Long-Term Functional Hyperemia after Uncomplicated Phacoemulsification: Benefits beyond Restoring Vision
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. General Parameters
3.2. Vascular Parameters
3.3. Nerve Fiber Layer Vascular Plexus, Superficial Vascular Plexus, and Superficial Vascular Complex
3.4. Intermediate Capillary Plexus, Deep Capillary Plexus and Deep Vascular Complex
3.5. Retina
3.6. Choriocapillaris
3.7. Choroid
3.8. Quality Index
3.9. Foveal Avascular Zone
4. Discussion
4.1. Major Results
4.2. Causes of Retinal Increased Perfusion
4.3. Retina
4.4. Choroid and Choriocapillaris
4.5. Foveal Avascular Zone
4.6. Normative Database of Healthy Aging Subjects
4.7. Image Quality
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Yu, J.; Jiang, C.; Wang, X.; Zhu, L.; Gu, R.; Xu, H.; Jia, Y.; Huang, D.; Sun, X. Macular perfusion in healthy chinese: An optical coherence tomography angiogram study. Investig. Ophthalmol. Vis. Sci. 2015, 56, 3212–3217. [Google Scholar] [CrossRef] [PubMed]
- Pilotto, E.; Leonardi, F.; Stefanon, G.; Longhin, E.; Torresin, T.; Deganello, D.; Cavarzeran, F.; Miglionico, G.; Parrozzani, R.; Midena, E. Early retinal and choroidal OCT and OCT angiography signs of inflammation after uncomplicated cataract surgery. Br. J. Ophthalmol. 2019, 103, 1001–1007. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Z.; Wen, W.; Jiang, C.; Lu, Y. Changes in macular vasculature after uncomplicated phacoemulsification surgery: Optical coherence tomography angiography study. J. Cataract. Refract. Surg. 2018, 44, 453–458. [Google Scholar] [CrossRef] [PubMed]
- Ophthalmology Times. Guidelines for Managing Post-Cataract Surgery Inflammation: Can We Reach a Consensus? Available online: https://www.ophthalmologytimes.com/sites/default/files/legacy/mm/OphthalmologyTimesEurope/PDF/Guidelines-for-managing-post-cataract-surgery-inflammation.pdf (accessed on 21 September 2022).
- Križanović, A.; Bjeloš, M.; Bušić, M.; Kuzmanović Elabjer, B.; Rak, B.; Vukojević, N. Macular perfusion analysed by optical coherence tomography angiography after uncomplicated phacoemulsification: Benefits beyond restoring vision. BMC Ophthalmol. 2021, 21, 71. [Google Scholar] [CrossRef]
- Duan, A.; Bedggood, P.A.; Bui, B.V.; Metha, A.B. Evidence of Flicker-Induced Functional Hyperaemia in the Smallest Vessels of the Human Retinal Blood Supply. PLoS ONE 2016, 11, e0162621. [Google Scholar] [CrossRef] [Green Version]
- Spectralis Product Family. User Manual Software Version 6.8; Heidelberg Engineering GmbH: Heidelberg, Germany, 2017. [Google Scholar]
- Hosari, S.; Hohberger, B.; Theelke, L.; Sari, H.; Lucio, M.; Mardin, C.Y. OCT Angiography: Measurement of Retinal Macular Microvasculature with Spectralis II OCT Angiography-Reliability and Reproducibility. Ophthalmological 2020, 243, 75–84. [Google Scholar] [CrossRef]
- Zudaire, E.; Gambardella, L.; Kurcz, C.; Vermeren, S. A computational tool for quantitative analysis of vascular networks. PLoS ONE 2011, 6, e27385. [Google Scholar] [CrossRef] [Green Version]
- Falcão, M.S.; Gonçalves, N.M.; Freitas-Costa, P.; Beato, J.B.; Rocha-Sousa, A.; Carneiro, A.; Brandão, E.M.; Falcão-Reis, F.M. Choroidal and macular thickness changes induced by cataract surgery. Clin. Ophthalmol. 2013, 8, 55–60. [Google Scholar] [CrossRef] [Green Version]
- Jia, X.; Wei, Y.; Song, H. Optical coherence tomography angiography evaluation of the effects of phacoemulsification cataract surgery on macular hemodynamics in Chinese normal eyes. Int. Ophthalmol. 2021, 41, 4175–4185. [Google Scholar] [CrossRef]
- Yang, C.H.; Hung, P.T. Intraocular lens position and anterior chamber angle changes after cataract extraction in eyes with primary angle-closure glaucoma. J. Cataract. Refract. Surg. 1997, 23, 1109–1113. [Google Scholar] [CrossRef]
- Huang, G.; Gonzalez, E.; Lee, R.; Chen, Y.-C.; He, M.; Lin, S.C. Association of biometric factors with anterior chamber angle widening and intraocular pressure reduction after uneventful phacoemulsification for cataract. J. Cataract. Refract. Surg. 2012, 38, 108–116. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Attwell, D.; Buchan, A.M.; Charpak, S.; Lauritzen, M.; Macvicar, B.A.; Newman, E.A. Glial and neuronal control of brain blood flow. Nature 2010, 468, 232–243. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nippert, A.R.; Newman, E.A. Regulation of blood flow in diabetic retinopathy. Vis. Neurosci. 2020, 37, E004. [Google Scholar] [CrossRef] [PubMed]
- Roy, C.S.; Sherrington, C.S. On the Regulation of the Blood-supply of the Brain. J. Physiol. 1890, 11, 85–158.17. [Google Scholar] [CrossRef]
- Kur, J.; Newman, E.A.; Chan-Ling, T. Cellular and physiological mechanisms underlying blood flow regulation in the retina and choroid in health and disease. Prog. Retin. Eye Res. 2012, 31, 377–406. [Google Scholar] [CrossRef] [Green Version]
- Noonan, J.E.; Lamoureux, E.L.; Sarossy, M. Neuronal activity-dependent regulation of retinal blood flow. Clin. Exp. Ophthalmol. 2015, 43, 673–682. [Google Scholar] [CrossRef]
- Arend, O.; Wolf, S.; Jung, F.; Bertram, B.; Pöstgens, H.; Toonen, H.; Reim, M. Retinal microcirculation in patients with diabetes mellitus: Dynamic and morphological analysis of perifoveal capillary network. Br. J. Ophthalmol. 1991, 75, 514–518. [Google Scholar] [CrossRef]
- Haddad, F.; Mimouni, M.; Nemet, A.; Safuri, S.; Achiron, A.; Shapira, Y.; Mtanis, K.; Duvdevan-Strier, N.; Ben-Ner, D.; Zayit-Soudry, S. Changes in chorioretinal flow index after cataract surgery: An optical coherence tomography angiography study. Int. Ophthalmol. 2022, 1–7. [Google Scholar] [CrossRef]
- Liu, J.; Liu, Q.; Yu, H.; Xia, Y.; Zhang, H.; Geng, C.; Dong, L. Microvascular changes in macular area after phacoemulsification and its influencing factors assessed by optical coherence tomography angiography. Ther. Clin. Risk Manag. 2021, 7, 405–414. [Google Scholar] [CrossRef]
- Gawęcki, M.; Prądzyńska, N.; Karska-Basta, I. Long-Term Variations in Retinal Parameters after Uncomplicated Cataract Surgery. J. Clin. Med. 2022, 11, 3426. [Google Scholar] [CrossRef]
- Mullins, R.F.; Johnson, M.N.; Faidley, E.A.; Skeie, J.M.; Huang, J. Choriocapillaris vascular dropout related to density of drusen in human eyes with early age-related macular degeneration. Investig. Ophthalmol. Vis. Sci. 2011, 52, 1606–1612. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zeng, S.; Liang, C.; He, Y.; Chen, Y.; Zhao, Q.; Dai, S.; Cheng, F.; Zhang, J.; Jiang, X. Changes of Subfoveal Choroidal Thickness after Cataract Surgery: A Meta-Analysis. J. Ophthalmol. 2018, 2018, 2501325. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, H.; Wu, Z.; Chen, Y.; He, M.; Wang, J. Short-term changes of choroidal vascular structures after phacoemulsification surgery. BMC. Ophthalmol. 2018, 18, 81. [Google Scholar] [CrossRef] [PubMed]
- Brito, P.N.; Rosas, V.M.; Coentrão, L.M.; Carneiro, Â.V.; Rocha-Sousa, A.; Brandão, E.; Falcão-Reis, F.; Falcão, M.A. Evaluation of visual acuity, macular status, and subfoveal choroidal thickness changes after cataract surgery in eyes with diabetic retinopathy. Retina 2015, 35, 294–302. [Google Scholar] [CrossRef]
- Campbell, J.P.; Zhang, M.; Hwang, T.S.; Bailey, S.T.; Wilson, D.J.; Jia, Y.; Huang, D. Detailed Vascular Anatomy of the Human Retina by Projection-Resolved Optical Coherence Tomography Angiography. Sci. Rep. 2017, 7, 42201. [Google Scholar] [CrossRef] [Green Version]
- Conrath, J.; Giorgi, R.; Raccah, D.; Riding, B. Foveal avascular zone in diabetic retinopathy: Quantitative vs qualitative assessment. Eye 2005, 19, 322–326. [Google Scholar] [CrossRef] [Green Version]
- Wei, Y.; Jiang, H.; Shi, Y.; Qu, D.; Gregori, G.; Zheng, F.; Rundek, T.; Wang, J. Age-related alterations in the retinal microvasculature, microcirculation, and microstructure. Investig. Ophthalmol. Vis. Sci. 2017, 58, 3804–3817. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lin, Y.; Jiang, H.; Liu, Y.; Gameiro, G.R.; Gregori, G.; Dong, C.; Rundek, T.; Wang, J. Age-related alterations in retinal tissue perfusion and volumetric vessel density. Investig. Ophthalmol. Vis. Sci. 2019, 60, 685–693. [Google Scholar] [CrossRef] [Green Version]
- Ramrattan, R.S.; van der Schaft, T.L.; Mooy, C.M.; de Bruijn, W.C.; Mulder, P.G.; de Jong, P.T. Morphometric Analysis of Bruch’s Membrane, the Choriocapillaris, and the Choroid in Aging. Investig. Ophthalmol. Vis. Sci. 1994, 35, 2857–2864. [Google Scholar]
- Fernández-Vigo, J.I.; Kudsieh, B.; Shi, H.; Arriola-Villalobos, P.; Donate-López, J.; García-Feijóo, J.; Ruiz-Moreno, J.M.; Fernández-Vigo, J.Á. Normative database and determinants of macular vessel density measured by optical coherence tomography angiography. Clin. Exp. Ophthalmol. 2020, 48, 44–52. [Google Scholar] [CrossRef]
- Yu, S.; Frueh, B.E.; Steinmair, D.; Ebneter, A.; Wolf, S.; Zinkernagel, M.S.; Munk, M.R. Cataract significantly influences quantitative measurements on swept-source optical coherence tomography angiography imaging. PLoS ONE 2018, 13, e0204501. [Google Scholar] [CrossRef] [PubMed]
- Salmon, J.F. Lens. In Kanski’s Clinical Ophtalmology: A Systematic Approach, 9th ed.; Salmon, J.F., Ed.; Elsevier: Oxford, UK, 2019; Volume 10, pp. 311–312. [Google Scholar]
- Kessel, L.; Andresen, J.; Erngaard, D.; Flesner, P.; Tendal, B.; Hjortdal, J. Indication for cataract surgery. Do we have evidence of who will benefit from surgery? A systematic review and meta-analysis. Acta Ophthalmol. 2016, 94, 10–20. [Google Scholar] [CrossRef] [PubMed]
Age (Years) | 73 (65–77) |
---|---|
Sex (male, %) | M: 37/95 (38.9%) |
(female, %) | F: 58/95 (61.1%) |
LOCS III classification (n/N) | NO—0: 2/95 (2.1%); 1: 25/95 (26.3%); 2: 60/95 (63.2%); 3: 8/95 (8.4%) |
NC—0: 2/95 (2.1%); 1: 27/95 (28.4%); 2: 58/95 (61.1%); 3: 8/95 (8.4%) | |
C—0: 37/95 (38.9%); 1: 16/95 (16.8%); 2: 32/95 (33.7%); 3: 10/95 (10.5%) | |
P—0: 67/95 (70.5%); 1: 16/95 (16.8%); 2: 12/95 (12.6%) | |
PNS (n/N) | STAGE 1: 40/95 (42.1%); STAGE 2: 43/95 (45.3%); STAGE 3: 12/95 (12.6%) |
AL (mm) | 23.43 (22.84–24.88) |
SE (D) | 0.75 (−1.00–1.75) |
CDE (%) | 4.08 (2.95–5.33) |
PHACO time (s) | 23 (19–30) |
IOLMaster® 700 (PCB00) | 22.50 (20.50–23.50) |
Before | 1 Week After | 1 Month After | 3 Months After | 6 Months After | p | |
---|---|---|---|---|---|---|
IOP (mmHg) | 14 (12–16) | 13 (11–15) | 12 (10–14) | 11 (10–13) | 11 (10–14) | <0.001 |
SBP (mmHg) | 135 (145–140) | 134 (124–140) | 133 (124–140) | 134 (125–139) | 134 (125–139) | 0.248 |
DBP (mmHg) | 80 (75–90) | 85 (77–88) | 85 (79–90) | 84 (79–89) | 85 (79–90) | 0.111 |
MAP (mmHg) | 100 (93–104) | 101 (93–104) | 101 (94–106) | 101 (95–104) | 100 (93–106) | 0.907 |
OPP (mmHg) | 57.33 (51.39–60.44) | 58.00 (54.22–61.00) | 59.11 (54.50–62.22) | 59.33 (55.11–61.56) | 58.33 (54.50–61.22) | 0.010 |
BCVA (logMAR) | 0.16 (0.10–0.28) | 0 (0–0.04) | 0 (0–0.04) | 0 (0–0.04) | 0 (0–0.04) | <0.001 |
EA (mm2) | VA (mm2) | VPA (%) | TNJ | JD (Junctions/mm2) | TVL (mm) | AVL (mm) | TNEP | ML | |
---|---|---|---|---|---|---|---|---|---|
Choroid | 0.359 | <0.001 | <0.001 | 0.001 | <0.001 | 0.319 | 0.839 | <0.001 | 0.113 |
CC | 0.742 | 0.279 | 0.243 | 0.834 | 0.789 | 0.914 | 0.008 | <0.001 | 0.001 |
DVC | 0.128 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 |
DCP | 0.758 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 |
ICP | 0.755 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 |
SVC | 0.889 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 |
SVP | 0.125 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 |
NFLVP | 0.889 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | 0.369 | <0.001 |
EA (mm2) | VA (mm2) | VPA (%) | TNJ | JD (Iunctions/mm2) | TVL (mm) | AVL (mm) | TNEP | ML | |
---|---|---|---|---|---|---|---|---|---|
Choroid | 0.00% | −2.14% | −2.14% | 1.32% | 1.34% | 0.08% | 0.24% | 8.04% | 5.44% |
CC | 0.00% | 0.57% | 0.57% | −0.46% | −0.46% | −0.07% | 35.57% | −10.47% | −4.99% |
DVC | 0.00% | 12.44% | 12.44% | 7.40% | 7.38% | 4.92% | 184.83% | −47.79% | −27.24% |
DCP | 0.00% | 12.75% | 12.75% | 11.77% | 11.81% | 8.04% | 88.72% | −33.89% | −28.21% |
ICP | 0.00% | 12.82% | 12.81% | 11.70% | 11.69% | 5.51% | 93.70% | −37.65% | −28.22% |
SVC | 0.00% | 20.00% | 20.00% | 21.08% | 20.45% | 11.07% | 165.76% | −44.83% | −33.06% |
SVP | 0.00% | 11.29% | 10.83% | 8.98% | 8.99% | 5.49% | 53.13% | −29.58% | −20.97% |
NFLVP | 0.00% | 36.37% | 36.38% | 63.43% | 62.91% | 33.62% | 52.68% | 2.20% | −37.12% |
OCT-A Image | Before | 1 Week After | 1 Month After | 3 Months After | 6 Months After | p |
---|---|---|---|---|---|---|
QI | 35.4 (34.3–36.8) | 35.4 (34.5–36.7) | 35.4 (33.8–37.4) | 35.4 (34.3–37.1) | 35.5 (33.9–37.1) | 0.742 |
Layer | Before FAZ Surface (mm2) | 1 Week after FAZ Surface (mm2) | 1 Month after FAZ Surface (mm2) | 3 Months after FAZ Surface (mm2) | 6 Months after FAZ Surface (mm2) | p | Change |
---|---|---|---|---|---|---|---|
Retina | 0.326 (0.2539–0.4279) | 0.2632 (0.1984–0.3446) | 0.2539 (0.1993–0.3362) | 0.2566 (0.1925–0.3198) | 0.2554 (0.1815–0.3177) | <0.001 | −18.90% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ćurić, A.; Bjeloš, M.; Bušić, M.; Kuzmanović Elabjer, B.; Rak, B.; Vukojević, N. Long-Term Functional Hyperemia after Uncomplicated Phacoemulsification: Benefits beyond Restoring Vision. Diagnostics 2022, 12, 2449. https://doi.org/10.3390/diagnostics12102449
Ćurić A, Bjeloš M, Bušić M, Kuzmanović Elabjer B, Rak B, Vukojević N. Long-Term Functional Hyperemia after Uncomplicated Phacoemulsification: Benefits beyond Restoring Vision. Diagnostics. 2022; 12(10):2449. https://doi.org/10.3390/diagnostics12102449
Chicago/Turabian StyleĆurić, Ana, Mirjana Bjeloš, Mladen Bušić, Biljana Kuzmanović Elabjer, Benedict Rak, and Nenad Vukojević. 2022. "Long-Term Functional Hyperemia after Uncomplicated Phacoemulsification: Benefits beyond Restoring Vision" Diagnostics 12, no. 10: 2449. https://doi.org/10.3390/diagnostics12102449
APA StyleĆurić, A., Bjeloš, M., Bušić, M., Kuzmanović Elabjer, B., Rak, B., & Vukojević, N. (2022). Long-Term Functional Hyperemia after Uncomplicated Phacoemulsification: Benefits beyond Restoring Vision. Diagnostics, 12(10), 2449. https://doi.org/10.3390/diagnostics12102449