Combination of Optical Biopsy with Patient Data for Improvement of Skin Tumor Identification
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Setup
2.2. Patients
2.3. Risk Factors for Skin Cancer Growth
- (I)
- Spectral data of all 617 skin neoplasms with only three indicators: (G), (A), (L);
- (II)
- Spectral data of only 481 out of the 617 skin neoplasms with all eight indicators: (G), (A), (L), (FH), (PH), (SE), (S), (OH).
- G:
- 1—male; 2—female;
- A:
- 1—under 29, 2—30 to 39, 3—from 40 to 49, 4—from 50 to 59, 5—from 60 to 69, 6—over 70;
- L:
- 1—head and neck, 2—trunk, 3—upper limb, 4—lower limb;
- FH:
- 0—no malignant diseases in close relatives; 1—close relatives with malignant diseases, 2—close relatives with skin cancer disease;
- PH:
- 0—the patient had no serious disease; 1—the patient had a different disease; 2—the patient had a malignant disease;
- SE:
- 0—the patient avoids suntan; 1—the patient gets suntan without sunburn; 2—the patient often has sunburn;
- S:
- 1—from 0 to 5 mm; 2—from 6 to 20 mm; 3—21 mm;
- OH:
- 0—no occupational hazards; 1—occupational hazards due to skin contact with chemicals (e.g., work with petroleum products, on chemical plants, etc.).
2.4. Preprocessing and Statistical Analysis of Spectra
- I.1
- Malignant (n = 204) vs. benign (n = 413) neoplasms with 3 risk factors;
- II.1
- Malignant (n = 157) vs. benign (n = 324) neoplasms with 8 risk factors;
- I.2
- MM (n = 70) vs. benign pigmented (Ne and SK, n=283) neoplasms with 3 risk factors;
- II.2
- MM (n = 49) vs. benign pigmented (Ne and SK, n = 221) neoplasms with 8 risk factors;
- I.3
- MM (n = 70) vs. SK (n = 113) with 3 risk factors;
- II.3
- MM (n = 49) vs. SK (n = 90) with 8 risk factors.
3. Results
3.1. Malignant vs. Benign Neoplasms
3.2. MM vs. Benign Pigmented Neoplasms (Ne and SK)
3.3. MM vs. SK
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J. Clin. 2021, 71, 209–249. [Google Scholar] [CrossRef] [PubMed]
- National Cancer Institute. Cancer Stat Facts: Melanoma of the Skin. Available online: https://seer.cancer.gov/statfacts/html/melan.html (accessed on 28 October 2021).
- American Cancer Society. Risk Factors for Melanoma Skin Cancer. Available online: https://www.cancer.org/cancer/melanoma-skin-cancer/causes-risks-prevention/risk-factors.html (accessed on 28 October 2021).
- Leonardi, G.C.; Falzone, L.; Salemi, R.; Zanghì, A.; Spandidos, D.A.; Mccubrey, J.A.; Candido, S.; Libra, M. Cutaneous melanoma: From pathogenesis to therapy. Int. J. Oncol. 2018, 52, 1071–1080. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ossio, R.; Roldán-Marín, R.; Martínez-Said, H.; Adams, D.J.; Robles-Espinoza, C.D. Melanoma: A global perspective. Nat. Rev. Cancer 2017, 17, 393–394. [Google Scholar] [CrossRef] [PubMed]
- Risk Factors and Cancer. Global Cancer Observatory Global Cancer Observatory. Available online: https://gco.iarc.fr/databases.php (accessed on 28 October 2021).
- Johnson-Obaseki, S.E.; Labajian, V.; Corsten, M.J.; McDonald, J.T. Incidence of cutaneous malignant melanoma by socioeconomic status in Canada: 1992–2006. J. Otolaryngol. Head Neck Surg. 2015, 44, 53. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Neale, R.E.; Davis, M.; Pandeya, N.; Whiteman, D.C.; Green, A.C. Basal cell carcinoma on the trunk is associated with excessive sun exposure. J. Am. Acad. Dermatol. 2007, 56, 380–386. [Google Scholar] [CrossRef]
- Gupta, A.K.; Bharadwaj, M.; Mehrotra, R. Skin cancer concerns in people of color: Risk factors and prevention. Asian Pac. J. Cancer Prev. APJCP 2016, 17, 5257. [Google Scholar]
- United States Cancer Statistics: Data Visualizations. Leading Cancers by Age, Sex, Race and Ethnicity. Available online: https://gis.cdc.gov/Cancer/USCS/#/Demographics/ (accessed on 28 October 2021).
- Whiteman, D.C.; Stickley, M.; Watt, P.; Hughes, M.C.; Davis, M.B.; Green, A.C. Anatomic site, sun exposure, and risk of cutaneous melanoma. J. Clin. Oncol. 2006, 24, 3172–3177. [Google Scholar] [CrossRef] [Green Version]
- Cancer Research UK. Causes of Cancer and Reducing Your Risk. Available online: https://www.cancerresearchuk.org (accessed on 28 October 2021).
- Raimondi, S.; Suppa, M.; Gandini, S. Melanoma epidemiology and sun exposure. Acta Derm. Venereol. 2020, 100, 250–258. [Google Scholar] [CrossRef]
- Diseati, L.; Scheinfeldt, L.B.; Kasper, R.S.; Zhaoyang, R.; Gharani, N.; Schmidlen, T.J.; Gordon, E.S.; Sessions, C.K.; Delaney, S.K.; Jarvis, J.P.; et al. Common genetic risk for melanoma encourages preventive behavior change. J. Pers. Med. 2015, 5, 36–49. [Google Scholar] [CrossRef] [Green Version]
- Gu, F.; Chen, T.H.; Pfeiffer, R.M.; Fargnoli, M.C.; Calista, D.; Ghiorzo, P.; Landi, M.T. Combining common genetic variants and non-genetic risk factors to predict risk of cutaneous melanoma. Hum. Mol. Genet. 2018, 27, 4145–4156. [Google Scholar] [CrossRef]
- Meyle, K.D.; Guldberg, P. Genetic risk factors for melanoma. Hum. Genet. 2009, 126, 499–510. [Google Scholar] [CrossRef] [PubMed]
- Gordon, R. Skin cancer: An overview of epidemiology and risk factors. Semin. Oncol. Nurs. 2013, 29, 160–169. [Google Scholar] [CrossRef] [PubMed]
- Hemminki, K.; Zhang, H.; Czene, K. Familial and attributable risks in cutaneous melanoma: Effects of proband and age. J. Investig. Dermatol. 2003, 120, 217–223. [Google Scholar] [CrossRef] [Green Version]
- Wu, S.; Cho, E.; Li, W.-Q.; Qureshi, A.A. History of keratinocyte carcinoma and risk of melanoma: A prospective cohort study. JNCI 2017, 109, djw268. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wheless, L.; Black, J.; Alberg, A.J. Nonmelanoma skin cancer and the risk of second primary cancers: A systematic review. Cancer Epidemiol. Prev. Biomark. 2010, 19, 1686–1695. [Google Scholar] [CrossRef] [Green Version]
- Fortes, C.; De Vries, E. Nonsolar occupational risk factors for cutaneous melanoma. Int. J. Dermatol. 2008, 47, 319–328. [Google Scholar] [CrossRef]
- Wang, Y.; Cai, J.; Louie, D.C.; Wang, Z.J.; Lee, T.K. Incorporating clinical knowledge with constrained classifier chain into a multimodal deep network for melanoma detection. Comput. Biol. Med. 2021, 137, 104812. [Google Scholar] [CrossRef]
- Bashkatov, A.N.; Zakharov, V.P.; Bucharskaya, A.B.; Borisova, E.G.; Khristoforova, Y.A.; Genina, E.A.; Tuchin, V.V. Malignant Tissue Optical Properties. In Multimodal Optical Diagnostics of Cancer; Tuchin, V.V., Popp, J., Zakharov, V., Eds.; Springer: Cham, Switzerland, 2020; pp. 3–106. [Google Scholar] [CrossRef]
- Cordero, E.; Latka, I.; Matthäus, C.; Schie, I.W.; Popp, J. In-vivo Raman spectroscopy: From basics to applications. J. Biomed. Opt. 2018, 23, 071210. [Google Scholar] [CrossRef]
- Jermyn, M.; Mercier, J.; Aubertin, K.; Desroches, J.; Urmey, K.; Karamchandiani, J.; Marple, E.; Guiot, M.-C.; Leblond, F.; Petrecca, K. Highly accurate detection of cancer in situ with intraoperative, label-free, multimodal optical spectroscopy. Cancer Res. 2017, 77, 3942–3950. [Google Scholar] [CrossRef] [Green Version]
- Pacheco, A.G.; Krohling, R.A. The impact of patient clinical information on automated skin cancer detection. Comput. Biol. Med. 2020, 116, 103545. [Google Scholar] [CrossRef]
- Zhao, J.; Zeng, H.; Kalia, S.; Lui, H. Incorporating patient demographics into Raman spectroscopy algorithm improves in vivo skin cancer diagnostic specificity. Transl. Biophotonics 2019, 1, 201900016. [Google Scholar] [CrossRef]
- Kharazmi, P.; Kalia, S.; Lui, H.; Wang, Z.J.; Lee, T.K. A feature fusion system for basal cell carcinoma detection through data-driven feature learning and patient profile. Ski. Res. Technol. 2018, 24, 256–264. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bratchenko, I.A.; Bratchenko, L.A.; Moryatov, A.A.; Khristoforova, Y.A.; Artemyev, D.N.; Myakinin, O.O.; Kozlov, S.V.; Zakharov, V.P. In vivo diagnosis of skin cancer with a portable Raman spectroscopic device. Exp. Dermatol. 2021, 30, 652–663. [Google Scholar] [CrossRef]
- Bratchenko, I.A.; Bratchenko, L.A.; Khristoforova, Y.A.; Moryatov, A.A.; Kozlov, S.V.; Zakharov, V.P. Classification of skin cancer using convolutional neural networks analysis of Raman spectra. Comput. Methods Progr. Biomed. 2022, 219, 106755. [Google Scholar] [CrossRef] [PubMed]
- Pence, I.; Mahadevan-Jansen, A. Clinical instrumentation and applications of Raman spectroscopy. Chem. Soc. Rev. 2016, 45, 1958–1979. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bratchenko, I.A.; Khristoforova, Y.A.; Bratchenko, L.A.; Moryatov, A.A.; Kozlov, S.V.; Borisova, E.G.; Zakharov, V.P. Optical Biopsy of Amelanotic Melanoma with Raman and Autofluorescence Spectra Stimulated by 785 nm Laser Excitation. J. Biomed. Photonics Eng. 2021, 7, 020308. [Google Scholar] [CrossRef]
- Kucheryavskiy, S. “Mdatools”: Multivariate Data Analysis for Chemometrics. R Package Version 0.9.4. 2019. Available online: www.mdatools.com (accessed on 31 January 2022).
- Chong, I.G.; Jun, C.H. Performance of some variable selection methods when multicollinearity is present. Chemom. Intell. Lab Syst. 2005, 78, 103–112. [Google Scholar] [CrossRef]
- Robin, X.; Turck, N.; Hainard, A.; Tiberti, N.; Lisacek, F.; Sanche, J.-C.; Müller, M. pROC: An open-source package for R and S+ to analyze and compare ROC curves. BMC Bioinform. 2011, 12, 77. [Google Scholar] [CrossRef]
- Hanley, J.A.; McNeil, B.J. A method of comparing the areas under receiver operating characteristic curves derived from the same cases. Radiology 1983, 148, 839–843. [Google Scholar] [CrossRef] [Green Version]
- Kaprin, A.D.; Sratinskiy, V.V.; Shakhzadova, A.O. (Eds.) Malignant Tumors in Russia in 2020 (Morbidity and Mortality); National Medical Research Radiological Centre of the Ministry of Health of the Russian Federation: Moscow, Russian Federation, 2021; p. 252. ISBN 978-5-85502-268-1. Available online: https://oncology-association.ru/wp-content/uploads/2021/11/zis-2020-elektronnaya-versiya.pdf. (In Russian)
- Kvaskoff, M.; Pandeya, N.; Green, A.C.; Perry, S.; Baxter, C.; Davis, M.B.; Mortimore, R.; Westacott, L.; Wood, D.; Triscott, J.; et al. Site-specific determinants of cutaneous melanoma: A case–case comparison of patients with tumors arising on the head or trunk. Cancer Epidemiol. Prev. Biomark. 2013, 22, 2222–2231. [Google Scholar] [CrossRef]
- Khristoforova, Y.A.; Bratchenko, I.A.; Myakinin, O.O.; Artemyev, D.N.; Moryatov, A.A.; Orlov, A.E.; Kozlov, S.V.; Zakharov, V.P. Portable spectroscopic system for in vivo skin neoplasms diagnostics by Raman and autofluorescence analysis. J. Biophotonics 2019, 12, e201800400. [Google Scholar] [CrossRef] [PubMed]
- Haenssle, H.; Fink, C.; Toberer, F.; Winkler, J.; Stolz, W.; Deinlein, T.; Hofmann-Wellenhof, R.; Lallas, A.; Emmert, S.; Buhl, T.; et al. Man against machine reloaded: Performance of a market-approved convolutional neural network in classifying a broad spectrum of skin lesions in comparison with 96 dermatologists working under less artificial conditions. Ann. Oncol. 2020, 31, 137–143. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Estava, A.; Kuprel, B.; Novoa, R.; Ko, J.; Swetter, S.M.; Blau, H.M.; Thrun, S. Dermatologist level classification of skin cancer with deep neural networks. Nature 2017, 542, 115–118. [Google Scholar] [CrossRef] [PubMed]
- Alam, T.M.; Shaukat, K.; Khan, W.A.; Hameed, I.A.; Almuqren, L.A.; Raza, M.A.; Luo, S. An Efficient Deep Learning-Based Skin Cancer Classifier for an Imbalanced Dataset. Diagnostics 2022, 12, 2115. [Google Scholar] [CrossRef]
Model | ROC AUC |
---|---|
I.1 Malignant (n = 204) vs. Benign (n = 413), cohort with 3 risk factors | |
only spectral data (803–914 nm) | 0.600 (0.567–0.652) |
spectral data with gender | 0.691 (0.647–0.736), p = 0.008 |
spectral data with age | 0.804 (0.767–0.840), p = 9 × 10−9 |
spectral data with localization | 0.759 (0.718–0.800), p = 3 × 10−6 |
spectral data with all risk factors | 0.818 (0.778–0.841), p = 2 × 10−11 |
II.1 Malignant (n = 157) vs. Benign (n = 324), cohort with 8 risk factors | |
only spectral data (803–914 nm) | 0.610 (0.556–0.663) |
spectral data with gender | 0.707 (0.658–0.756), p = 0.006 |
spectral data with age | 0.718 (0.671–0.766), p = 0.002 |
spectral data with localization | 0.680 (0.628–0.732), p = 0.035 |
spectral data with family history | 0.625 (0.570–0.677), p = 0.35 |
spectral data with personal history | 0.609 (0.556–0.663), without improvement |
spectral data with sun exposure | 0.609 (0.555–0.663), without improvement |
spectral data with size | 0.689 (0.639–0.738), p = 0.02 |
spectral data with occupational hazards | 0.616 (0.563–0.669), p = 0.43 |
spectral data with all risk factors | 0.789 (0.746–0.832), p = 5 × 10−7 |
I.2 MM (n = 70) vs. Ne + SK (n = 283), cohort with 3 risk factors, n = 353 | |
only spectral data (803–914 nm) | 0.690 (0.630–0.761) |
spectral data with gender | 0.751 (0.685–0.818), p = 0.2 |
spectral data with age | 0.771 (0.706–0.837), p = 0.1 |
spectral data with localization | 0.772 (0.709–0.835), p = 0.1 |
spectral data with all risk factors | 0.825 (0.766–0.884), p = 0.02 |
II.2 MM (n = 49) vs. Ne + SK (n = 221) (cohort with 8 risk factors, n = 270) | |
only spectral data (803–914 nm) | 0.789 (0.718–0.861) |
spectral data with gender | 0.801 (0.729–0.873), p = 0.4 |
spectral data with age | 0.808 (0.734–0.881), p = 0.37 |
spectral data with localization | 0.804 (0.737–0.871), p = 0.4 |
spectral data with family history | 0.796 (0.726–0.866), p = 0.45 |
spectral data with personal history | 0.744 (0.668–0.819), without improvement |
spectral data with sun exposure | 0.798 (0.725–0.870), p = 0.44 |
spectral data with size | 0.806 (0.736–0.876), p = 0.38 |
spectral data with occupational hazards | 0.788 (0.714–0.861), without improvement |
spectral data with all risk factors | 0.849 (0.785–0.914), p = 0.14 |
I.3 MM (n = 70) vs. SK (n = 113) (cohort with 3 risk factors, n = 183) | |
only spectral data (803–914 nm) | 0.791 (0.728–0.859) |
spectral data with gender | 0.791 (0.722–0.859), without improvement |
spectral data with age | 0.791 (0.723–0.859), without improvement |
spectral data with localization | 0.841 (0.783–0.900), p = 0.15 |
spectral data with all risk factors | 0.844 (0.786–0.902), p = 0.15 |
II.3 MM (n = 49) vs. SK (n = 90) (cohort with 8 risk factors, n = 139) | |
only spectral data (803–914 nm) | 0.814 (0.740–0.888) |
spectral data with gender | 0.815 (0.741–0.889), p = 0.49 |
spectral data with age | 0.815 (0.740–0.889), p = 0.49 |
spectral data with localization | 0.851 (0.784–0.918), p = 0.25 |
spectral data with family history | 0.816 (0.743–0.889), p = 0.48 |
spectral data with personal history | 0.815 (0.742–0.889), p = 0.49 |
spectral data with sun exposure | 0.815 (0.741–0.889), p = 0.49 |
spectral data with size | 0.860 (0.795–0.925), p = 0.19 |
spectral data with occupational hazards | 0.815 (0.740–0.889), p = 0.49 |
spectral data with all risk factors | 0.820 (0.748–0.892), p = 0.46 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Khristoforova, Y.; Bratchenko, I.; Bratchenko, L.; Moryatov, A.; Kozlov, S.; Kaganov, O.; Zakharov, V. Combination of Optical Biopsy with Patient Data for Improvement of Skin Tumor Identification. Diagnostics 2022, 12, 2503. https://doi.org/10.3390/diagnostics12102503
Khristoforova Y, Bratchenko I, Bratchenko L, Moryatov A, Kozlov S, Kaganov O, Zakharov V. Combination of Optical Biopsy with Patient Data for Improvement of Skin Tumor Identification. Diagnostics. 2022; 12(10):2503. https://doi.org/10.3390/diagnostics12102503
Chicago/Turabian StyleKhristoforova, Yulia, Ivan Bratchenko, Lyudmila Bratchenko, Alexander Moryatov, Sergey Kozlov, Oleg Kaganov, and Valery Zakharov. 2022. "Combination of Optical Biopsy with Patient Data for Improvement of Skin Tumor Identification" Diagnostics 12, no. 10: 2503. https://doi.org/10.3390/diagnostics12102503
APA StyleKhristoforova, Y., Bratchenko, I., Bratchenko, L., Moryatov, A., Kozlov, S., Kaganov, O., & Zakharov, V. (2022). Combination of Optical Biopsy with Patient Data for Improvement of Skin Tumor Identification. Diagnostics, 12(10), 2503. https://doi.org/10.3390/diagnostics12102503