Diagnostic Accuracy of Abbreviated Bi-Parametric MRI (a-bpMRI) for Prostate Cancer Detection and Screening: A Multi-Reader Study
Abstract
:1. Introduction
2. Materials & Methods
2.1. Imaging Protocols
2.2. Image Analysis
2.3. Histopathologic Assessment
2.4. Study Objectives
2.5. Statistical Analyses
3. Results
3.1. Baseline Characteristics
3.2. Diagnostic Accuracy of MRI
3.3. A-bpMRI: Alternative Cut-Offs and Combined Scores
3.4. Missed csPCa
3.5. Interreader Agreement
3.6. a-bpMRI and csPCa Prevalence
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kasivisvanathan, V.; Rannikko, A.S.; Borghi, M.; Panebianco, V.; Mynderse, L.A.; Vaarala, M.H.; Briganti, A.; Budäus, L.; Hellawell, G.; Hindley, R.G.; et al. MRI-targeted or standard biopsy for prostate-cancer diagnosis. N. Engl. J. Med. 2018, 378, 1767–1777. [Google Scholar] [CrossRef] [PubMed]
- Turkbey, B.; Rosenkrantz, A.B.; Haider, M.A.; Padhani, A.R.; Villeirs, G.; Macura, K.J.; Tempany, C.M.; Choyke, P.L.; Cornud, F.; Margolis, D.J.; et al. Prostate imaging reporting and data system version 2.1: 2019 update of prostate imaging reporting and data system version 2. Eur. Urol. 2019, 76, 340–351. [Google Scholar] [CrossRef] [PubMed]
- Schoots, I.G.; Barentsz, J.O.; Bittencourt, L.K.; Haider, M.A.; Macura, K.J.; Margolis, D.J.A.; Moore, C.M.; Oto, A.; Panebianco, V.; Siddiqui, M.M.; et al. PI-RADS Committee position on MRI without contrast medium in biopsy-naive men with suspected prostate cancer: Narrative review. AJR. Am. J. Roentgenol. 2021, 216, 3–19. [Google Scholar] [CrossRef] [PubMed]
- Kang, Z.; Min, X.; Weinreb, J.; Li, Q.; Feng, Z.; Wang, L. Abbreviated biparametric versus standard multiparametric MRI for diagnosis of prostate cancer: A systematic review and meta-analysis. Am. J. Roentgenol. 2019, 212, 357–365. [Google Scholar] [CrossRef] [PubMed]
- Jambor, I.; Verho, J.; Ettala, O.; Knaapila, J.; Taimen, P.; Syvänen, K.T.; Kiviniemi, A.; Kähkönen, E.; Perez, I.M.; Seppänen, M.; et al. Validation of improd biparametric mri in men with clinically suspected prostate cancer: A prospective multi-institutional trial. PLoS Med. 2019, 16, e1002813. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nam, R.K.; Wallis, C.J.D.; Stojcic-Bendavid, J.; Milot, L.; Sherman, C.; Sugar, L.; Haider, M.A. A pilot study to evaluate the role of magnetic resonance imaging for prostate cancer screening in the general population. J. Urol. 2016, 196, 361–366. [Google Scholar] [CrossRef] [PubMed]
- Eklund, M.; Jäderling, F.; Discacciati, A.; Bergman, M.; Annerstedt, M.; Aly, M.; Glaessgen, A.; Carlsson, S.; Grönberg, H.; Nordström, T. MRI-targeted or standard biopsy in prostate cancer screening. N. Engl. J. Med. 2021, 385, 908–920. [Google Scholar] [CrossRef]
- Eldred-Evans, D.; Burak, P.; Connor, M.; Day, E.; Evans, M.; Fiorentino, F.; Gammon, M.; Hosking-Jervis, F.; Klimowska- Nassar, N.; McGuire, W.; et al. Population-based prostate cancer screening with magnetic resonance or ultrasound imaging: The IP1-PROSTAGRAM study. JAMA Oncol. 2021, 7, 395–402. [Google Scholar] [CrossRef]
- Marsden, T.; Lomas, D.J.; McCartan, N.; Hadley, J.; Tuck, S.; Brown, L.; Haire, A.; Moss, C.L.; Green, S.; Van Hemelrijck, M.; et al. ReIMAGINE prostate cancer screening study: Protocol for a single-centre feasibility study inviting men for prostate cancer screening using MRI. BMJ Open 2021, 11, e048144. [Google Scholar] [CrossRef]
- Marsden, T.; McCartan, N.; Hadley, J.; Tuck, S.; Brown, L.; Haire, A.J.; Moss, C.L.; Green, S.; Van Hemelrijck, M.; Coolen, T.; et al. Update from the ReIMAGINE prostate cancer screening study NCT04063566: Inviting men for prostate cancer screening using magnetic resonance imaging. Eur. Urol. Focus 2021, 7, 503–505. [Google Scholar] [CrossRef]
- Van der Leest, M.; Israël, B.; Cornel, E.B.; Zámecnik, P.; Schoots, I.G.; van der Lelij, H.; Padhani, A.R.; Rovers, M.; van Oort, I.; Sedelaar, M.; et al. High diagnostic performance of short magnetic resonance imaging protocols for prostate cancer detection in biopsy-naïve men: The next step in magnetic resonance imaging accessibility. Eur. Urol. 2019, 76, 574–581. [Google Scholar] [CrossRef]
- Eldred-Evans, D.; Tam, H.; Sokhi, H.; Padhani, A.R.; Winkler, M.; Ahmed, H.U. Rethinking prostate cancer screening: Could MRI be an alternative screening test? Nat. Rev. Urol. 2020, 17, 526–539. [Google Scholar] [CrossRef]
- Simmons, L.A.M.; Kanthabalan, A.; Arya, M.; Briggs, T.; Barratt, D.; Charman, S.C.; Freeman, A.; Gelister, J.; Hawkes, D.; Hu, Y.; et al. The PICTURE study: Diagnostic accuracy of multiparametric MRI in men requiring a repeat prostate biopsy. Br. J. Cancer 2017, 116, 1159–1165. [Google Scholar] [CrossRef]
- Simmons, L.A.M.; Ahmed, H.U.; Moore, C.M.; Punwani, S.; Freeman, A.; Hu, Y.; Barratt, D.; Charman, S.C.; der Meulen, J.; Emberton, M. The PICTURE study—Prostate imaging (multi-parametric MRI and Prostate HistoScanningTM) compared to transperineal ultrasound guided biopsy for significant prostate cancer risk evaluation. Contemp. Clin. Trials 2014, 37, 69–83. [Google Scholar] [CrossRef]
- Ahmed, H.U.; El-Shater Bosaily, A.; Brown, L.C.; Gabe, R.; Kaplan, R.; Parmar, M.K.; Collaco-Moraes, Y.; Ward, K.; Hindley, R.G.; Freeman, A.; et al. Diagnostic accuracy of multi-parametric MRI and TRUS biopsy in prostate cancer (PROMIS): A paired validating confirmatory study. Lancet 2017, 389, 815–822. [Google Scholar] [CrossRef] [Green Version]
- Latifoltojar, A.; Appayya, M.B.; Barrett, T.; Punwani, S. Similarities and differences between Likert and PIRADS v2.1 scores of prostate multiparametric MRI: A pictorial review of histology-validated cases. Clin. Radiol. 2019, 74, e895-e1. [Google Scholar] [CrossRef]
- Brizmohun Appayya, M.; Adshead, J.; Ahmed, H.U.; Allen, C.; Bainbridge, A.; Barrett, T.; Giganti, F.; Graham, J.; Haslam, P.; Johnston, E.W.; et al. National implementation of multi-parametric magnetic resonance imaging for prostate cancer detection—Recommendations from a UK consensus meeting. BJU Int. 2018, 122, 13–25. [Google Scholar] [CrossRef] [Green Version]
- NICE Guidance. Prostate cancer: Diagnosis and management. BJU Int. 2019, 124, 9–26. [Google Scholar] [CrossRef]
- Ahmed, H.U.; Hu, Y.; Carter, T.; Arumainayagam, N.; Lecornet, E.; Freeman, A.; Hawkes, D.; Barratt, D.C.; Emberton, M. Characterizing clinically significant prostate cancer using template prostate mapping biopsy. J. Urol. 2011, 186, 458–464. [Google Scholar] [CrossRef]
- Leisenring, W.; Alonzo, T.; Pepe, M.S. Comparisons of predictive values of binary medical diagnostic tests for paired designs. Biometrics 2000, 56, 345–351. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Davis, C.S.; Soong, S.J. Comparison of predictive values of two diagnostic tests from the same sample of subjects using weighted least squares. Stat. Med. 2006, 25, 2215–2229. [Google Scholar] [CrossRef] [PubMed]
- Altman, D.G.; Bland, J.M. Statistics notes: Diagnostic tests 2: Predictive values. BMJ 1994, 309, 102. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gwet, K.L. Computing inter-rater reliability and its variance in the presence of high agreement. Br. J. Math. Stat. Psychol. 2008, 61, 29–48. [Google Scholar] [CrossRef] [Green Version]
- Cicchetti, D.V.; Feinstein, A.R. High agreement but low kappa: II. Resolving the paradoxes. J. Clin. Epidemiol. 1990, 43, 551–558. [Google Scholar] [CrossRef]
- Landis, J.R.; Koch, G.G. The measurement of observer agreement for categorical data. Biometrics 1977, 33, 159–174. [Google Scholar] [CrossRef] [Green Version]
- Thompson, I.M.; Pauler, D.K.; Goodman, P.J.; Tangen, C.M.; Lucia, M.S.; Parnes, H.L.; Minasian, L.M.; Ford, L.G.; Lippman, S.M.; Crawford, E.D.; et al. Prevalence of prostate cancer among men with a prostate-specific antigen level ≤ 4.0 ng per milliliter. N. Engl. J. Med. 2004, 350, 2239–2246. [Google Scholar] [CrossRef] [Green Version]
- Bosaily, A.E.S.; Frangou, E.; Ahmed, H.U.; Emberton, M.; Punwani, S.; Kaplan, R.; Brown, L.C.; Freeman, A.; Jameson, C.; Hindley, R.; et al. Additional value of dynamic contrast-enhanced sequences in multiparametric prostate magnetic resonance imaging: Data from the PROMIS study. Eur. Urol. 2020, 78, 503–511. [Google Scholar] [CrossRef]
- Bass, E.J.; Pantovic, A.; Connor, M.; Gabe, R.; Padhani, A.R.; Rockall, A.; Sokhi, H.; Tam, H.; Winkler, M.; Ahmed, H.U. A systematic review and meta-analysis of the diagnostic accuracy of biparametric prostate MRI for prostate cancer in men at risk. Prostate Cancer Prostatic Dis. 2020, 24, 596–611. [Google Scholar] [CrossRef]
- Kuhl, C.K.; Bruhn, R.; Krämer, N.; Nebelung, S.; Heidenreich, A.; Schrading, S. Abbreviated biparametric prostate MR imaging in men with elevated prostate-specific antigen. Radiology 2017, 285, 493–505. [Google Scholar] [CrossRef] [Green Version]
- Obmann, V.C.; Pahwa, S.; Tabayayong, W.; Jiang, Y.; O’Connor, G.; Dastmalchian, S.; Lu, J.; Shah, S.; Herrmann, K.A.; Paspulati, R.; et al. Diagnostic accuracy of a rapid biparametric MRI protocol for detection of histologically proven prostate cancer. Urology 2018, 122, 133–138. [Google Scholar] [CrossRef] [PubMed]
- Barth, B.K.; De Visschere, P.J.L.; Cornelius, A.; Nicolau, C.; Vargas, H.A.; Eberli, D.; Donati, O.F. Detection of clinically significant prostate cancer: Short dual-pulse sequence versus standard multiparametric MR Imaging—A multireader study. Radiology 2017, 284, 725–736. [Google Scholar] [CrossRef] [PubMed]
- Weiss, J.; Martirosian, P.; Notohamiprodjo, M.; Kaufmann, S.; Othman, A.E.; Grosse, U.; Nikolaou, K.; Gatidis, S. Implementation of a 5-minute magnetic resonance imaging screening protocol for prostate cancer in men with elevated prostate-specific antigen before biopsy. Invest. Radiol. 2018, 53, 186–190. [Google Scholar] [CrossRef] [PubMed]
- Cereser, L.; Giannarini, G.; Bonato, F.; Pizzolitto, S.; Como, G.; Valotto, C.; Ficarra, V.; Dal Moro, F.; Zuiani, C.; Girometti, R. Comparison of multiple abbreviated multiparametric MRI-derived protocols for the detection of clinically significant prostate cancer. Ital. J. Urol. Nephrol. 2020. [Google Scholar] [CrossRef]
- The National Lung Screening Trial Research Team. Results of initial low-dose computed tomographic screening for lung cancer. N. Engl. J. Med. 2013, 368, 1980–1991. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zawaideh, J.P.; Sala, E.; Shaida, N.; Koo, B.; Warren, A.Y.; Carmisciano, L.; Saeb-Parsy, K.; Gnanapragasam, V.J.; Kastner, C.; Barrett, T. Diagnostic accuracy of biparametric versus multiparametric prostate MRI: Assessment of contrast benefit in clinical practice. Eur. Radiol. 2020, 30, 4039–4049. [Google Scholar] [CrossRef]
- Brembilla, G.; Dell’Oglio, P.; Stabile, A.; Damascelli, A.; Brunetti, L.; Ravelli, S.; Cristel, G.; Schiani, E.; Venturini, E.; Grippaldi, D.; et al. Interreader variability in prostate MRI reporting using prostate imaging reporting and data system version 2.1. Eur. Radiol. 2020, 30, 3383–3392. [Google Scholar] [CrossRef]
- Huebner, N.A.; Korn, S.; Resch, I.; Grubmüller, B.; Gross, T.; Gale, R.; Kramer, G.; Poetsch, N.; Clauser, P.; Haitel, A.; et al. Visibility of significant prostate cancer on multiparametric magnetic resonance imaging (MRI)—Do we still need contrast media? Eur. Radiol. 2020, 31, 3754–3764. [Google Scholar] [CrossRef]
- Brembilla, G.; Takwoingi, Y.; Kasivisvanathan, V. Tackling interobserver variability in multiparametric Magnetic Resonance Imaging (MRI): Is MRI even better than we think for prostate cancer diagnosis? Eur. Urol. 2020, 79, 43–45. [Google Scholar] [CrossRef] [PubMed]
- Thurfjell, E.L.; Lernevall, K.A.; Taube, A.A.S. Benefit of independent double reading in a population-based mammography screening program. Radiology 1994, 191, 241–244. [Google Scholar] [CrossRef]
- Penzkofer, T.; Padhani, A.R.; Turkbey, B.; Haider, M.A.; Huisman, H.; Walz, J.; Salomon, G.; Schoots, I.G.; Richenberg, J.; Villeirs, G.; et al. ESUR/ESUI position paper: Developing artificial intelligence for precision diagnosis of prostate cancer using magnetic resonance imaging. Eur. Radiol. 2021, 31, 9567–9578. [Google Scholar] [CrossRef]
Sequence | MpMRI | bpMRI | a-bpMRI |
---|---|---|---|
Localizer (T2WI—sagittal) | 0:19 | 0:19 | 0:19 |
T2WI—axial | 5:14 | 5:14 | 5:14 |
T2WI—coronal | 5:55 | 5:55 | - |
DWI (b0, 150, 500, 1000 s/mm2) | 5:17 | 5:17 | - |
DWI b 2000 s/mm2 | 3:40 | 3:40 | 3:40 |
T1WI | 3:06 | - | - |
DCE | 4:43 | - | - |
Total: | 28:14 | 20:25 | 9:13 |
No. of Patients | 151 |
---|---|
Median age, y (range) | 62 (41–83) |
Median PSA, ng/mL (range) | 6.8 (0.9–28.5) |
Highest Gleason grade at histopathology (%) | |
Benign | 22 (15) |
3 + 3 | 53 (35) |
3 + 4 | 63 (42) |
≥4 + 3 | 13 (8) |
Definition 1 * csPCa | 60 (40) |
Definition 2 ** csPCa | 95 (63) |
Any Gleason ≥ 3 + 4 | 76 (50) |
Median no. of positive cores (IQR) | 6 (2–11) |
Median MCCL (IQR) | 4 (1.5–7) |
a-bpMRI | bpMRI | mpMRI | |||
---|---|---|---|---|---|
Likert | Likert | PI-RADS | Likert | PI-RADS | |
Sensitivity | 92 (87–96) | 92 (87–96) | 89 (83–93) | 92 (87–96) | 89 (83–93) |
Specificity | 48 (42–54) * | 35 (29–41) | 52 (46–58) | 39 (33–45) | 53 (47–59) |
PPV | 54 (48–60) * | 48 (43–54) | 56 (49–61) | 50 (44–56) | 56 (50–61) |
NPV | 90 (84–95) | 87 (79–93) | 88 (82–92) | 88 (81–94) | 88 (82–92) |
MRI Score ≥ 4 | T2WI and DWI Score ≥ 4 | |
---|---|---|
Pooled | ||
Sensitivity | 83 (76–88) | 70 (63–77) |
Specificity | 64 (58–69) | 76 (71–81) |
PPV | 60 (54–66) | 66 (59–73) |
NPV | 85 (79–89) | 79 (74–84) |
Combined * | ||
Sensitivity | 85 (76–94) | 72 (60–83) |
Specificity | 65 (55–75) | 79 (71–87) |
PPV | 61 (51–72) | 69 (58–81) |
NPV | 87 (79–95) | 81 (73–89) |
Prevalence of csPCa (Definition 1) | |||
---|---|---|---|
10% | 5% | 2% | |
MRI score ≥ 3 | |||
Pos.rate | 59 (51–67) | 57 (49–65) | 56 (47–64) |
PPV | 16 (9–25) | 8 (3–16) | 4 (1–10) |
NPV | 98 (91–100) | 100 (94–100) | 100 (95–100) |
MRI score ≥ 4 | |||
Pos. rate | 40 (32–49) | 37 (30–46) | 36 (29–45) |
PPV | 21 (12–34) | 11 (4–22) | 5 (1–15) |
NPV | 98 (92–100) | 99 (94–100) | 100 (96–100) |
T2WI and DWI score ≥ 4 | |||
Pos. rate | 26 (19–34) | 23 (17–31) | 22 (16–29) |
PPV | 28 (15–45) | 14 (5–30) | 6 (1–20) |
NPV | 96 (91–99) | 98 (94–100) | 99 (95–100) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Brembilla, G.; Giganti, F.; Sidhu, H.; Imbriaco, M.; Mallett, S.; Stabile, A.; Freeman, A.; Ahmed, H.U.; Moore, C.; Emberton, M.; et al. Diagnostic Accuracy of Abbreviated Bi-Parametric MRI (a-bpMRI) for Prostate Cancer Detection and Screening: A Multi-Reader Study. Diagnostics 2022, 12, 231. https://doi.org/10.3390/diagnostics12020231
Brembilla G, Giganti F, Sidhu H, Imbriaco M, Mallett S, Stabile A, Freeman A, Ahmed HU, Moore C, Emberton M, et al. Diagnostic Accuracy of Abbreviated Bi-Parametric MRI (a-bpMRI) for Prostate Cancer Detection and Screening: A Multi-Reader Study. Diagnostics. 2022; 12(2):231. https://doi.org/10.3390/diagnostics12020231
Chicago/Turabian StyleBrembilla, Giorgio, Francesco Giganti, Harbir Sidhu, Massimo Imbriaco, Sue Mallett, Armando Stabile, Alex Freeman, Hashim U. Ahmed, Caroline Moore, Mark Emberton, and et al. 2022. "Diagnostic Accuracy of Abbreviated Bi-Parametric MRI (a-bpMRI) for Prostate Cancer Detection and Screening: A Multi-Reader Study" Diagnostics 12, no. 2: 231. https://doi.org/10.3390/diagnostics12020231
APA StyleBrembilla, G., Giganti, F., Sidhu, H., Imbriaco, M., Mallett, S., Stabile, A., Freeman, A., Ahmed, H. U., Moore, C., Emberton, M., & Punwani, S. (2022). Diagnostic Accuracy of Abbreviated Bi-Parametric MRI (a-bpMRI) for Prostate Cancer Detection and Screening: A Multi-Reader Study. Diagnostics, 12(2), 231. https://doi.org/10.3390/diagnostics12020231