Wearable Technology for Monitoring Respiratory Rate and SpO2 of COVID-19 Patients: A Systematic Review
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Wearable Sensors
3.2. COVID-19 Patient Monitoring Framework (Obtained from the Device)
3.2.1. First Layer
3.2.2. Second Layer
3.2.3. Third Layer
3.3. Data from Actual Patients
3.4. Operational Concerns
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
S1 | Izmailova ES, Reiss TF. | Closer to the patient means better decisions: wearable remote monitoring of patients with COVID-19 lung disease. Clin Transl Sci. 2021 Nov;14(6):2091-2094. doi: 10.1111/cts.13085. |
S2 | Bircher C, Wilkes M, Zahradka N, Wells E, Prosser-Snelling E. | Remote care and triage of obstetric patients with COVID-19 in the community: operational considerations. BMC Pregnancy Childbirth. 2022 Jul 8;22(1):550. doi:10.1186/s12884-022-04863-0. |
S3 | Patel H, Hassell A, Cyriacks B, Fisher B, Tonelli W, Davis C. | Building a Real-Time Remote Patient Monitoring Patient Safety Program for COVID-19 Patients. Am J Med Qual. 2022 Jul-Aug 01;37(4):342-347. doi: 10.1097/JMQ.0000000000000046. |
S4 | Föll S, Lison A, Maritsch M, Klingberg K, Lehmann V, Züger T, Srivastava D, Jegerlehner S, Feuerriegel S, Fleisch E, Exadaktylos A, Wortmann F. | A Scalable Risk-Scoring System Based on Consumer-Grade Wearables for Inpatients With COVID-19: Statistical Analysis and Model Development. JMIR Form Res. 2022 Jun 21;6(6):e35717. doi: 10.2196/35717. |
S5 | Spaccarotella C, Polimeni A, Mancuso C, Pelaia G, Esposito G, Indolfi C. | Assessment of Non-Invasive Measurements of Oxygen Saturation and Heart Rate with an Apple Smartwatch: Comparison with a Standard Pulse Oximeter. J Clin Med. 2022 Mar 8;11(6):1467. doi: 10.3390/jcm11061467. |
S6 | Channa A, Popescu N, Skibinska J, Burget R. | The Rise of Wearable Devices during the COVID-19 Pandemic: A Systematic Review. Sensors (Basel). 2021 Aug 28;21(17):5787. doi: 10.3390/s21175787. |
S7 | Al-Emran M, Ehrenfeld JM. | Breaking out of the Box: Wearable Technology Applications for Detecting the Spread of COVID-19. J Med Syst. 2021 Jan 11;45(2):20. doi: 10.1007/s10916-020-01697-1. |
S8 | Hussain SA, Bassam NA, Zayegh A, Ghawi SA. | Prediction and evaluation of healthy and unhealthy status of COVID-19 patients using wearable device prototype data. MethodsX. 2022;9:101618. doi: 10.1016/j.mex.2022.101618. |
S9 | Islam MM, Mahmud S, Muhammad LJ, Islam MR, Nooruddin S, Ayon SI. | Wearable Technology to Assist the Patients Infected with Novel Coronavirus (COVID-19). SN Comput Sci. 2020;1(6):320. doi: 10.1007/s42979-020-00335-4. |
S10 | Jaber MM, Alameri T, Ali MH, Alsyouf A, Al-Bsheish M, Aldhmadi BK, Ali SY, Abd SK, Ali SM, Albaker W, Jarrar M. | Remotely Monitoring COVID-19 Patient Health Condition Using Metaheuristics Convolute Networks from IoT-Based Wearable Device Health Data. Sensors (Basel). 2022 Feb 5;22(3):1205. doi: 10.3390/s22031205. |
S11 | Ding X, Clifton D, Ji N, Lovell NH, Bonato P, Chen W, Yu X, Xue Z, Xiang T, Long X, Xu K, Jiang X, Wang Q, Yin B, Feng G, Zhang YT. | Wearable Sensing and Telehealth Technology with Potential Applications in the Coronavirus Pandemic. IEEE Rev Biomed Eng. 2021;14:48-70. doi: 10.1109/RBME.2020.2992838. |
S12 | Tayal M, Mukherjee A, Chauhan U, Uniyal M, Garg S, Singh A, Bhadoria AS, Kant R. | Evaluation of Remote Monitoring Device for Monitoring Vital Parameters against Reference Standard: A Diagnostic Validation Study for COVID-19 Preparedness. Indian J Community Med. 2020 Apr-Jun;45(2):235-239. doi: 10.4103/ijcm.IJCM_317_20. |
S13 | Wurzer D, Spielhagen P, Siegmann A, Gercekcioglu A, Gorgass J, Henze S, Kolar Y, Koneberg F, Kukkonen S, McGowan H, Schmid-Eisinger S, Steger A, Dommasch M, Haase HU, Müller A, Martens E, Haller B, Huster KM, Schmidt G. | Remote monitoring of COVID-19 positive high-risk patients in domestic isolation: A feasibility study. PLoS One. 2021 Sep 24;16(9):e0257095. doi: 10.1371/journal.pone.0257095. |
S14 | Fan EMPJ, Ang SY, Phua GC, Chen Ee L, Wong KC, Tan FCP, Tan LWH, Ayre TC, Chua CY, Tan BWB, Yeo KK. | Factors to Consider in the Use of Vital Signs Wearables to Minimize Contact With Stable COVID-19 Patients: Experience of Its Implementation During the Pandemic. Front Digit Health. 2021 Sep 20;3:639827. doi: 10.3389/fdgth.2021.639827. |
S15 | Greshake Tzovaras B, Senabre Hidalgo E, Alexiou K, Baldy L, Morane B, Bussod I, Fribourg M, Wac K, Wolf G, Ball M. | Using an Individual-Centered Approach to Gain Insights From Wearable Data in the Quantified Flu Platform: Netnography Study. J Med Internet Res. 2021 Sep 10;23(9):e28116. doi: 10.2196/28116. |
S16 | Vavrinsky E, Zavodnik T, Debnar T, Cernaj L, Kozarik J, Micjan M, Nevrela J, Donoval M, Kopani M, Kosnacova H. | Research and Development of a COVID-19 Tracking System in Order to Implement Analytical Tools to Reduce the Infection Risk. Sensors (Basel). 2022 Jan 11;22(2):526. doi: 10.3390/s22020526. |
S17 | Lee P, Kim H, Kim Y, Choi W, Zitouni MS, Khandoker A, Jelinek HF, Hadjileontiadis L, Lee U, Jeong Y. | Beyond Pathogen Filtration: Possibility of Smart Masks as Wearable Devices for Personal and Group Health and Safety Management. JMIR Mhealth Uhealth. 2022 Jun 21;10(6):e38614. doi: 10.2196/38614. |
S18 | Presby DM, Capodilupo ER. | Biometrics from a wearable device reveal temporary effects of COVID-19 vaccines on cardiovascular, respiratory, and sleep physiology. J Appl Physiol (1985). 2022 Feb 1;132(2):448-458. doi: 10.1152/japplphysiol.00420.2021. |
S19 | Hajduczok AG, DiJoseph KM, Bent B, Thorp AK, Mullholand JB, MacKay SA, Barik S, Coleman JJ, Paules CI, Tinsley A. | Physiologic Response to the Pfizer-BioNTech COVID-19 Vaccine Measured Using Wearable Devices: Prospective Observational Study. JMIR Form Res. 2021 Aug 4;5(8):e28568. doi: 10.2196/28568. |
S20 | Gielen W, Longoria KA, van Mourik RA. | Two cases of COVID-19 monitored by a wearable biosensor-a case report. Mhealth. 2021 Oct 20;7:62. doi: 10.21037/mhealth-20-134. |
S21 | Mekhael M, Lim CH, El Hajjar AH, Noujaim C, Pottle C, Makan N, Dagher L, Zhang Y, Chouman N, Li DL, Ayoub T, Marrouche N. | Studying the Effect of Long COVID-19 Infection on Sleep Quality Using Wearable Health Devices: Observational Study. J Med Internet Res. 2022 Jul 5;24(7):e38000. doi: 10.2196/38000. |
S22 | Al Bassam N, Hussain SA, Al Qaraghuli A, Khan J, Sumesh EP, Lavanya V. | IoT based wearable device to monitor the signs of quarantined remote patients of COVID-19. Inform Med Unlocked. 2021;24:100588. doi: 10.1016/j.imu.2021.100588. |
S23 | Santos MD, Roman C, Pimentel MAF, Vollam S, Areia C, Young L, Watkinson P, Tarassenko L. | A Real-Time Wearable System for Monitoring Vital Signs of COVID-19 Patients in a Hospital Setting. Front Digit Health. 2021 Sep 7;3:630273. doi: 10.3389/fdgth.2021.630273. |
S24 | Un KC, Wong CK, Lau YM, Lee JC, Tam FC, Lai WH, Lau YM, Chen H, Wibowo S, Zhang X, Yan M, Wu E, Chan SC, Lee SM, Chow A, Tong RC, Majmudar MD, Rajput KS, Hung IF, Siu CW. | Observational study on wearable biosensors and machine learning-based remote monitoring of COVID-19 patients. Sci Rep. 2021 Feb 23;11(1):4388. doi: 10.1038/s41598-021-82771-7. |
S25 | Jiang W, Majumder S, Kumar S, Subramaniam S, Li X, Khedri R, Mondal T, Abolghasemian M, Satia I, Deen MJ. | A Wearable Tele-Health System towards Monitoring COVID-19 and Chronic Diseases. IEEE Rev Biomed Eng. 2022;15:61-84. doi: 10.1109/RBME.2021.3069815. |
S26 | Silva AF, Tavakoli M. | Domiciliary Hospitalization through Wearable Biomonitoring Patches: Recent Advances, Technical Challenges, and the Relation to Covid-19. Sensors (Basel). 2020 Nov 29;20(23):6835. doi: 10.3390/s20236835. |
S27 | Jeong H, Rogers JA, Xu S. | Continuous on-body sensing for the COVID-19 pandemic: Gaps and opportunities. Sci Adv. 2020 Sep 2;6(36):eabd4794. doi: 10.1126/sciadv.abd4794. |
S28 | Radin JM, Quer G, Jalili M, Hamideh D, Steinhubl SR. | The hopes and hazards of using personal health technologies in the diagnosis and prognosis of infections. Lancet Digit Health. 2021 Jul;3(7):e455-e461. doi: 10.1016/S2589-7500(21)00064-9. |
S29 | Goergen CJ, Tweardy MJ, Steinhubl SR, Wegerich SW, Singh K, Mieloszyk RJ, Dunn J. | Detection and Monitoring of Viral Infections via Wearable Devices and Biometric Data. Annu Rev Biomed Eng. 2022 Jun 6;24:1-27. doi: 10.1146/annurev-bioeng-103020-040136. |
S30 | Lavric A, Petrariu AI, Mutescu PM, Coca E, Popa V. | Internet of Things Concept in the Context of the COVID-19 Pandemic: A Multi-Sensor Application Design. Sensors (Basel). 2022 Jan 10;22(2):503. doi: 10.3390/s22020503. |
S31 | Zhang Z, Khatami R. | Can we trust the oxygen saturation measured by consumer smartwatches? Lancet Respir Med. 2022 May;10(5):e47-e48. doi: 10.1016/S2213-2600(22)00103-5. |
S32 | Alboksmaty A, Beaney T, Elkin S, Clarke JM, Darzi A, Aylin P, Neves AL. | Effectiveness and safety of pulse oximetry in remote patient monitoring of patients with COVID-19: a systematic review. Lancet Digit Health. 2022 Apr;4(4):e279-e289. doi: 10.1016/S2589-7500(21)00276-4. |
S33 | Sjoding MW, Dickson RP, Iwashyna TJ, Gay SE, Valley TS. | Racial Bias in Pulse Oximetry Measurement. N Engl J Med. 2020 Dec 17;383(25):2477-2478. doi: 10.1056/NEJMc2029240. Erratum in: N Engl J Med. 2021 Dec 23;385(26):2496. |
S34 | Lee KC, Morgan AU, Chaiyachati KH, Asch DA, Xiong RA, Do D, Kilaru AS, Lam D, Parambath A, Friedman AB, Meisel ZF, Snider CK, Chisholm DL, Kelly S, Hemmons JE, Abdel-Rahman D, Ebert J, Ghosh M, Reilly J, O’Malley CJ, Hahn L, Mannion NM, Huffenberger AM, McGinley S, Balachandran M, Khan N, Shea JA, Mitra N, Delgado MK. | Pulse Oximetry for Monitoring Patients with Covid-19 at Home—A Pragmatic, Randomized Trial. N Engl J Med. 2022 May 12;386(19):1857-1859. doi: 10.1056/NEJMc2201541. |
References
- Cheong, S.H.R.; Ng, Y.J.X.; Lau, Y.; Lau, S.T. Wearable technology for early detection of COVID-19: A systematic scoping review. Prev. Med. 2022, 162, 107170. [Google Scholar] [CrossRef] [PubMed]
- Lu, L.; Zhang, J.; Xie, Y.; Gao, F.; Xu, S.; Wu, X.; Ye, Z. Wearable Health Devices in Health Care: Narrative Systematic Review. JMIR mHealth uHealth 2020, 8, e18907. [Google Scholar] [CrossRef] [PubMed]
- Ates, H.C.; Yetisen, A.K.; Güder, F.; Dincer, C. Wearable devices for the detection of COVID-19. Nat. Electron. 2021, 4, 13–14. [Google Scholar] [CrossRef]
- Mishra, T.; Wang, M.; Metwally, A.A.; Bogu, G.K.; Brooks, A.W.; Bahmani, A.; Alavi, A.; Celli, A.; Higgs, E.; Dagan-Rosenfeld, O.; et al. Pre-symptomatic detection of COVID-19 from smartwatch data. Nat. Biomed. Eng. 2020, 4, 1208–1220. [Google Scholar] [CrossRef] [PubMed]
- Iuliano, A.D.; Chang, H.H.; Patel, N.N.; Threlkel, R.; Kniss, K.; Reich, J.; Steele, M.; Hall, A.J.; Fry, A.M.; Reed, C. Estimating under-recognized COVID-19 deaths, United States, march 2020-may 2021 using an excess mortality modelling approach. Lancet Reg. Health Am. 2021, 1, 100019. [Google Scholar] [CrossRef] [PubMed]
- WHO. Algorithm for COVID-19 Triage and Referral. 2020 March. COVID-19-Algorithm-Referral-Triage-Eng.pdf. Available online: https://apps.who.int/iris/handle/10665/331915 (accessed on 25 September 2022).
- Xie, J.; Covassin, N.; Fan, Z.; Singh, P.; Gao, W.; Li, G.; Kara, T.; Somers, V.K. Association Between Hypoxemia and Mortality in Patients With COVID-19. Mayo Clin. Proc. 2020, 95, 1138–1147. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Xia, Y.; Liu, Y.; Mugo, S.M.; Zhang, Q. Integrated Wearable Sensors for Sensing Physiological Pressure Signals and β-Hydroxybutyrate in Physiological Fluids. Anal. Chem. 2021, 94, 993–1002. [Google Scholar] [CrossRef] [PubMed]
- Yetisen, A.K.; Martinez-Hurtado, J.L.; Ünal, B.; Khademhosseini, A.; Butt, H. Wearables in Medicine. Adv. Mater. 2018, 30, e1706910. [Google Scholar] [CrossRef] [Green Version]
- Metcalf, D.; Milliard, S.T.; Gomez, M.; Schwartz, M. Wearables and the Internet of Things for Health: Wearable, Interconnected Devices Promise More Efficient and Comprehensive Health Care. IEEE Pulse 2016, 7, 35–39. [Google Scholar] [CrossRef] [PubMed]
- Wright, R.; Keith, L. Wearable Technology: If the Tech Fits, Wear It. J. Electron. Resour. Med. Libr. 2014, 11, 204–216. [Google Scholar] [CrossRef]
No. in Appendix A | Country | Publish Date | Study Period | Aims and Objectives | Sample Size |
---|---|---|---|---|---|
S20 Gielen et al. (2021) | USA | October 2021 | April–June 2020 | To observe marked changes in biometric measurements (HR, RR, SpO2, arterial stiffness) around the dates of infection | 933 subjects with 2 detected with COVID-19 infection |
S30 Laveric et al. (2022) | Romania | January 2022 | Not specified | To test the performance of an IoT device, which can monitor health parameters such as HR, SpO2, body temperature, and current location | 2 persons under quarantine |
S24 Un et al. (2021) | China | February 2021 | 19 March 2020–11 April 2020 | Observational study of mild COVID-19 patients with wearable biosensors (HR, HRV, RR, SpO2, BPW, temperature, actigraphy) and machine learning-based remote monitoring | 34 COVID-19 positive patients |
S23 Santos et al. (2021) | UK | September 2021 | March–August 2020 | Adaption of a wearable-based ambulatory monitoring systems for real-time remote monitoring of the vital signs of COVID-19 patients cared for at an isolation ward | 59 COVID-19 positive patients |
S8 Hussain et al. (2022) | Oman | January 2022 | Not specified | The article prediction analysis is carried out with the dataset downloaded from the application peripheral interface (API), designed explicitly for COVID-19 quarantined patients | 1085 patients (490 COVID-19 infected and 595 non-infected cases) |
S21 Mekhael et al. (2022) | USA | March 2022 | ~September 2021 | Assessment of the long-term effects of COVID-19 through sleep patterns from continuous signals collected via wearable wristbands | 122 patients with COVID19 and 588 controls (n = 710). |
S3 Patel et al. (2022) | USA | February 2022 | April–June 2020 | To describe a pilot program to evaluate the impact of remote patient monitoring in post-discharge monitoring of COVID-19 patients | 80 high-risk COID-19 patients discharged from the hospital |
S13 Wurzer et al. (2021) | Germany | September 2021 | None Specified | To establish a telemonitoring system for COVID-19 positive high-risk patients in domestic isolation | 153 patients, older than 60 years of age and with a pre-existing condition |
S2 Bircher et al. (2022) | UK | July 2022 | October 2021–February 2022 | To determine appropriate virtual care and telehealth systems to reduce barriers to care and improve maternity outcomes | 228 COVID-19 maternity patients admitted to the virtual maternity ward |
S34 Lee et al. (2022) | USA | May 2022 | 29 November 2020–5 February 2021 | To determine the effectiveness of home pulse oximetry monitoring on COVID-19 patients | A total of 1041 patients (606 COVID-19 positive) as control, and 1056 patients (611 COVID-19 positive) were in the pulse oximetry group |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Takahashi, S.; Nakazawa, E.; Ichinohe, S.; Akabayashi, A.; Akabayashi, A. Wearable Technology for Monitoring Respiratory Rate and SpO2 of COVID-19 Patients: A Systematic Review. Diagnostics 2022, 12, 2563. https://doi.org/10.3390/diagnostics12102563
Takahashi S, Nakazawa E, Ichinohe S, Akabayashi A, Akabayashi A. Wearable Technology for Monitoring Respiratory Rate and SpO2 of COVID-19 Patients: A Systematic Review. Diagnostics. 2022; 12(10):2563. https://doi.org/10.3390/diagnostics12102563
Chicago/Turabian StyleTakahashi, Shizuko, Eisuke Nakazawa, Sakurako Ichinohe, Aru Akabayashi, and Akira Akabayashi. 2022. "Wearable Technology for Monitoring Respiratory Rate and SpO2 of COVID-19 Patients: A Systematic Review" Diagnostics 12, no. 10: 2563. https://doi.org/10.3390/diagnostics12102563
APA StyleTakahashi, S., Nakazawa, E., Ichinohe, S., Akabayashi, A., & Akabayashi, A. (2022). Wearable Technology for Monitoring Respiratory Rate and SpO2 of COVID-19 Patients: A Systematic Review. Diagnostics, 12(10), 2563. https://doi.org/10.3390/diagnostics12102563