Update in the Diagnosis and Treatment of Root Canal Therapy in Temporary Dentition through Different Rotatory Systems: A Systematic Review
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Study Selection and Flow Diagram: Study Results
3.2. Results of Individual Studies, Meta-Analysis and Additional Analyses
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Chauhan, A.; Saini, S.; Dua, P.; Mangla, R. Rotary Endodontics in Pediatric Dentistry: Embracing the New Alternative. Int. J. Clin. Pediatric Dent. 2019, 12, 460–463. [Google Scholar]
- Ghaderi, F.; Jowkar, Z.; Tadayon, A. Caries Color, Extent, and Preoperative Pain as Predictors of Pulp Status in Primary Teeth. Clin. Cosmet. Investig. Dent. 2020, 3, 263–269. [Google Scholar] [CrossRef]
- Duncan, H.F.; Galler, K.M.; Tomson, P.L.; Simon, S.; El-Karim, I.; Kundzina, R.; Krastl, G.; Dammaschke, T.; Fransson, H.; Markvart, M.; et al. European Society of Endodontology position statement: Management of deep caries and the exposed pulp. Int. Endod. J. 2019, 52, 923–934. [Google Scholar]
- Farhin, K.; Devendra, P.; Jitesh, P.; Mayur, W.; Pooja, S.; Shagufta, D. Application of Rotary Instrumentation in Paediatric Endodontics—A Review. Int. J. Prev. Clin. Dent. Res. 2014, 1, 48–52. [Google Scholar]
- Kuo, C.I.; Wang, Y.L.; Chang, H.H.; Huang, G.F.; Lin, C.P.; Li, U.M.; Guo, M.K. Application of Ni-Ti rotary files for pulpectomy in primary molars. J. Dent. Sci. 2006, 1, 10–15. [Google Scholar]
- Kırmızıgül, I.; Demir, P. Usage of Rotary Instruments in Root Canal Therapy of Deciduous Teeth—Review. Cumhur. Dent. J 2019, 22, 351–357. [Google Scholar] [CrossRef]
- Katge, F.; Chimata, V.K.; Poojari, M.; Shetty, S.; Rusawat, B. Comparison of cleaning efficacy and instrumentation time between rotary and manual instrumentation techniques in primary teeth: An in vitro study. Int. J. Clin. Pediatric Dent. 2016, 9, 124–127. [Google Scholar]
- Pedullà, E.; Kharouf, N.; Caruso, S.; La Rosa, G.R.M.; Jmal, H.; Haikel, Y.; Mancino, D. Torsional, Static, and Dynamic Cyclic Fatigue Resistance of Reciprocating and Continuous Rotating Nickel-Titanium Instruments. J. Endod. 2022, 48, 1421–1427. [Google Scholar] [CrossRef]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Bren, S.E.; et al. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. Syst. Rev. 2021, 10, 89. [Google Scholar] [CrossRef]
- Yüksel, B.N.; Öncü, A.; Çelİkten, B.; Bİlecenoğlu, B.; Orhan, A.I.; Orhan, K. Micro-CT evaluation of ‘danger zone’ and microcrack formation in mesial root canals of primary teeth with single-file rotary and reciprocating systems. Int. J. Paediatr. Dent. 2022, 32, 109–115. [Google Scholar] [CrossRef]
- Vaishali Naidu, D.; Sharada Reddy, J.; Patloth, T.; Suhasini, K.; Hema Chandrika, I.; Shaik, H. Cone-beam Computed Tomographic Evaluation of the Quality of Obturation Using Different Pediatric Rotary File Systems in Primary Teeth. Int. J. Clin. Pediatric Dent. 2021, 14, 542–547. [Google Scholar]
- Mohammadi, D.; Mehran, M.; Frankenberger, R.; BabeveyNejad, N.; Banakar, M.; Haghgoo, R. Comparison of apical debris extrusion during root canal preparation in primary molars using different file systems: An in vitro study. Aust. Endod. J. 2021, 8. [Google Scholar] [CrossRef]
- Moraes, R.D.R.; Perez, R.; Silva, A.S.S.D.; Machado, A.S.; Lopes, R.T.; Pintor, A.V.B.; Primo, L.G.; Neves, A.A. Micro-CT evaluation of root canal preparation with rotary instrumentation on prototyped primary incisors. Braz. Oral Res. 2021, 17, 132. [Google Scholar] [CrossRef]
- Gekelman, D.; Ramamurthy, R.; Mirfarsi, S.; Paqué, F.; Peters, O.A. Rotary nickel-titanium GT and ProTaper files for root canal shaping by novice operators: A radiographic and micro-computed tomography evaluation. J. Endod. 2009, 35, 1584–1588. [Google Scholar] [CrossRef] [Green Version]
- Boonchoo, K.; Leelataweewud, P.; Yanpiset, K.; Jirarattanasopha, V. Simplify pulpectomy in primary molars with a single-file reciprocating system: A randomized controlled clinical trial. Clin. Oral Investig. 2020, 24, 2683–2689. [Google Scholar] [CrossRef]
- Juliet, S.; Jeevanandan, G.; Govindaraju, L.; Ravindran, V.; Subramanian, E.M. Comparison between Three Rotary Files on Quality of Obturation and Instrumentation Time in Primary Teeth—A Double Blinded Randomized Controlled Trial. J. Orofac. Sci. 2020, 12, 30–34. [Google Scholar]
- Moraes, R.D.R.; Santos, T.M.P.D.; Marceliano-Alves, M.F.; Pintor, A.V.B.; Lopes, R.T.; Primo, L.G.; Neves, A.A. Reciprocating instrumentation in a maxillary primary central incisor: A protocol tested in a 3D printed prototype. Int. J. Pediatric Dent. 2019, 29, 50–57. [Google Scholar] [CrossRef]
- Pietruszka, P.; Chruścicka, I.; Duś-Ilnicka, I.; Paradowska-Stolarz, A. PRP and PRF-Subgroups and Divisions When Used in Dentistry. J. Pers. Med. 2021, 23, 944. [Google Scholar] [CrossRef]
- Govindaraju, L.; Jeevanandan, G.; Emg, S.; Vishawanathaiah, S. Assessment of Quality of Obturation, Instrumentation Time and Intensity of Pain with Pediatric Rotary File (Kedo-S) in Primary Anterior Teeth: A Randomized Controlled Clinical Trial. Int. J. Clin. Pediatric Dent. 2018, 11, 462–467. [Google Scholar]
- Marques da Silva, B.; Scaini, F.; Tomazinho, F.S.F.; Gonzaga, C.C.; Leão Gabardo, M.C.; Baratto-Filho, F. Root Preparation of Deciduous Teeth: Efficacy of WaveOne and ProTaper Systems with and without Passive Ultrasonic Irrigation. Iran. Endod. J. 2018, 13, 362–366. [Google Scholar]
- Tabbara, A.; Grigorescu, D.; Yassin, M.A.; Fristad, I. Evaluation of Apical Dimension, Canal Taper and Maintenance of Root Canal Morphology Using XP-endo Shaper. J. Contemp. Dent. Pract. 2019, 20, 136–144. [Google Scholar] [CrossRef]
- Hori, A.; Poureslami, H.R.; Parirokh, M.; Mirzazadeh, A.; Abbott, P. The ability of pulp sensibility tests to evaluate the pulp status in primary teeth. Int. J. Paediatr. Dent. 2011, 21, 441–445. [Google Scholar] [CrossRef] [PubMed]
- Krupińska, A.M.; Skośkiewicz-Malinowska, K.; Staniowski, T. Different Approaches to the Regeneration of Dental Tissues in Regenerative Endodontics. Appl. Sci. 2021, 11, 1699. [Google Scholar] [CrossRef]
- Johnson, M.S.; Britto, L.R.; Guelmann, M. Impact of a biological barrier in pulpectomies of primary molars. Pediatric Dent. 2006, 28, 506–510. [Google Scholar]
- Silva, L.A.B.; Leonardo, M.R.; Nelson-Filho, P.; Tanomaru, J.M. Comparison of rotary and manual instrumentation techniques on cleaning capacity and instrumentation time in deciduous molars. J. Dent. Child. 2004, 71, 45–47. [Google Scholar]
- Haroon, S.; Khabeer, A.; Faridi, M.A. Light-activated disinfection in endodontics: A comprehensive review. Dent. Med Probl. 2021, 58, 411–418. [Google Scholar] [CrossRef] [PubMed]
- Kleier, D.J.; Averbach, R. Comparison of clinical outcomes using a nickel titanium rotary or stainless steel hand file instrumentation technique. Compend. Contin. Educ. Dent. 2006, 27, 87–91. [Google Scholar] [PubMed]
- Jeevanandan, G. Kedo-S pediatric rotary files for root canal preparation in primary teeth—Case report. J. Clin. Diagn. Res. 2017, 11, ZR03–ZR05. [Google Scholar]
- Silva, E.J.N.L.; Carapiá, M.F.; Lopes, R.M.; Belladonna, F.G.; Senna, P.M.; Souza, E.M.; De-Deus, G. Comparison of apically extruded debris after large apical preparations by full sequence rotary and single-file reciprocating systems. Int. Endod. J. 2016, 49, 700–705. [Google Scholar] [CrossRef] [PubMed]
- Azim, A.A.; Piasecki, L.; da Silva Neto, U.X.; Cruz, A.T.G.; Azim, K.A. XP Shaper, A novel adaptive core rotary instrument: Microcomputed tomographic analysis of its shaping abilities. J. Endod. 2017, 43, 1532–1538. [Google Scholar] [CrossRef]
- Alnassar, I.; Altinawi, M.; Rekab, M.S.; Katbeth, I.; Khasan, A.; Almokaddam, H. Pain assessment following endodontic treatment using two automated systems compared to manual treatment in primary molars. Dent. Med Probl. 2021, 58, 305–310. [Google Scholar] [CrossRef]
- Thakur, B.; Pawar, A.M.; Kfir, A.; Neelakantan, P.; Patil, S. Extrusion of debris from primary molar root canals following instrumentation with traditional and new file systems. J. Contemp. Dent. Pract. 2017, 18, 1040–1044. [Google Scholar] [CrossRef]
- Kharouf, N.; Pedullà, E.; Nehme, W.; Akarma, K.; Mercey, A.; Gros, C.I.; Haikel, Y.; Mancino, D. Apically Extruded Debris in Curved Root Canals Using a New Reciprocating Single-File Shaping System. J. Endod. 2022, 48, 117–122. [Google Scholar] [CrossRef]
- Souza, R.A. The importance of apical patency and cleaning of the apical foramen on root canal preparation. Braz. Dent. J. 2006, 17, 6–9. [Google Scholar] [CrossRef] [Green Version]
- Labbaf, H.; Moghadam, K.N.; Shahab, S.; Bassir, M.M.; Fahimi, M.A. An in vitro comparison of apically extruded debris using Reciproc, ProTaper Universal, Neolix and Hyflex in curved canals. Iran. Endod. J. 2017, 12, 307–311. [Google Scholar]
- Búurklein, S.; Schafer, E. Apically extruded debris with reciprocating single-file and full-sequence rotary instrumentation systems. J. Endod. 2012, 38, 850–852. [Google Scholar] [CrossRef]
- Skośkiewicz-Malinowska, K.; Mysior, M.; Rusak, A.; Kuropka, P.; Kozakiewicz, M.; Jurczyszyn, K. Application of Texture and Fractal Dimension Analysis to Evaluate Subgingival Cement Surfaces in Terms of Biocompatibility. Materials 2021, 14, 5857. [Google Scholar] [CrossRef]
Author, Year | n * | Limes | Length | Diameter | Taper | Rotation speed | Irrigant | Sealing material | Tracking time | Results |
---|---|---|---|---|---|---|---|---|---|---|
Yüksel B, 2022 [10] | 30 | One Shape system XP- endo® Shaper WaveOne Gold system | 17 mm 21 mm 21 mm | #25 #30 #25 | 0.06 0.04 0.07 | 400 rpm 800 rpm 800 rpm | 2.5% sodium hypochlorite | N.A | 6 months | One Shape lower danger value. >Microcracks in the middle of the root. |
Vaishali D, 2021 [11] | 30 | Kedo SG Blue rotary files Pro AF Baby gold rotary files Pedo Flex rotary files | 16 mm 17 mm 16 mm | #25, 30, 40 #20–40 #20–30 | D1, E1, U1 0.06 0.04 | 300 rpm 300 rpm 350 rpm | 10 mL of 1% sodium hypochlorite + saline + EDTA | zinc oxide eugenol (ZOE) | 1 week | Kedo SG Blue > Optimal fillings and filled canals. <Gaps. |
Mohammadi, D, 2021 [12] | 80 | Reciproc Protaper universal Hyflex CM Neolix | 25 mm 21 mm 21 mm 15–21 mm | #25 #20–25 #25 #25 | 0.06 0.07/0.08 0.06/0.08 0.06/0.12 | 300 rpm. 500 rpm | Sodium hypochlorite and distilled water | N.A | 2 days | Reciproc: ++Extrussion. |
Moraes RDR, 2021 [13] | 20 | WaveOne® GOLD XP-Endo® Shaper XP-Endo® Finisher XP Clean (XPC) System | 21 mm 21 mm 21 mm 21 mm | #45 #30 #25 #25 | 0.05 0.04 - 0.02 | Slowly 1000 rpm 1000 rpm 1000 rpm | 0.9% saline solution | N.A | N.A | Acumulated debris, WOG y XPS +++. HF, remove + debris. XPC homogeneous. HF and XPC better instrumentation. |
Gekelman D, 2009. [14] | 20 | GT rotary files ProTaper rotary files | 25 mm 21 mm | S1,S2,F1 | 0.07/0.08 | 300 rpm | Tap water | N.A | N.A | No significative differences. |
Boonchoo, K. 2020 [15] | 37 | WaveOne GoldTM | 21 mm | #20 | 0.07 | 800 rpm | 1% sodium hypochlorite | VitapexTM | 1 y | Better filling of canals M. |
Juliet, S. 2020 [16] | 45 | ProTaper Kedo-S RaCe | 21 mm 16 mm | S1,S2,F1 #25–30 #25 | 0.07/0.08 D1, E1, U1 0.04 | 330 rpm 300 rpm | 1 mL of 3% sodium hypochlorite + saline | Metapex | N.A | Kedo-S longer instrumentation time. |
Moraes, R D R. 2019 [17] | 1 | Reciproc system | 25 mm | #25 #40 #50 | 08 06 05 | 300 rpm. | Saline | N.A | N.A | R50 bigger risk of perforation. R40 Most valid option |
Govindaraju L, 2018 [19] | 30 | ProTaper rotary file F1 Kedo-s rotary file | 21 mm 16 mm | #20 #25–30 | 0.20/0.7 D1, E1, U1 | 330 rpm 300 rpm | Saline | Metapex | N.A | Kedo-S less postoperative pain. PT = KS preparation of the canal. |
Marques da Silva, B. 2018 [20] | 48 | ProTaper rotary system f4 WaveOne Large | 21 mm 25 mm | #40 #40 | 0.06 0.08 | 330 rpm | 2.5% sodium hypochlorite 17%EDTA | N.A | No differences found between them. | |
Tabbara, A. 2019 [21] | 20 | XP-endo Shaper | 21 mm | #30 | 0.04 | 800 rpm | Dakin’s solution 37 °C | Gutta-percha cone | N.A | The number of passes depends on the radicular anatomy. XP-endo Shaper obtains 30/0.04 |
Items | Yüksel B, 2022 [10] | Vaishali D, 2021 [11] | Mohammadi, D, 2021 [12] | Moraes RDR, 2021 [13] | Gekelman D, 2009 [14] | Boonchoo, K. 2020 [15] | Juliet, S. 2020 [16] | Moraes, RDR. 2019 [17] | Govindaraju L, 2018 [19] | Marques da Silva, B. 2018 [20] | Tabbara, A. 2019 [21] |
---|---|---|---|---|---|---|---|---|---|---|---|
The selected criterio were specified | 🟢 pg.3 | 🟢 pg.2 | 🟢 pg.2 | 🟢 pg.2 | 🟢v pg. 2 | 🟢 pg.2 | 🟢 pg.2 | 🟢v pg.2 | 🟢v pg.2 | 🟢v pg.2 | 🟢v pg.2 |
Sibjects were randomly assigned to group | 🟢 pg.3 | 🟢 pg.2 | 🟢v pg.2 | 🟢v pg.5 | 🔴v pg.2 | 🟢 pg.2 | 🟢 pg.2 | 🔴v pg.2 | 🟢v pg.2 | 🔴v pg.2 | 🔴v pg.3 |
Concealed allocation of pactients | 🔴 pg.3 | 🔴 pg.2 | 🔴 pg.2 | 🔴 pg.3 | 🔴v pg.2 | 🟢 pg.3 | 🟢 pg.2 | 🔴v pg.2 | 🟢v pg.2 | 🔴v pg.2 | 🔴v pg.2 |
Groups at baseline were similar in relation to the most important prognosis indicators | 🟢 pg.3 | 🟢 pg.2 | 🟢 pg.4 | 🟢 pg.6 | 🟢 pg.3 | 🟢 pg.3 | 🟢 pg.3 | 🟢 pg.4 | 🟢 pg.3 | 🟢 pg.3 | 🟢 pg.3 |
All subjects were blinded | 🔴 pg.3 | 🔴 pg.2 | 🔴 pg.2 | 🔴 pg.3 | 🔴v pg.2 | 🔴pg pg.3 | 🔴 pg.3 | 🔴v pg.2 | 🔴v pg.2 | 🔴v pg.2 | 🔴v pg.2 |
All clinicians were blinded | 🔴 pg.3 | 🔴 pg.2 | 🔴 pg.2 | 🔴 pg.3 | 🔴v pg.2 | 🔴 pg.2 | 🔴 pg.3 | 🔴v pg.2 | 🔴v pg.2 | 🔴v pg.2 | 🔴v pg.2 |
All assessors were blinded | 🔴 pg.3 | 🔴 pg.2 | 🔴 pg.2 | 🔴 pg.3 | 🔴v pg.2 | 🔴pg pg.2 | 🔴 pg.3 | 🔴v pg.2 | 🔴v pg.2 | 🔴v pg.2 | 🔴v pg.2 |
Means were obtained from more tan 85% of subjects | 🟢 pg.4 | 🟢 pg.2 | 🟢 pg.4 | 🟢 pg.6 | 🟢 3pg.3 | 🟢 pg.3 | 🟢 pg.3 | 🟢 pg.4 | 🟢 3pg.3 | 🟢 3pg.3 | 🟢 pg.3 |
Results for all subjects were presented | 🟢 pg.4 | 🟢 pg.2 | 🟢 pg.4 | 🟢 pg.6 | 🟢 pg.3 | 🟢 pg.3 | 🟢 pg.3 | 🟢 pg.4 | 🟢 pg.3 | 🟢 pg.3 | 🟢 pg.3 |
Statistical comparison results between groups were reported for at least one key outcome | 🟢 pg.4 | 🔴 pg.2 | 🟢 pg.5 | 🔴 pg.5 | 🟢 pg.2 | 🟢 pg.3-4 | 🟢 pg.3 | 🟢 pg.3 | 🟢 pg.3 | 🟢 pg.3 | |
The study provides one-off and variability measures for at least one key aoutcome | 🟢 pg.5 | 🔴 pg.5 | 🟢 pg.7-8 | 🟢 pg.5 | 🟢 pg.3 | 🟢 pg.4 | 🟢 pg.4 | 🟢 pg.4 | 🟢 pg.3 | 🟢 pg.3 | |
Total: | 7/11 | 5/11 | 7/11 | 6/11 | 8/11 | 8/11 | 6/11 | 6/11 | 4/11 | 6/11 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Casaña Ruiz, M.D.; Martínez, L.M.; Miralles, E.G. Update in the Diagnosis and Treatment of Root Canal Therapy in Temporary Dentition through Different Rotatory Systems: A Systematic Review. Diagnostics 2022, 12, 2775. https://doi.org/10.3390/diagnostics12112775
Casaña Ruiz MD, Martínez LM, Miralles EG. Update in the Diagnosis and Treatment of Root Canal Therapy in Temporary Dentition through Different Rotatory Systems: A Systematic Review. Diagnostics. 2022; 12(11):2775. https://doi.org/10.3390/diagnostics12112775
Chicago/Turabian StyleCasaña Ruiz, Mª Dolores, Laura Marqués Martínez, and Esther García Miralles. 2022. "Update in the Diagnosis and Treatment of Root Canal Therapy in Temporary Dentition through Different Rotatory Systems: A Systematic Review" Diagnostics 12, no. 11: 2775. https://doi.org/10.3390/diagnostics12112775
APA StyleCasaña Ruiz, M. D., Martínez, L. M., & Miralles, E. G. (2022). Update in the Diagnosis and Treatment of Root Canal Therapy in Temporary Dentition through Different Rotatory Systems: A Systematic Review. Diagnostics, 12(11), 2775. https://doi.org/10.3390/diagnostics12112775