [CrossRef]
- Hanson, K.M.; Hernady, E.B.; Reed, C.K.; Johnston, C.J.; Groves, A.M.; Finkelstein, J.N. Apoptosis Resistance in Fibroblasts Precedes Progressive Scarring in Pulmonary Fibrosis and Is Partially Mediated by Toll-Like Receptor 4 Activation. Toxicol. Sci. 2019, 170, 489–498. [Google Scholar] [CrossRef] [PubMed]
- Kuwana, M.; Shirai, Y.; Takeuchi, T. Elevated Serum Krebs von den Lungen-6 in Early Disease Predicts Subsequent Deterioration of Pulmonary Function in Patients with Systemic Sclerosis and Interstitial Lung Disease. J. Rheumatol. 2016, 43, 1825–1831. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Y.; Luo, Q.; Han, Q.; Huang, J.; Ou, Y.; Chen, M.; Wen, Y.; Mosha, S.S.; Deng, K.; Chen, R. Sequential changes of serum KL-6 predict the progression of interstitial lung disease. J. Thorac. Dis. 2018, 10, 4705–4714. [Google Scholar] [CrossRef]
- Yokoyama, A.; Kondo, K.; Nakajima, M.; Matsushima, T.; Takahashi, T.; Nishimura, M.; Bando, M.; Sugiyama, Y.; Totani, Y.; Ishizaki, T.; et al. Prognostic value of circulating KL-6 in idiopathic pulmonary fibrosis. Respirology 2006, 11, 164–168. [Google Scholar] [CrossRef]
- Sato, H.; Callister, M.E.; Mumby, S.; Quinlan, G.J.; Welsh, K.I.; duBois, R.M.; Evans, T.W. KL-6 levels are elevated in plasma from patients with acute respiratory distress syndrome. Eur. Respir. J. 2004, 23, 142–145. [Google Scholar] [CrossRef]
- Inoue, Y.; Nishimura, K.; Shiode, M.; Akutsu, H.; Hamada, H.; Fujioka, S.; Fujino, S.; Yokoyama, A.; Kohno, N.; Hiwada, K. Evaluation of serum KL-6 levels in patients with pulmonary tuberculosis. Tuber Lung Dis. 1995, 76, 230–233. [Google Scholar] [CrossRef]
- Dilli, D.; Ozyazici, A.; Dursun, A.; Beken, S. Predictive values of plasma KL-6 in bronchopulmonary dysplasia in preterm infants. Turk. J. Med. Sci. 2017, 47, 621–626. [Google Scholar] [CrossRef] [PubMed]
- Song, P.; Li, W.; Xie, J.; Hou, Y.; You, C. Cytokine storm induced by SARS-CoV-2. Clin. Chim. Acta 2020, 509, 280–287. [Google Scholar] [CrossRef] [PubMed]
- d’Alessandro, M.; Cameli, P.; Refini, R.M.; Bergantini, L.; Alonzi, V.; Lanzarone, N.; Bennett, D.; Rana, G.D.; Montagnani, F.; Scolletta, S.; et al. Serum KL-6 concentrations as a novel biomarker of severe COVID-19. J. Med. Virol. 2020, 92, 2216–2220. [Google Scholar] [CrossRef] [PubMed]
- Frix, A.N.; Schoneveld, L.; Ladang, A.; Henket, M.; Duysinx, B.; Vaillant, F.; Misset, B.; Moutschen, M.; Louis, R.; Cavalier, E.; et al. Could KL-6 levels in COVID-19 help to predict lung disease? Respir. Res. 2020, 21, 309. [Google Scholar] [CrossRef] [PubMed]
- Xue, M.; Zheng, P.; Bian, X.; Huang, Z.; Huang, H.; Zeng, Y.; Hu, H.; Liu, X.; Zhou, L.; Sun, B.; et al. Exploration and correlation analysis of changes in Krebs von den Lungen-6 levels in COVID-19 patients with different types in China. Biosci. Trends 2020, 14, 290–296. [Google Scholar] [CrossRef]
- Awano, N.; Inomata, M.; Kuse, N.; Tone, M.; Takada, K.; Muto, Y.; Fujimoto, K.; Akagi, Y.; Mawatari, M.; Ueda, A.; et al. Serum KL-6 level is a useful biomarker for evaluating the severity of coronavirus disease 2019. Respir. Investig. 2020. [Google Scholar] [CrossRef]
- Varble, N.; Blain, M.; Kassin, M.; Xu, S.; Turkbey, E.B.; Amalou, A.; Long, D.; Harmon, S.; Sanford, T.; Yang, D.; et al. CT and clinical assessment in asymptomatic and pre-symptomatic patients with early SARS-CoV-2 in outbreak settings. Eur. Radiol. 2021, 31, 3165–3476. [Google Scholar] [CrossRef]
- d’Alessandro, M.; Bergantini, L.; Cameli, P.; Curatola, G.; Remediani, L.; Bennett, D.; Bianchi, F.; Perillo, F.; Volterrani, L.; Mazzei, M.A.; et al. Serial KL-6 measurements in COVID-19 patients. Intern. Emerg. Med. 2021, 16, 1541–1545. [Google Scholar] [CrossRef]
- Deng, K.; Fan, Q.; Yang, Y.; Deng, X.; He, R.; Tan, Y.; Lan, Y.; Deng, X.; Pan, Y.; Wang, Y.; et al. Prognostic roles of KL-6 in disease severity and lung injury in COVID-19 patients: A longitudinal retrospective analysis. J. Med. Virol. 2021, 93, 2505–2512. [Google Scholar] [CrossRef]
- Ding, M.; Zhang, Q.; Li, Q.; Wu, T.; Huang, Y.Z. Correlation analysis of the severity and clinical prognosis of 32 cases of patients with COVID-19. Respir. Med. 2020, 167, 105981. [Google Scholar] [CrossRef] [PubMed]
- Peng, D.H.; Luo, Y.; Huang, L.J.; Liao, F.L.; Liu, Y.Y.; Tang, P.; Hu, H.N.; Chen, W. Correlation of Krebs von den Lungen-6 and fibronectin with pulmonary fibrosis in coronavirus disease 2019. Clin. Chim Acta 2021, 517, 48–53. [Google Scholar] [CrossRef] [PubMed]
- Zeng, H.L.; Chen, D.; Yan, J.; Yang, Q.; Han, Q.Q.; Li, S.S.; Cheng, L. Proteomic characteristics of bronchoalveolar lavage fluid in critical COVID-19 patients. FEBS J. 2021, 288, 5190–5200. [Google Scholar] [CrossRef] [PubMed]
- d’Alessandro, M.; Bergantini, L.; Cameli, P.; Curatola, G.; Remediani, L.; Sestini, P.; Bargagli, E.; Siena, C.U. Peripheral biomarkers’ panel for severe COVID-19 patients. J. Med. Virol. 2021, 93, 1230–1232. [Google Scholar] [CrossRef]
- Scotto, R.; Pinchera, B.; Perna, F.; Atripaldi, L.; Giaccone, A.; Sequino, D.; Zappulo, E.; Sardanelli, A.; Schiano Moriello, N.; Stanziola, A.; et al. Serum KL-6 Could Represent a Reliable Indicator of Unfavourable Outcome in Patients with COVID-19 Pneumonia. Int. J. Environ. Res. Public Health 2021, 18, 2078. [Google Scholar] [CrossRef]
- Bergantini, L.; Bargagli, E.; d’Alessandro, M.; Refini, R.M.; Cameli, P.; Galasso, L.; Scapellato, C.; Montagnani, F.; Scolletta, S.; Franchi, F.; et al. Prognostic bioindicators in severe COVID-19 patients. Cytokine 2021, 141, 155455. [Google Scholar] [CrossRef] [PubMed]
- Kerget, B.; Kerget, F.; Kocak, A.O.; Kiziltunc, A.; Araz, O.; Ucar, E.Y.; Akgun, M. Are Serum Interleukin 6 and Surfactant Protein D Levels Associated with the Clinical Course of COVID-19? Lung 2020, 198, 777–784. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.P.; Liu, Z.H.; Wei, R.; Pan, S.D.; Mao, N.Y.; Chen, B.; Han, J.J.; Zhang, F.S.; Holmskov, U.; Xia, Z.L.; et al. Elevated plasma surfactant protein D (SP-D) levels and a direct correlation with anti-severe acute respiratory syndrome coronavirus-specific IgG antibody in SARS patients. Scand. J. Immunol. 2009, 69, 508–515. [Google Scholar] [CrossRef] [Green Version]
- Lopez-Rodriguez, E.; Gay-Jordi, G.; Mucci, A.; Lachmann, N.; Serrano-Mollar, A. Lung surfactant metabolism: Early in life, early in disease and target in cell therapy. Cell Tissue Res. 2017, 367, 721–735. [Google Scholar] [CrossRef]
- Han, S.; Mallampalli, R.K. The Role of Surfactant in Lung Disease and Host Defense against Pulmonary Infections. Ann. Am. Thorac. Soc. 2015, 12, 765–774. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vieira, F.; Kung, J.W.; Bhatti, F. Structure, genetics and function of the pulmonary associated surfactant proteins A and D: The extra-pulmonary role of these C type lectins. Ann. Anat. 2017, 211, 184–201. [Google Scholar] [CrossRef] [PubMed]
- Singh, G.; Katyal, S.L. Clara cells and Clara cell 10 kD protein (CC10). Am. J. Respir. Cell Mol. Biol. 1997, 17, 141–143. [Google Scholar] [CrossRef] [PubMed]
- Fehrenbach, H. Alveolar epithelial type II cell: Defender of the alveolus revisited. Respir Res. 2001, 2, 33–46. [Google Scholar] [CrossRef] [PubMed]
- Walther, F.J.; Waring, A.J.; Sherman, M.A.; Zasadzinski, J.A.; Gordon, L.M. Hydrophobic surfactant proteins and their analogues. Neonatology 2007, 91, 303–310. [Google Scholar] [CrossRef] [PubMed]
- Sorensen, G.L.; Husby, S.; Holmskov, U. Surfactant protein A and surfactant protein D variation in pulmonary disease. Immunobiology 2007, 212, 381–416. [Google Scholar] [CrossRef]
- Kishore, U.; Greenhough, T.J.; Waters, P.; Shrive, A.K.; Ghai, R.; Kamran, M.F.; Bernal, A.L.; Reid, K.B.; Madan, T.; Chakraborty, T. Surfactant proteins SP-A and SP-D: Structure, function and receptors. Mol. Immunol. 2006, 43, 1293–1315. [Google Scholar] [CrossRef]
- Parra, E.; Alcaraz, A.; Cruz, A.; Aguilella, V.M.; Perez-Gil, J. Hydrophobic pulmonary surfactant proteins SP-B and SP-C induce pore formation in planar lipid membranes: Evidence for proteolipid pores. Biophys. J. 2013, 104, 146–155. [Google Scholar] [CrossRef] [Green Version]
- Griese, M.; Lorenz, E.; Hengst, M.; Schams, A.; Wesselak, T.; Rauch, D.; Wittmann, T.; Kirchberger, V.; Escribano, A.; Schaible, T.; et al. Surfactant proteins in pediatric interstitial lung disease. Pediatr. Res. 2016, 79, 34–41. [Google Scholar] [CrossRef] [Green Version]
- Mulugeta, S.; Beers, M.F. Surfactant protein C: Its unique properties and emerging immunomodulatory role in the lung. Microbes Infect. 2006, 8, 2317–2323. [Google Scholar] [CrossRef]
- Khoor, A.; Stahlman, M.T.; Gray, M.E.; Whitsett, J.A. Temporal-spatial distribution of SP-B and SP-C proteins and mRNAs in developing respiratory epithelium of human lung. J. Histochem. Cytochem. 1994, 42, 1187–1199. [Google Scholar] [CrossRef] [Green Version]
- Rao, M.L.; Rao, G.S.; Eckel, J.; Breuer, H. Factors involved in the uptake of corticosterone by rat liver cells. Biochim. Biophys. Acta 1977, 500, 322–332. [Google Scholar] [CrossRef]
- Doyle, I.R.; Bersten, A.D.; Nicholas, T.E. Surfactant proteins-A and -B are elevated in plasma of patients with acute respiratory failure. Am. J. Respir. Crit. Care Med. 1997, 156, 1217–1229. [Google Scholar] [CrossRef]
- Ohlmeier, S.; Vuolanto, M.; Toljamo, T.; Vuopala, K.; Salmenkivi, K.; Myllarniemi, M.; Kinnula, V.L. Proteomics of human lung tissue identifies surfactant protein A as a marker of chronic obstructive pulmonary disease. J. Proteome Res. 2008, 7, 5125–5132. [Google Scholar] [CrossRef]
- Greene, K.E.; King, T.E., Jr.; Kuroki, Y.; Bucher-Bartelson, B.; Hunninghake, G.W.; Newman, L.S.; Nagae, H.; Mason, R.J. Serum surfactant proteins-A and -D as biomarkers in idiopathic pulmonary fibrosis. Eur. Respir. J. 2002, 19, 439–446. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yi, Y.; Lagniton, P.N.P.; Ye, S.; Li, E.; Xu, R.H. COVID-19: What has been learned and to be learned about the novel coronavirus disease. Int. J. Biol. Sci. 2020, 16, 1753–1766. [Google Scholar] [CrossRef]
- Fujita, M.; Shannon, J.M.; Ouchi, H.; Voelker, D.R.; Nakanishi, Y.; Mason, R.J. Serum surfactant protein D is increased in acute and chronic inflammation in mice. Cytokine 2005, 31, 25–33. [Google Scholar] [CrossRef] [PubMed]
- Eisner, M.D.; Parsons, P.; Matthay, M.A.; Ware, L.; Greene, K.; Acute Respiratory Distress Syndrome, N. Plasma surfactant protein levels and clinical outcomes in patients with acute lung injury. Thorax 2003, 58, 983–988. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Determann, R.M.; Royakkers, A.A.; Haitsma, J.J.; Zhang, H.; Slutsky, A.S.; Ranieri, V.M.; Schultz, M.J. Plasma levels of surfactant protein D and KL-6 for evaluation of lung injury in critically ill mechanically ventilated patients. BMC Pulm. Med. 2010, 10, 6. [Google Scholar] [CrossRef] [Green Version]
- Klug, J.; Beier, H.M.; Bernard, A.; Chilton, B.S.; Fleming, T.P.; Lehrer, R.I.; Miele, L.; Pattabiraman, N.; Singh, G. Uteroglobin/Clara cell 10-kDa family of proteins: Nomenclature committee report. Ann. N. Y. Acad. Sci. 2000, 923, 348–354. [Google Scholar] [CrossRef]
- Broeckaert, F.; Bernard, A. Clara cell secretory protein (CC16): Characteristics and perspectives as lung peripheral biomarker. Clin. Exp. Allergy 2000, 30, 469–475. [Google Scholar] [CrossRef] [Green Version]
- Park, H.Y.; Churg, A.; Wright, J.L.; Li, Y.; Tam, S.; Man, S.F.; Tashkin, D.; Wise, R.A.; Connett, J.E.; Sin, D.D. Club cell protein 16 and disease progression in chronic obstructive pulmonary disease. Am. J. Respir. Crit. Care Med. 2013, 188, 1413–1419. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guerra, S.; Halonen, M.; Vasquez, M.M.; Spangenberg, A.; Stern, D.A.; Morgan, W.J.; Wright, A.L.; Lavi, I.; Tares, L.; Carsin, A.E.; et al. Relation between circulating CC16 concentrations, lung function, and development of chronic obstructive pulmonary disease across the lifespan: A prospective study. Lancet Respir. Med. 2015, 3, 613–620. [Google Scholar] [CrossRef] [Green Version]
- Lomas, D.A.; Silverman, E.K.; Edwards, L.D.; Miller, B.E.; Coxson, H.O.; Tal-Singer, R. Evaluation of serum CC-16 as a biomarker for COPD in the ECLIPSE cohort. Thorax 2008, 63, 1058–1063. [Google Scholar] [CrossRef] [Green Version]
- Laing, I.A.; Hermans, C.; Bernard, A.; Burton, P.R.; Goldblatt, J.; Le Souef, P.N. Association between plasma CC16 levels, the A38G polymorphism, and asthma. Am. J. Respir. Crit. Care Med. 2000, 161, 124–127. [Google Scholar] [CrossRef]
- Oh, J.Y.; Lee, Y.S.; Min, K.H.; Hur, G.Y.; Lee, S.Y.; Kang, K.H.; Rhee, C.K.; Park, S.J.; Shim, J.J. Decreased serum club cell secretory protein in asthma and chronic obstructive pulmonary disease overlap: A pilot study. Int. J. Chron. Obs. Pulmon. Dis. 2018, 13, 3411–3417. [Google Scholar] [CrossRef] [Green Version]
- Almuntashiri, S.; Zhu, Y.; Han, Y.; Wang, X.; Somanath, P.R.; Zhang, D. Club Cell Secreted Protein CC16: Potential Applications in Prognosis and Therapy for Pulmonary Diseases. J. Clin. Med. 2020, 9, 4039. [Google Scholar] [CrossRef]
- Lesur, O.; Langevin, S.; Berthiaume, Y.; Legare, M.; Skrobik, Y.; Bellemare, J.F.; Levy, B.; Fortier, Y.; Lauzier, F.; Bravo, G.; et al. Outcome value of Clara cell protein in serum of patients with acute respiratory distress syndrome. Intensive Care Med. 2006, 32, 1167–1174. [Google Scholar] [CrossRef] [PubMed]
- Lin, J.; Zhang, W.; Wang, L.; Tian, F. Diagnostic and prognostic values of Club cell protein 16 (CC16) in critical care patients with acute respiratory distress syndrome. J. Clin. Lab. Anal. 2018, 32. [Google Scholar] [CrossRef] [Green Version]
- Buendia-Roldan, I.; Ruiz, V.; Sierra, P.; Montes, E.; Ramirez, R.; Vega, A.; Salgado, A.; Vargas, M.H.; Mejia, M.; Pardo, A.; et al. Increased Expression of CC16 in Patients with Idiopathic Pulmonary Fibrosis. PLoS ONE 2016, 11, e0168552. [Google Scholar] [CrossRef] [PubMed]
- Kokuho, N.; Ishii, T.; Kamio, K.; Hayashi, H.; Kurahara, M.; Hattori, K.; Motegi, T.; Azuma, A.; Gemma, A.; Kida, K. Diagnostic Values For Club Cell Secretory Protein (CC16) in Serum of Patients of Combined Pulmonary Fibrosis and Emphysema. COPD 2015, 12, 347–354. [Google Scholar] [CrossRef] [PubMed]
- Hermans, C.; Petrek, M.; Kolek, V.; Weynand, B.; Pieters, T.; Lambert, M.; Bernard, A. Serum Clara cell protein (CC16), a marker of the integrity of the air-blood barrier in sarcoidosis. Eur. Respir. J. 2001, 18, 507–514. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Johansson, S.; Kristjansson, S.; Bjarnarson, S.P.; Wennergren, G.; Rudin, A. Clara cell protein 16 (CC16) serum levels in infants during respiratory syncytial virus infection. Acta Paediatr. 2009, 98, 579–581. [Google Scholar] [CrossRef]
- Roden, A.C.; Bois, M.C.; Johnson, T.F.; Aubry, M.C.; Alexander, M.P.; Hagen, C.E.; Lin, P.T.; Quinton, R.A.; Maleszewski, J.J.; Boland, J.M. The Spectrum of Histopathologic Findings in Lungs of Patients With Fatal Coronavirus Disease 2019 (COVID-19) Infection. Arch. Pathol. Lab. Med. 2021, 145, 11–21. [Google Scholar] [CrossRef] [PubMed]
- Yin, W.; Cao, W.; Zhou, G.; Wang, L.; Sun, J.; Zhu, A.; Wang, Z.; Zhou, Y.; Liu, X.; Li, Y.; et al. Analysis of pathological changes in the epithelium in COVID-19 patient airways. ERJ Open Res. 2021, 7. [Google Scholar] [CrossRef]
- Crosby, L.M.; Waters, C.M. Epithelial repair mechanisms in the lung. Am. J. Physiol. Lung Cell Mol. Physiol. 2010, 298, L715–L731. [Google Scholar] [CrossRef] [Green Version]
- Fukuda, Y.; Takemura, T.; Ferrans, V.J. Evolution of metaplastic squamous cells of alveolar walls in pulmonary fibrosis produced by paraquat. An ultrastructural and immunohistochemical study. Virchows Arch. B Cell Pathol. Incl. Mol. Pathol. 1989, 58, 27–43. [Google Scholar] [CrossRef]
- Rock, J.R.; Barkauskas, C.E.; Cronce, M.J.; Xue, Y.; Harris, J.R.; Liang, J.; Noble, P.W.; Hogan, B.L. Multiple stromal populations contribute to pulmonary fibrosis without evidence for epithelial to mesenchymal transition. Proc. Natl. Acad. Sci. USA 2011, 108, E1475–E1483. [Google Scholar] [CrossRef] [Green Version]
- Fukumoto, J.; Soundararajan, R.; Leung, J.; Cox, R.; Mahendrasah, S.; Muthavarapu, N.; Herrin, T.; Czachor, A.; Tan, L.C.; Hosseinian, N.; et al. The role of club cell phenoconversion and migration in idiopathic pulmonary fibrosis. Aging 2016, 8, 3091–3109. [Google Scholar] [CrossRef] [Green Version]
- Samprathi, M.; Jayashree, M. Biomarkers in COVID-19: An Up-To-Date Review. Front. Pediatr. 2020, 8, 607647. [Google Scholar] [CrossRef] [PubMed]
Reference | Protein | Country | No. of Patients | Conclusion | p-Value |
---|---|---|---|---|---|
[25] | KL-6 | Italy | 22 patients 22 healthy volunteers | KL-6 was higher in severe subjects than the non-severe subjects KL-6 was only elevated in the severe group admitted to the ICU and requiring mechanical ventilation | 0.0118 |
No significant difference in KL-6 level between non-severe COVID-19 cases and healthy controls | 0.5277 | ||||
[26] | KL-6 | Belgium | 83 COVID patients 70 healthy subjects 31 ILDs patients | Higher in COVID-19 cases than healthy subjects Lower in COVID-19 cases than ILD group | <0.001 |
KL-6 was not associated with severe dyspnea | 0.585 | ||||
KL-6 was not associated with ICU admission | 0.434 | ||||
KL-6 did not show an impact on mortality | >0.05 | ||||
No correlation between high KL-6 levels and CRP | 0.482 | ||||
High KL-6 was correlated with high LDH levels (r = 0.31) | 0.004 | ||||
High-KL-6 levels were associated with higher values of platelet/lymphocyte ratio | 0.04 | ||||
[27] | KL-6 | China | 63 COVID patients 43 non-COVID patients | KL-6 was higher in COVID-19 than those in non-COVID-19 patients | <0.001 |
KL-6 was higher in severe patients compared with mild patients | <0.05 | ||||
A significant correlation between KL-6 and pulmonary lesion area in severe cases (r = −0.14) | <0.05 | ||||
A significant correlation between the KL-6 and T lymphocyte (CD3+CD45+) in severe subjects (r = −0.24) | <0.05 | ||||
Ts (CD3+CD8+) and Th (CD3+CD4+) lymphocyte subsets were closely associated with KL-6 levels (r = −0.19 and −0.25) | <0.05 | ||||
IL-6 and IL-10 were significantly correlated with KL-6 levels, (r = 0.38 and 0.19) | <0.05 | ||||
[28] | KL-6 | Japan | 21 severe COVID patients 33 non-severe patients | KL-6 was higher in the severe group than the non-severe group at admission and one week later | <0.001 |
[29] | KL-6 | Japan, China; from multinational database | 74 patients | KL-6 was associated with CT infiltrates | 0.02 |
[30] | KL-6 | Italy | 26 patients | KL-6 levels were high at hospitalization and reduced after months of recovery | <0.05 |
Increased in fibrotic than non-fibrotic group | 0.0225 | ||||
In the fibrotic group, KL-6 reduced after 6 and 9 months of discharge | <0.05 | ||||
[34] | KL-6 | China | 32 patients 7 healthy controls | KL-6 was higher compared to healthy controls | <0.05 |
[31] | KL-6 | China | 166 patients 59 healthy controls | KL-6 was higher compared to healthy controls | <0.001 |
No significant correlation between KL-6 and pulmonary lesion area at the first week | >0.05 | ||||
A significant correlation between KL-6 and pulmonary lesion areas two weeks later | <0.001 | ||||
KL-6 gradually reduced after reaching a peak level in a month in some patients | <0.05 | ||||
A significant positive correlation between the serum KL-6 and CD4+CXCR5+ T cells (r = 0.535) and CD4+/CD8+ ratio (r = 0.511), and CD3+CD4+ T cells (r = 0.510) among severe patients | <0.05 | ||||
A significant negative correlation between the serum KL-6 and Tregs (r = −0.516), CD3+CD8+ T cells (r = −0.475), and CD8+CD161+ T cells (r = −0.425) among severe patients | <0.006 | ||||
KL-6 was correlated to coagulation indexes; d-dimer (r = 0.692) and fibrin degradation product FDP (r = 0.641) among severe patients | 0.001 | ||||
[35] | KL-6 | Italy | 54 patients | KL-6 higher in severe cases than in non-severe subjects | <0.0001 |
[36] | KL-6 | Italy | 34 patients | KL-6 higher in non-survivors compared to survivors | <0.001 |
KL-6 above 1000 U/mL was independently associated with mortality compared to the P/F ratio and IL-6 | <0.05 | ||||
KL-6 negatively correlated with the P/F ratio (r = 0.113) | <0.05 | ||||
[37] | KL-6 | Italy | 41 patients 30 healthy controls | Serum concentrations of KL-6 were correlated with CRP (r = 0.51) | 0.04 |
Serum concentrations of KL-6 were correlated with IL-6 (r = 0.43) | 0.04 | ||||
Peripheral levels of platelets showed an indirect correlation with KL-6 (r = −0.56) | 0.04 | ||||
[33] | KL-6 | China | 113 patients 36 suspected cases 65 healthy subjects | A significant positive correlation between the serum KL-6 and CRP levels in severe COVID-19 patients (r = 0.3803) | <0.001 |
A significant negative correlation between the serum KL-6 and lymphocytes counts in severe COVID-19 patients (r = 0.1753) | 0.0099 | ||||
[38] | SP-D | Turkey | 88 patients 20 healthy controls | Higher SP-D levels than the control group at admission | 0.001 |
No significant difference in SP-D levels between patients and controls at day 5 | >0.05 | ||||
Higher SP-D levels in patients who developed ARDS or MAS compared to those who did not at admission and five days later | <0.05 | ||||
Higher among non-survivors compared to survivors | 0.03 | ||||
A negative correlation between SP-D and PaO2/FiO2 level (r = −0.364) | 0.01 | ||||
[39] | SP-D | China | 16 SARS patients 19 CAP patients 16 healthy controls | Higher SP-D levels in SARS patients than control | 0.026 |
No significant difference in SP-D levels between SARS patients and CAP patients | 0.360 |
Reference | Protein | Concentration | p-Value |
---|---|---|---|
[25] | KL-6 | Severe cases (n = 12): 1021 (473–1909) U/mL Non-severe cases (n = 10): 293 (197–362) U/mL | 0.0118 |
Severe cases (n = 12): 1021 (473–1909) U/mL Healthy controls (n = 22): 239 (132–371) U/mL | 0 .012 | ||
Healthy controls (n = 22): 239 (132–371) U/mL Non-severe cases (n = 10): 293 (197–362) U/mL | 0.5277 | ||
[26] | KL-6 | Healthy subjects (n = 70): 254 (191–308) U/mL COVID-19 (n = 83): 405 (277–592) U/mL | < 0.001 |
Healthy subjects (n = 70): 254 (191–308) U/mL Patients with interstitial lung diseases (n = 31): 897 (550–1885) U/mL | < 0.001 | ||
Interstitial lung diseases (n = 31): 897 (550–1885) U/mL COVID-19 (n = 83): 405 (277–592) U/mL | < 0.001 | ||
[27] | KL-6 | Non-COVID-19 patients (n = 43): 173.9 ± 63.40 U/mL COVID-19 patients (n = 63): Mild (n = 30): 241.2 ± 207.90; Severe (n = 33): 676.6 ± 506.70 U/mL | <0.001 |
All patients (n = 63): Mild COVID-19 patients: 241.2 ± 207.90 U/mL Severe COVID-19 patients: 676.6 ± 506.70 U/mL | <0.001 | ||
[28] | KL-6 | At diagnosis: Non-severe group (n = 33): 223 (166–255) U/mL Severe group (n = 21): 338 (303–529) U/mL | <0.001 |
One week after diagnosis (peak levels): Non-severe group (n = 33): 234 (194–282) U/mL Severe group (n = 21): 781 (429–1435) U/mL | <0.001 | ||
[29] | KL-6 | Patients with CT infiltrates (n = 48): 337 ± 173 U/mL Patients without CT infiltrates (n = 26): 227 ± 71 U/mL | 0.021 |
[30] | KL-6 | All patients (n = 26): At admission: 760 (311–1218) U/mL After 6 months: 309 (210–408) U/mL | 0.0208 |
All patients (n = 26): At admission: 760 (311–1218) U/mL After 9 months: 324 (279–458) U/mL | 0.0365 | ||
At admission: Fibrotic patients (n = 14): 755 (370–1023) U/mL Non-fibrotic patients (n = 12): 305 (225–608) U/mL | 0.0225 | ||
After 6 months: Fibrotic patients (n = 14): 290 (197–521) U/mL Non-fibrotic patients (n = 12): 262 (167–382) U/mL | 0.2236 | ||
After 9 months: Fibrotic patients (n = 14): 318 (173–435) U/mL Non-fibrotic patients (n = 12): 320 (214–427) U/mL | 0.2536 | ||
Fibrotic patients at admission: 755 (370–1023) U/mL Fibrotic patients after 6 months: 290 (197–521) U/mL | 0.0366 | ||
Fibrotic patients at admission: 755 (370–1023) U/mL Fibrotic patients after 9 months: 318 (173–435) U/mL | 0.0490 | ||
[31] | KL-6 | Severe patients: (n = 17): 898 (567.7–1278.9) U/mL Mild patients: (n = 149): 452.1 (325.6–641.3) U/mL Healthy subjects: (n = 59): 180.9 U/mL | <0.001 |
[35] | KL-6 | Severe patients: (n = 14): 1125 (495–2034) U/mL Non-severe patients: (n = 40): 316 (210–398) U/mL | <0.0001 |
[36] | KL-6 | At the time of enrollment (n = 34): 411 (177–1192) U/mL 7 days after enrollment (n = 34): 570 (70–7580) U/mL 14 days after enrollment (n = 15): 296 (137–5548) U/mL | - |
Patients with favorable outcome: (n = 19): 260 (125–421) U/mL Patients with unfavorable outcome: (n = 15): 1188 (592–3608) U/mL | <0.001 | ||
[37] | KL-6 | Mild to moderate group (n = 14): 320 (226.3–927.8) U/mL Severe group (n = 10): 903 (333.8–1956) U/mL | 0.035 |
[33] | KL-6 | Control subjects (n = 65): 240.5 (217.5–285.5) U/mL severe group(n = 36) 373.7 (269.9–428.1) U/mL | <0.001 |
[38] | SP-D | Non-survivors: 96.7 ± 37.2 Survivors: 56.9 ± 43.5 ng/ml | 0.03 |
At admission COVID-19 patients with MAS (n = 20): 80.9 ± 45.5 ng/mL COVID-19 patients without MAS (n = 68): 53.7 ± 42.2 ng/mL Control (n = 20): 21.1 ± 18.6 ng/ml | 0.001 | ||
At admission COVID-19 patients with ARDS (n = 35): 82.3 ± 45.4 ng/mL COVID-19 patients without ARDS (n = 53): 46.5 ± 39.2 ng/mL Control (n = 20): 21.1 ± 18.6 ng/ml | 0.001 | ||
On day 5 COVID-19 patients with MAS (n = 20): 50.4 ± 18.3 ng/mL COVID-19 patients without MAS (n = 68): 35.6 ± 8.4 ng/ml | 0.001 | ||
On day 5 COVID-19 patients with ARDS (n = 35): 46.4 ± 33.2 ng/mL COVID-19 patients without ARDS (n = 53): 22.4 ± 18.9 ng/ml | 0.001 | ||
[39] | SP-D | SARS patients (n = 16): 453 (379–963) ng/mL Control (n = 16): 218 (160–362) ng/ml | 0.026 |
SARS patients (n = 16): 453 (379–963) ng/mL CAP patients (n = 19): 302 (94–459) ng/ml | 0.360 |
Reference | Aim | AUC% | Sensitivity % | Specificity % | Cut-Off Value U/mL | p Value |
---|---|---|---|---|---|---|
[25] | To evaluate disease severity | 82.4 (95% CI: 62–100) | 83 | 89 | 406.5 | 0.0129 |
[28] | To evaluate disease severity | At diagnosis: 84 | 76.2 | 86.2 | 303 | <0.05 |
One week after diagnosis 95 | 85.7 | 96.6 | 371 | <0.05 | ||
[31] | To evaluate disease severity | 79.3 (95% CI: 71.8–86.8) | 75.3 | 73.3 | 642.3 | <0.001 |
[29] | To determine asymptomatic patients with CT infiltrates | 75 (58–91) | 73 | 67 | 216 | <0.05 |
[30] | To identify patients with fibrotic interstitial lung abnormalities | 85 (95% CI: 64–100) | 75 | 80 | 455 | 0.0404 |
[36] | To predict the critical outcome | 84.9 (95% CI: 70.2–99.6) | - | - | 1000 | <0.01 |
[33] | To evaluate the severity of lung injury | 82.66 | 80 | 68.13 | 278.3 | <0.001 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Almuntashiri, S.; James, C.; Wang, X.; Siddiqui, B.; Zhang, D. The Potential of Lung Epithelium Specific Proteins as Biomarkers for COVID-19-Associated Lung Injury. Diagnostics 2021, 11, 1643. https://doi.org/10.3390/diagnostics11091643
Almuntashiri S, James C, Wang X, Siddiqui B, Zhang D. The Potential of Lung Epithelium Specific Proteins as Biomarkers for COVID-19-Associated Lung Injury. Diagnostics. 2021; 11(9):1643. https://doi.org/10.3390/diagnostics11091643
Chicago/Turabian StyleAlmuntashiri, Sultan, Chelsea James, Xiaoyun Wang, Budder Siddiqui, and Duo Zhang. 2021. "The Potential of Lung Epithelium Specific Proteins as Biomarkers for COVID-19-Associated Lung Injury" Diagnostics 11, no. 9: 1643. https://doi.org/10.3390/diagnostics11091643
APA StyleAlmuntashiri, S., James, C., Wang, X., Siddiqui, B., & Zhang, D. (2021). The Potential of Lung Epithelium Specific Proteins as Biomarkers for COVID-19-Associated Lung Injury. Diagnostics, 11(9), 1643. https://doi.org/10.3390/diagnostics11091643