Measurement of Plasma Galectin-3 Concentrations in Patients with Catheter Infections: A Post Hoc Retrospective Cohort Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Biochemical and Microbiological Analyses
2.3. Statistical Analyses
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- O’Grady, N.P.; Alexander, M.; Burns, L.A.; Dellinger, E.P.; Garland, J.; Heard, S.O.; Lipsett, P.A.; Masur, H.; Mermel, L.A.; Pearson, M.L.; et al. Guidelines for the Prevention of Intravascular Catheter-related Infections. Clin. Infect. Dis. 2011, 52, e162–e193. [Google Scholar] [CrossRef] [Green Version]
- Camps, J.; Iftimie, S.; García-Heredia, A.; Castro, A.; Joven, J. Paraoxonases and infectious diseases. Clin. Biochem. 2017, 50, 804–811. [Google Scholar] [CrossRef] [PubMed]
- Theodorou, V.P.; Papaioannou, V.E.; Tripsianis, G.A.; Panopoulou, M.K.; Christophoridis, E.K.; Kouliatsis, G.A.; Gioka, T.M.; Maltezos, E.S.; Ktenidou-Kartali, S.I.; Pneumatikos, I.A. Procalcitonin and procalcitonin kinetics for diagnosis and prognosis of intravascular catheter-related bloodstream infections in selected critically ill patients: A prospective observational study. BMC Infect. Dis. 2012, 12, 247. [Google Scholar] [CrossRef] [Green Version]
- Henriquez-Camacho, C.; Losa, L. Biomarkers for sepsis. Biomed Res. Int. 2014, 2014, 547818. [Google Scholar] [CrossRef] [PubMed]
- Sans, T.; Rull, A.; Luna, J.; Mackness, B.; Mackness, M.; Joven, J.; Ibañez, M.; Pariente, R.; Rodriguez, M.; Ortin, X.; et al. Monocyte chemoattractant protein-1 and paraoxonase-1 and 3 levels in patients with sepsis treated in an intensive care unit: A preliminary report. Clin. Chem. Lab. Med. 2012, 50, 1409–1415. [Google Scholar] [CrossRef] [PubMed]
- Barondes, S.H.; Castronovo, V.; Cooper, D.N.; Cummings, R.D.; Drickamer, K.; Feizi, T.; Gitt, M.A.; Hirabyashi, J.; Kasai, K.I.; Leffler, H.; et al. Galectins: A family of animal beta-galactoside-binding lectins. Cell 1994, 76, 597–598. [Google Scholar] [CrossRef]
- Pugliese, G.; Iacobini, C.; Pesce, C.M.; Menini, S. Galectin-3: An emerging all-out player in metabolic disorders and their complications. Glycobiology 2015, 25, 136–150. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Feeley, E.M.; Pilla-Moffett, D.M.; Zwack, E.E.; Piro, A.S.; Finethy, R.; Kolb, J.P.; Martinez, J.; Brodsky, I.E.; Coers, J. Galectin-3 directs antimicrobial guanylate binding proteins to vacuoles furnished with bacterial secretion systems. Proc. Natl. Acad. Sci. USA 2017, 114, E1698–E1706. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lepenies, B.; Lang, R. Editorial: Lectins and their ligands in shaping immune responses. Front. Immunol. 2019, 10, 2379. [Google Scholar] [CrossRef]
- Acosta, M.P.; Lepenies, B. Bacterial glycans and their interactions with lectins in the innate immune system. Biochem. Soc. Trans. 2019, 47, 1569–1579. [Google Scholar] [CrossRef]
- Arsenijevic, A.; Stojanovic, B.; Milovanovic, J.; Arsenijevic, D.; Arsenijevic, N.; Milovanovic, M. Galectin-3 in inflammasome activation and primary biliary cholangitis development. Int. J. Mol. Sci. 2020, 21, 5097. [Google Scholar] [CrossRef]
- Han, X.; Zhang, S.; Chen, Z.; Adhikari, B.K.; Zhang, Y.; Zhang, J.; Sun, J.; Wang, Y. Cardiac biomarkers of heart failure in chronic kidney disease. Clin. Chim. Acta 2020, 510, 298–310. [Google Scholar] [CrossRef]
- Fort-Gallifa, I.; Hernández-Aguilera, A.; García-Heredia, A.; Cabré, N.; Luciano-Mateo, F.; Simó, J.M.; Martín-Paredero, V.; Camps, J.; Joven, J. Galectin-3 in peripheral artery disease. Relationships with markers of oxidative stress and inflammation. Int. J. Mol. Sci. 2017, 18, 973. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Park, A.M.; Hagiwara, S.; Hsu, D.K.; Liu, F.T.; Yoshie, O. Galectin-3 plays an important role in innate immunity to gastric infection by Helicobacter pylori. Infect. Immun. 2016, 84, 1184–1193. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Subhash, V.V.; Ling, S.S.M.; Ho, B. Extracellular galectin-3 counteracts adhesion and exhibits chemoattraction in Helicobacter pylori-infected gastric cancer cells. Microbiology 2016, 162, 1360–1366. [Google Scholar] [CrossRef]
- Robinson, B.S.; Arthur, C.M.; Evavold, B.; Roback, E.; Kamili, N.A.; Stowell, C.S.; Vallecillo-Zúniga, M.L.; Van Ry, P.M.; Dias-Baruffi, M.; Cummings, R.D.; et al. The sweet-side of leukocytes: Galectins as master regulators of neutrophil function. Front. Immunol. 2019, 10, 1762. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Lv, F.; Dai, C.; Wang, Q.; Jiang, C.; Fang, M.; Xu, Y. Activation of galectin-3 (LGALS3) transcription by injurious stimuli in the liver is commonly mediated by BRG1. Front. Cell Dev. Biol. 2019, 7, 310. [Google Scholar] [CrossRef] [Green Version]
- Albu, S.; Voidazan, S.; Bilca, D.; Badiu, M.; Truţă, A.; Ciorea, M.; Ichim, A.; Luca, D.; Moldovan, G. Bacteriuria and asymptomatic infection in chronic patients with indwelling urinary catheter: The incidence of ESBL bacteria. Medicine 2018, 97, e11796. [Google Scholar] [CrossRef]
- Iftimie, S.; García-Heredia, A.; Pujol, I.; Ballester, F.; Fort-Gallifa, I.; Simó, J.M.; Joven, J.; Camps, J.; Castro, A. Preliminary study on serum paraoxonase-1 status and chemokine (C-C motif) ligand 2 in hospitalized elderly patients with catheter-associated asymptomatic bacteriuria. Eur. J. Clin. Microbiol. 2016, 35, 1417–1424. [Google Scholar] [CrossRef]
- Iftimie, S.; García-Heredia, A.; Pujol, I.; Ballester, F.; Fort-Gallifa, I.; Simó, J.M.; Joven, J.; Castro, A.; Camps, J. A preliminary study of paraoxonase-1 in infected patients with an indwelling central venous catheter. Clin. Biochem. 2016, 49, 449–457. [Google Scholar] [CrossRef]
- Fort-Gallifa, I.; García-Heredia, A.; Hernández-Aguilera, A.; Simó, J.M.; Sepúlveda, J.; Martín-Paredero, V.; Camps, J.; Joven, J. Biochemical indices of oxidative stress and inflammation in the evaluation of peripheral artery disease. Free Radic. Biol. Med. 2016, 97, 568–576. [Google Scholar] [CrossRef]
- McCabe, W.R.; Jackson, G.G. Gram-negative bacteremia. I. Etiology and ecology. Arch. Intern. Med. 1962, 110, 847–864. [Google Scholar] [CrossRef]
- Berkman, L.F.; Leo-Summers, L.; Horwitz, R.I. Emotional support and survival after myocardial infarction. A prospective, population-based study of the elderly. Ann. Intern. Med. 1992, 117, 1003–1009. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zweig, M.H.; Campbell, G. Receiver-operating characteristic (ROC) plots: A fundamental evaluation tool in clinical medicine. Clin. Chem. 1993, 39, 561–577. [Google Scholar] [CrossRef]
- Liedberg, H. Catheter induced urethral inflammatory reaction and urinary tract infection. An experimental and clinical study. Scand. J. Urol. Nephrol. Suppl. 1989, 124, 1–43. [Google Scholar] [PubMed]
- Safdar, N.; Maki, D.G. Inflammation at the insertion site is not predictive of catheter-related bloodstream infection with short-term, noncuffed central venous catheters. Crit. Care Med. 2002, 30, 2632–2635. [Google Scholar] [CrossRef] [PubMed]
- Sun, H.; Peng, J.; Cai, S.; Nie, Q.; Li, T.; Kellum, J.A.; Eliaz, I.; Peng, Z. A translational study of galectin-3 as an early biomarker and potential therapeutic target for ischemic-reperfusion induced acute kidney injury. J. Crit. Care 2021, 65, 192–199. [Google Scholar] [CrossRef]
- Latoch, E.; Konończuk, K.; Jander, A.; Trembecka-Dubel, E.; Wasilewska, A.; Taranta-Janusz, K. Galectin-3-A new player of kidney damage or an innocent bystander in children with a single kidney? J. Clin. Med. 2021, 10, 2012. [Google Scholar] [CrossRef]
- Pankiewicz, K.; Szczerba, E.; Fijalkowska, A.; Szamotulska, K.; Szewczyk, G.; Issat, T.; Maciejewski, T.M. The association between serum galectin-3 level and its placental production in patients with preeclampsia. J. Physiol. Pharmacol. 2020, 71, 1–12. [Google Scholar] [CrossRef]
- Collister, D.; Mazzetti, A.; Bhalerao, A.; Tyrwhitt, J.; Kavsak, P.; Brimble, K.S.; Devereaux, P.J.; Walsh, M. Variability in cardiac biomarkers during hemodialysis: A prospective cohort study. Clin. Chem. 2021, 67, 308–316. [Google Scholar] [CrossRef] [PubMed]
- Oikonomou, T.; Goulis, I.; Ntogramatzi, F.; Athanasiadou, Z.; Vagdatli, E.; Akriviadis, E.; Cholongitas, E. Galectin-3 is associated with glomerular filtration rate and outcome in patients with stable decompensated cirrhosis. Dig. Liver Dis. 2019, 51, 1692–1697. [Google Scholar] [CrossRef] [PubMed]
- Ozkurt, S.; Dogan, I.; Ozcan, O.; Fidan, N.; Bozaci, I.; Yilmaz, B.; Bilgin, M. Correlation of serum galectin-3 level with renal volume and function in adult polycystic kidney disease. Int. Urol. Nephrol. 2019, 51, 1191–1197. [Google Scholar] [CrossRef] [PubMed]
- Meijers, W.C.; van der Velde, A.R.; Ruifrok, W.P.; Schroten, N.F.; Dokter, M.M.; Damman, K.; Assa, S.; Franssen, C.F.; Gansevoort, R.T.; van Gilst, W.H.; et al. Renal handling of galectin-3 in the general population, chronic heart failure, and hemodialysis. J. Am. Heart Assoc. 2014, 3, e000962. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Roberts, M.A.; Srivastava, P.M.; Hare, D.L.; Ierino, F.L. Effect of haemodialysis and residual renal function on serum levels of galectin-3, B-type natriuretic peptides and cardiac troponin T. Nephrology 2018, 23, 1131–1138. [Google Scholar] [CrossRef]
- Rebholz, C.M.; Selvin, E.; Liang, M.; Ballantyne, C.M.; Hoogeveen, R.C.; Aguilar, D.; McEvoy, J.W.; Grams, M.E.; Coresh, J. Plasma galectin-3 levels are associated with the risk of incident chronic kidney disease. Kidney Int. 2018, 93, 252–259. [Google Scholar] [CrossRef] [Green Version]
- O’Seaghdha, C.M.; Hwang, S.-J.; Ho, J.E.; Vasan, R.S.; Levy, D.; Fox, C.S. Elevated Galectin-3 Precedes the Development of CKD. J. Am. Soc. Nephrol. 2013, 24, 1470–1477. [Google Scholar] [CrossRef] [Green Version]
- Savoj, J.; Becerra, B.; Kim, J.K.; Fusaro, M.; Gallieni, M.; Lombardo, D.; Lau, W.L. Utility of cardiac biomarkers in the setting of kidney disease. Nephron 2019, 141, 227–235. [Google Scholar] [CrossRef]
- Feneley, R.C.; Kunin, C.M.; Stickler, D.J. An indwelling urinary catheter for the 21st century. BJU Int. 2012, 109, 1746–1749. [Google Scholar] [CrossRef]
- Reigada, I.; Guarch-Pérez, C.; Patel, J.Z.; Riool, M.; Savijoki, K.; Yli-Kauhaluoma, J.; Zaat, S.A.J.; Fallarero, A. Combined effect of naturally-derived biofilm inhibitors and differentiated HL-60 cells in the prevention of Staphylococcus aureus biofilm formation. Microorganisms 2020, 8, 1757. [Google Scholar] [CrossRef]
- Brown, J.L.; Johnston, W.; Delaney, C.; Rajendran, R.; Butcher, J.; Khan, S.; Bradshaw, D.; Ramage, G.; Culshaw, S. Biofilm-stimulated epithelium modulates the inflammatory responses in co-cultured immune cells. Sci. Rep. 2019, 9, 15779. [Google Scholar] [CrossRef]
- Bai, F.; Cai, Z.; Yang, L. Recent progress in experimental and human disease associated multi-species biofilms. Comput. Struct. Biotechnol. J. 2019, 17, 1234–1244. [Google Scholar] [CrossRef] [PubMed]
- Schmiemann, G.; Kniehl, E.; Gebhardt, K.; Matejczyk, M.M.; Hummers-Pradier, E. The diagnosis of urinary tract infection: A systematic review. Dtsch. Ärzteblatt Int. 2010, 107, 361–367. [Google Scholar] [CrossRef]
- Khasriya, R.; Khan, S.; Lunawat, R.; Bishara, S.; Bignall, J.; Malone-Lee, M.; Ishii, H.; O’Connor, D.; Kelsey, M.; Malone-Lee, J. The inadequacy of urinary dipstick and microscopy as surrogate markers of urinary tract infection in urological outpatients with lower urinary tract symptoms without acute frequency and dysuria. J. Urol. 2010, 183, 1843–1847. [Google Scholar] [CrossRef] [PubMed]
Feature | Control Group (n = 72) | CVC (n = 110) | UC (n = 165) | |
---|---|---|---|---|
Age, years | 63 (61–69) | 63 (50–74) | 75 (63–81) c,f | |
Sex (male), n (%) | 47 (65.3) | 54 (49.1) a | 118 (71.5) f | |
Smoking, n (%) | 26 (36.1) | 25 (22.7) b | 24 (14.5) c | |
Alcohol intake, n (%) | 36 (50.0) | 15 (13.6) c | 35 (21.2) c | |
Catheter-related infection, n (%) | NA | 23 (20.9) | 30 (18.2) d | |
Acute concomitant infection, n (%) | NA | 36 (32.7) | 49 (29.7) | |
Hypertension, n (%) | 5 (6.9) | 57 (51.8) c | 115 (69.7) c,e | |
Diabetes mellitus, n (%) | 0 | 32 (29.1) | 60 (36.4) | |
Dyslipidemia, n (%) | 0 | 35 (31.8) | 66 (40.0) | |
Cardiovascular disease, n (%) | 0 | 11 (10.0) | 37 (22.4) e | |
Chronic kidney disease, n (%) | 0 | 10 (9.1) | 35 (21.2) e | |
Neurological vascular disease, n (%) | 0 | 12 (10.9) | 12 (7.3) | |
COPD, n (%) | 0 | 11 (10.0) | 31 (18.8) a | |
History of neoplasia, n (%) | 0 | 71 (64.5) | 75 (45.5) e | |
Immunosuppressive treatment, n (%) | 0 | 45 (40.9) | 6 (3.6) f | |
Antibiotics 24 h before the study, n (%) | 0 | 51 (46.4) | 141 (85.5) f | |
Charlson index | No comorbidity, n (%) | NA | 30 (27.3) | 67 (40.6) |
Low comorbidity, n (%) | NA | 47 (42.7) | 54 (32.7) | |
High comorbidity, n (%) | NA | 33 (30.0) | 44 (26.7) | |
McCabe index | RFD, n (%) | NA | 9 (8.2) | 18 (10.9) |
UFD, n (%) | NA | 28 (25.5) | 13 (7.9) f | |
NFD, n (%) | NA | 73 (66.4) | 134 (81.2) f | |
Days with catheter | NA | 22 (10–130) | 4 (2–7) f |
Variable | Control Group (n = 72) | CVC (n = 110) | UC (n = 165) |
---|---|---|---|
Galectin-3 (µg/L) | 6.1 (5.0–8.7) | 19.1 (14.0–23.4) a | 17.1 (12.7–25.4) a |
CCL2 (ng/L) | 152.3 (130.3–175.3) | 201.1 (165.2–261.8) a | 188.9 (152.7–250.2) a |
Procalcitonin (µg/L) | <DLA | 29.1 (17.3–46.2) a | 41.4 (16.1–104.4) a,b |
C-reactive protein (mg/L) | 1.2 (0.4–2.4) | 22.1 (6.4–59.3) a | 24.6 (13.4–47.8) a |
PIC | Microorganism | CFU/L |
---|---|---|
8 | Enterococcus faecalis | 108 |
10 | Staphylococcus epidermidis | >108 |
11 | Staphylococcus epidermidis, Corynebacterium | >108 |
15 | Enterococcus faecalis | 5 × 107–108 |
17 | Escherichia coli | >108 |
24 | Pseudomonas aeruginosa | >108 |
27 | Pseudomonas aeruginosa | 5 × 107–108 |
33 | Raoultella planticola, Escherichia coli | >108 |
53 | Candida parapsilosis | 5 × 107–108 |
54 | Candida albicans | >106 |
63 | Providencia stuartii | >108 |
65 | Escherichia coli | 5 × 107–108 |
66 | Enterococcus faecalis | 5 × 107–108 |
83 | Candida albicans | 108 |
93 | Escherichia coli | >108 |
96 | Enterococcus faecalis | 3 × 107–4 × 107 |
110 | Candida albicans | 4 × 107–5 × 107 |
133 | Escherichia coli | 5 × 107–108 |
135 | Escherichia coli | >108 |
137 | Enterococcus faecalis | 3 × 107–4 × 107 |
138 | Candida albicans | >106 |
142 | Pseudomonas aeruginosa | 5 × 107–108 |
144 | Enterococcus faecalis | 4 × 107–5 × 107 |
146 | Candida albicans | >106 |
147 | Candida albicans | >108 |
155 | Pseudomonas aeruginosa | >108 |
167 | Escherichia coli | >108 |
168 | Enterococcus faecalis | 5 × 107–108 |
170 | Candida albicans | 4 × 107–5 × 107 |
173 | Candida albicans | >108 |
Variable | B | SE | β | p-Value |
---|---|---|---|---|
Constant | 12.865 | 3.662 | - | 0.001 |
Age | 0.050 | 0.049 | 0.100 | 0.314 |
C-reactive protein | 0.017 | 0.011 | 0.155 | 0.119 |
Chronic kidney disease | 6.098 | 2.647 | 0.236 | 0.023 |
Charlson index | 0.225 | 1.064 | 0.023 | 0.833 |
Days with catheter | −0.001 | 0.008 | −0.008 | 0.948 |
Type of catheter | 0.993 | 0.910 | 0.133 | 0.278 |
Variable | B | SE | β | p-Value |
---|---|---|---|---|
Constant | 10.043 | 4.373 | - | 0.022 |
Age | 0.089 | 0.053 | 0.126 | 0.098 |
Sex | −2.851 | 1.450 | −0.146 | 0.051 |
Smoking | −1.134 | 1.784 | −0.045 | 0.626 |
Alcohol intake | −1.633 | 1.491 | −0.076 | 0.275 |
Chemokine (C-C motif) ligand 2 | −0.009 | 0.006 | −0.135 | 0.110 |
Procalcitonin | 0.001 | 0.002 | 0.045 | 0.512 |
Creatinine | 0.045 | 0.009 | 0.413 | <0.001 |
Catheter-related infection | 2.398 | 1.617 | 0.105 | 0.140 |
Acute concomitant infection | 1.980 | 1.429 | 0.102 | 0.168 |
Hypertension | 0.359 | 1.382 | 0.019 | 0.795 |
Diabetes mellitus | 2.219 | 1.310 | 0.121 | 0.090 |
Dyslipidemia | −1.138 | 1.256 | −0.063 | 0.366 |
Cardiovascular disease | 2.894 | 1.452 | 0.137 | 0.048 |
History of neoplasia | −0.675 | 1.401 | −0.038 | 0.631 |
Immunosuppressive treatment | 1.877 | 3.043 | 0.040 | 0.538 |
Antibiotics 24 h before the study | −0.484 | 1.761 | −0.019 | 0.784 |
Days with catheter | 0.131 | 0.042 | 0.203 | 0.002 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Iftimie, S.; Hernández-Aguilera, A.; López-Azcona, A.F.; Castañé, H.; Rodríguez-Tomàs, E.; Baiges-Gaya, G.; Camps, J.; Castro, A.; Joven, J. Measurement of Plasma Galectin-3 Concentrations in Patients with Catheter Infections: A Post Hoc Retrospective Cohort Study. Diagnostics 2022, 12, 2418. https://doi.org/10.3390/diagnostics12102418
Iftimie S, Hernández-Aguilera A, López-Azcona AF, Castañé H, Rodríguez-Tomàs E, Baiges-Gaya G, Camps J, Castro A, Joven J. Measurement of Plasma Galectin-3 Concentrations in Patients with Catheter Infections: A Post Hoc Retrospective Cohort Study. Diagnostics. 2022; 12(10):2418. https://doi.org/10.3390/diagnostics12102418
Chicago/Turabian StyleIftimie, Simona, Anna Hernández-Aguilera, Ana F. López-Azcona, Helena Castañé, Elisabet Rodríguez-Tomàs, Gerard Baiges-Gaya, Jordi Camps, Antoni Castro, and Jorge Joven. 2022. "Measurement of Plasma Galectin-3 Concentrations in Patients with Catheter Infections: A Post Hoc Retrospective Cohort Study" Diagnostics 12, no. 10: 2418. https://doi.org/10.3390/diagnostics12102418
APA StyleIftimie, S., Hernández-Aguilera, A., López-Azcona, A. F., Castañé, H., Rodríguez-Tomàs, E., Baiges-Gaya, G., Camps, J., Castro, A., & Joven, J. (2022). Measurement of Plasma Galectin-3 Concentrations in Patients with Catheter Infections: A Post Hoc Retrospective Cohort Study. Diagnostics, 12(10), 2418. https://doi.org/10.3390/diagnostics12102418