Troponin Cut-Offs for Acute Myocardial Infarction in Patients with Impaired Renal Function—A Systematic Review and Meta-Analysis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Protocol and Registration
2.2. Eligibility Criteria
2.3. Study Selection
2.4. Data Extraction
2.5. Methodological Quality Assessment
2.6. Statistical Analysis
3. Results
3.1. Narrative Synthesis
3.2. Study Design
3.3. Renal Impairment
3.4. Identification of Patients Suspected Having an AMI
3.5. Defining the Endpoint AMI
3.6. Applied Consensus Documents Regarding Definition of the Diagnose AMI
3.7. Confirmation of the Diagnosis Myocardial Infarction
3.8. Patient Characteristics
3.9. Quality Assessment
3.10. Statistical Analysis across Studies
3.11. A New Cut-Off
3.12. Meta-Analysis
4. Discussion
4.1. Narrative Synthesis
4.2. Meta-Analysis
4.3. Limitations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Thygesen, K.; Alpert, J.S.; Jaffe, A.S.; Chaitman, B.R.; Bax, J.J.; Morrow, D.A.; White, D.A. Fourth Universal Definition of Myocardial Infarction. Circulation 2018, 138, e618–e651. [Google Scholar] [CrossRef] [PubMed]
- DeBella, Y.T.; Giduma, H.D.; Light, R.P.; Agarwal, R. Chronic Kidney Disease as a Coronary Disease Equivalent—A Comparison with Diabetes over a Decade. Clin. J. Am. Soc. Nephrol. 2011, 6, 1385–1392. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shroff, G.R.; Frederick, P.D.; Herzog, C.A. Renal failure and acute myocardial infarction: Clinical characteristics in patients with advanced chronic kidney disease, on dialysis, and without chronic kidney disease. A collaborative project of the United States Renal Data System/National Institutes of Health and the National Registry of Myocardial Infarction. Am. Heart J. 2012, 163, 399–406. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dobre, M.; Brateanu, A.; Rashidi, A.; Rahman, M. Electrocardiogram abnormalities and cardiovascular mortality in elderly patients with CKD. Clin. J. Am. Soc. Nephrol. 2012, 7, 949–956. [Google Scholar] [CrossRef] [Green Version]
- Ferrara, L.; Staiano, L.; Di Fronzo, V.; Ferrara, F.; Sforza, A.; Mancusi, C.; De Simone, G. Type of myocardial infarction presentation in patients with chronic kidney disease. Nutr. Metab. Cardiovasc. Dis. 2015, 25, 148–152. [Google Scholar] [CrossRef]
- Colbert, G.; Jain, N.; De Lemos, J.A.; Hedayati, S.S. Utility of Traditional Circulating and Imaging-Based Cardiac Biomarkers in Patients with Predialysis CKD. Clin. J. Am. Soc. Nephrol. 2015, 10, 515–529. [Google Scholar] [CrossRef] [Green Version]
- Gunsolus, I.; Sandoval, Y.; Smith, S.W.; Sexter, A.; Schulz, K.; Herzog, C.A.; Apple, F.S. Renal Dysfunction Influences the Diagnostic and Prognostic Performance of High-Sensitivity Cardiac Troponin I. J. Am. Soc. Nephrol. 2017, 29, 636–643. [Google Scholar] [CrossRef]
- Pfortmueller, C.A.; Funk, G.-C.; Marti, G.; Leichtle, A.B.; Fiedler, G.M.; Schwarz, C.; Exadaktylos, A.K.; Lindner, G. Diagnostic Performance of High-Sensitive Troponin T in Patients with Renal Insufficiency. Am. J. Cardiol. 2013, 112, 1968–1972. [Google Scholar] [CrossRef]
- Lassen, J.F.; Bøtker, H.E.; Terkelsen, C.J. Timely and optimal treatment of patients with STEMI. Nat. Rev. Cardiol. 2013, 10, 41–48. [Google Scholar] [CrossRef]
- Borger, M.; Zamorano, J.L.; Gencer, B.; Bax, J.J.; Cuisset, T.; Bugiardini, R.; Rosemann, T.; Richter, D.; Roffi, M.; Steg, P.G.; et al. 2015 ESC Guidelines for the management of acute coronary syndromes in patients presenting without persistent ST-segment elevation: Task Force for the Management of Acute Coronary Syndromes in Patients Presenting without Persistent ST-Segment Elevation of the European Society of Cardiology (ESC). Eur. Heart J. 2016, 37, 267–315. [Google Scholar]
- Whiting, P.F.; Rutjes, A.W.; Westwood, M.E.; Mallett, S.; Deeks, J.J.; Reitsma, J.B.; Leeflang, M.M.; Sterne, J.A.; Bossuyt, P.M.; QUADAS-2 Group. QUADAS-2: A revised tool for the quality as-sessment of diagnostic accuracy studies. Ann. Intern. Med. 2011, 155, 529–536. [Google Scholar] [CrossRef] [PubMed]
- Steinhauser, S.; Schumacher, M.; Rücker, G. Modelling multiple thresholds in meta-analysis of diagnostic test accuracy studies. BMC Med. Res. Methodol. 2016, 16, 1–15. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moher, D.; Liberati, A.; Tetzlaff, J.; Altman, D.G.; The PRISMA Group. Preferred reporting items for systematic reviews and meta-analyses: The PRISMA Statement. PLoS Med. 2009, 6, e1000097. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sukonthasarn, A.; Ponglopisit, S. Diagnostic level of cardiac troponin T in patients with chronic renal dysfunction, a pilot study. J. Med. Assoc. Thail. 2007, 90, 1749–1758. [Google Scholar]
- Lim, E.; Lee, M.-J. Optimal cut-off value of high-sensitivity troponin I in diagnosing myocardial infarction in patients with end-stage renal disease. Medicine 2020, 99, e18580. [Google Scholar] [CrossRef] [PubMed]
- Soeiro, A.D.M.; Gualandro, D.M.; Bossa, A.S.; Zullino, C.N.; Biselli, B.; Soeiro, M.C.F.D.A.; Leal, T.D.C.A.T.; Serrano, C.V., Jr.; Junior, M.T.D.O. Sensitive Troponin I Assay in Patients with Chest Pain—Association with Significant Coronary Lesions with or Without Renal Failure. Arq. Bras. Cardiol. 2018, 110, 68–73. [Google Scholar] [CrossRef] [PubMed]
- Yang, H.; Liu, J.; Luo, H.; Zeng, X.; Tang, X.; Ma, L.; Mai, H.; Gou, S.; Liu, F.; Fu, P. Improving the diagnostic accuracy of acute myocardial infarction with the use of high-sensitive cardiac troponin T in different chronic kidney disease stages. Sci. Rep. 2017, 7, 41350. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Canney, M.; Tang, M.; Er, L.; Barbour, S.J.; Djurdjev, O.; Levin, A. Glomerular Filtration Rate-Specific Cutoffs Can Refine the Prognostic Value of Circulating Cardiac Biomarkers in Advanced Chronic Kidney Disease. Can. J. Cardiol. 2019, 35, 1106–1113. [Google Scholar] [CrossRef]
- Floressolis, L.M.; Hernandezdominguez, J.L.; Oterogonzalez, A.; Gonzalezjuanatey, J.R. Cardiac troponin I and creatine kinase MB isoenzyme in patients with chronic renal failure. Nefrologia 2012, 32, 809–818. [Google Scholar] [CrossRef]
- Iwasaki, M.; Yamazaki, K.; Ikeda, N.; Tanaka, Y.; Hayashi, T.; Kubo, S.; Matsukane, A.; Hase, H.; Joki, N. Point of care assessment of cardiac troponin T level in CKD patients with chest symptom. Ren. Fail. 2016, 39, 166–172. [Google Scholar] [CrossRef] [Green Version]
- Chotivanawan, T.; Krittayaphong, R. Normal range of serum highly-sensitive troponin-T in patients with chronic kidney disease stage 3–5. J. Med Assoc. Thail. 2012, 95 (Suppl. 2), S127–S132. [Google Scholar]
- Sawanyawisuth, K.; Sricharoen, P.; Tangkulpanich, P.; Sittichanbuncha, Y. The appropriate troponin T level associated with coronary occlusions in chronic kidney disease patients. Ther. Clin. Risk Manag. 2015, 11, 1143–1147. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Miller-Hodges, E.V.; Anand, A.; Shah, A.; Chapman, A.; Gallacher, P.J.; Lee, K.K.; Farrah, T.E.; Halbesma, N.; Blackmur, J.; Newby, D.E.; et al. High-Sensitivity Cardiac Troponin and the Risk Stratification of Patients with Renal Impairment Presenting with Suspected Acute Coronary Syndrome. Circulation 2018, 137, 425–435. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Twerenbold, R.; Badertscher, P.; Boeddinghaus, J.; Nestelberger, T.; Wildi, K.; Puelacher, C.; Sabti, Z.; Gimenez, M.R.; Tschirky, S.; du Fay de Lavallaz, J.; et al. 0/1-h Triage Algorithm for Myocardial Infarction in Patients with Renal Dysfunction. Circulation 2018, 137, 436–451. [Google Scholar] [CrossRef]
- Twerenbold, R.; Wildi, K.; Jaeger, C.; Gimenez, M.R.; Reiter, M.; Reichlin, T.; Walukiewicz, A.; Gugala, M.; Krivoshei, L.; Marti, N.; et al. Optimal Cutoff Levels of More Sensitive Cardiac Troponin Assays for the Early Diagnosis of Myocardial Infarction in Patients with Renal Dysfunction. Circulation 2015, 131, 2041–2050. [Google Scholar] [CrossRef]
- Ryu, D.-R.; Park, J.T.; Chung, J.H.; Song, E.M.; Roh, S.H.; Lee, J.-M.; An, H.R.; Yu, M.; Pyun, W.B.; Shin, G.J.; et al. A More Appropriate Cardiac Troponin T Level That Can Predict Outcomes in End-Stage Renal Disease Patients with Acute Coronary Syndrome. Yonsei Med. J. 2011, 52, 595–602. [Google Scholar] [CrossRef] [Green Version]
- Chenevier-Gobeaux, C.; Meune, C.; Freund, Y.; Wahbi, K.; Claessens, Y.-E.; Doumenc, B.; Zuily, S.; Riou, B.; Ray, P. Influence of Age and Renal Function on High-Sensitivity Cardiac Troponin T Diagnostic Accuracy for the Diagnosis of Acute Myocardial Infarction. Am. J. Cardiol. 2013, 111, 1701–1707. [Google Scholar] [CrossRef] [PubMed]
- Kraus, D.; von Jeinsen, B.; Tzikas, S.; Palapies, L.; Zeller, T.; Bickel, C.; Fette, G.; Lackner, K.J.; Drechsler, C.; Neumann, J.T.; et al. Cardiac Troponins for the Diagnosis of Acute Myocardial Infarction in Chronic Kidney Disease. J. Am. Heart Assoc. 2018, 7, e008032. [Google Scholar] [CrossRef] [Green Version]
- Tarapan, T.; Musikatavorn, K.; Phairatwet, P.; Takkavatakarn, K.; Susantitaphong, P.; Eiam-Ong, S.; Tiranathanagul, K. High sensitivity Tro-ponin-I levels in asymptomatic hemodialysis patients. Ren. Fail. 2019, 41, 393–400. [Google Scholar] [CrossRef] [Green Version]
- Breidthardt, T.; Burton, J.; Odudu, A.; Eldehni, M.T.; Jefferies, H.J.; McIntyre, C.W. Troponin T for the Detection of Dialysis-Induced Myocardial Stunning in Hemodialysis Patients. Clin. J. Am. Soc. Nephrol. 2012, 7, 1285–1292. [Google Scholar] [CrossRef] [Green Version]
- Chen, T.; Hassan, H.C.; Qian, P.; Vu, M.; Makris, A. High-Sensitivity Troponin T and C-Reactive Protein Have Different Prognostic Values in Hemo- and Peritoneal Dialysis Populations: A Cohort Study. J. Am. Heart Assoc. 2018, 7, e007876. [Google Scholar] [CrossRef] [PubMed]
- Sosnov, J.; Lessard, D.; Goldberg, R.J.; Yarzebski, J.; Gore, J.M. Differential Symptoms of Acute Myocardial Infarction in Patients with Kidney Disease: A Community-Wide Perspective. Am. J. Kidney Dis. 2006, 47, 378–384. [Google Scholar] [CrossRef] [PubMed]
- Cai, Q.; Mukku, V.K.; Ahmad, M. Coronary Artery Disease in Patients with Chronic Kidney Disease: A Clinical Update. Curr. Cardiol. Rev. 2014, 9, 331–339. [Google Scholar] [CrossRef] [Green Version]
- Thygesen, K.; Alpert, J.S.; Jaffe, A.S.; Chaitman, B.R.; Bax, J.J.; Morrow, D.A.; Executive Group on behalf of the Joint European Society of Cardiology (ESC)/American College of Cardiology (ACC)/American Heart Association (AHA)/World Heart Federation (WHF) Task Force for the Universal Definition of Myocardial Infarction. Fourth Universal Definition of Myocardial Infarction. J. Am. Coll. Cardiol. 2018, 72, 2231–2264. [Google Scholar] [CrossRef] [PubMed]
- Ohtake, T.; Kobayashi, S.; Moriya, H.; Negishi, K.; Okamoto, K.; Maesato, K.; Saito, S. High Prevalence of Occult Coronary Artery Stenosis in Patients with Chronic Kidney Disease at the Initiation of Renal Replacement Therapy: An Angiographic Examination. J. Am. Soc. Nephrol. 2005, 16, 1141–1148. [Google Scholar] [CrossRef]
- Lippi, G.; Cervellin, G. Identification of Troponin Determinants for Improving its Diagnostic Performance in the Emergency Department. J. Emerg. Med. 2012, 43, e487–e488. [Google Scholar] [CrossRef]
- Boeckel, J.-N.; Palapies, L.; Klotsche, J.; Zeller, T.; Von Jeinsen, B.; Perret, M.F.; Kleinhaus, S.L.; Pieper, L.; Tzikas, S.; Leistner, D.; et al. Adjusted Troponin I for Improved Evaluation of Patients with Chest Pain. Sci. Rep. 2018, 8, 8087. [Google Scholar] [CrossRef] [Green Version]
- Artunc, F.; Haag, S.; Friedrich, B.; Mueller, C.; Häring, H.-U.; Peter, A. Performance of a novel high sensitivity cardiac troponin I assay in asymptomatic hemodialysis patients—Evidence for sex-specific differences. Clin. Chem. Lab. Med. 2019, 57, 1261–1270. [Google Scholar] [CrossRef]
- Wu, A.H.; Lu, Q.A.; Todd, J.; Moecks, J.; Wians, F. Short- and Long-Term Biological Variation in Cardiac Troponin I Measured with a High-Sensitivity Assay: Implications for Clinical Practice. Clin. Chem. 2009, 55, 52–58. [Google Scholar] [CrossRef] [Green Version]
Author | Year | Country | Number of Patients with Renal Impairment | Renal Impairment Definition | Male Patients with Renal Impairment % | Age | Study Design | Inclusion criteria | Exclusion Criteria |
---|---|---|---|---|---|---|---|---|---|
Soeiro | 2017 | Brazil | 184 | Creatinine > 1.5 mg/dL | 52 | Median 63 years (for patients with and without renal impairment) | Retrospective, single-center, observational | Patients who presented with chest pain at the ED and underwent coronary angiography | Presence of ST elevation |
Sukonthasarn | 2007 | Thailand | 46 | Crcl < 60 mL/min Cockcroft–Gault for at least 3 months | 38 | Mean 72 (AMI group) 70 (control group) | Cross-sectional case control | CKD and ACS symptoms | Patients with pulmonary embolism, muscle disease, acute stroke, renal dysfunction of duration less than 3 months, recent ACS other than this admission, history of recent exercise, muscle trauma, or those being treated by electrical cardioversion, and patients in the AMI group who did not fulfill the AMI criteria |
Chenevier_Gobeaux | 2013 | France | 75 | MDRD eGFR > 60 mL/min/1.73 m2 | 65 in the entire study population | Mean: 57 in the entire study population | Post hoc analysis of two previous (prospective) studies | Patients presenting to ED or cardiology unit with a suspected diagnosis of AMI (chest pain onset < 6 h). | Patients requiring renal replacement therapy |
Kraus | 2018 | Germany | 1861 (1581 from data warehouse and 280 from stenocardia cohort) | EPI formula eGFR < 60 mL/min/1.73 m2 | Stenocardia: male 58; data warehouse 56 | Mean stenocardia: 72; data warehouse: 77 | Post hoc analysis of 2 previous studies (1 prospective, 1 retrospective) | Stenocardia: patients with acute chest pain Data warehouse: patients with at least two measurements of hs-cTnT | Stenocardia: major surgery or trauma, pregnancy, IV abuse, anemia, dialysis, STEMI data warehouse: obviously erroneous data |
Ryu | 2011 | Korea | 284 | ESRD patients on PD or HD | 52 | Mean 61 | Post hoc analyses | Dialysis patients with ACS symptoms | Myositis, muscle trauma, rhabdomyolysis and seizure |
Lim | 2019 | Korea | 1144 | 82 with ESRD + MI (75 HD and 7 PD patients) | 58 | Median 61 | Retrospective, single-center, observational ED | HD or PD, TNI measured | Insufficient medical record (with neither echocardiography nor coronary angiography) and starting dialysis at the time of admission |
Yang | 2017 | China | 489 | EPI-formula CKD eGFR > 60 mL/min/1.73 m2 diagnose CKD confirmed by two nephrologists according to KDIGO guidelines | 57 | Mean 71 | Retrospective, single-center study | CKD patients with chest pain and tested hs-TnT with an onset or peak within the last 12 h | Previous myocardial infarction, hypertensive crisis, tachy- or bradyarrhythmias, pulmonary embolism, severe pulmonary hypertension, myocarditis, acute neurological disease, aortic dissection, aortic valve disease or hypertrophic cardiomyopathy, cardiac contusion, ablation, pacing, cardioversion, endomyocardial biopsy, hypothyroidism, apical ballooning syndrome, drug toxicity, burns, rhabdomyolisis, and multiple organ failure |
Flores-Solís | 2012 | Spain | 484 | MDRD > 60 mL/min/1.73 m2 | 68 | Mean 77 | Prospective single-center study | CKD3-5, sought hospital due to suspected ACS, whose initial clinical evaluation included measurement of cTnI, CK-MB and creatinine, clinical history ECG, physical examination | Patients transferred to another hospital, psychiatric patients, those who refused informed consent |
Canney | 2019 | Canada | 1956 | EPI formula eGFR > 45 mL/min/1.73 m2 | 63.1 | mean 68.1 | Retrospective cohort analysis Can-PREDDICT | eGFR 15–45, measured hscTnT and NT-proBNP | Patients with a life expectancy <12 months, active vasculitis, or organ transplantation |
Iwaski | 2016 | Japan | 149 (CKD 1–2 definition unclear) | Japanese equation eGFR < 60 mL/min/1.73 m2 | 56 (Including CKD 1–2) | Mean 74 (Including ckd 1–2) | Single-center prospective cross-sectional study | Patients with chest symptoms | Data unavailability |
Miller-Hodges & Anand | 2018 | Scotland | 904 | MDRD eGFR < 60 mL/min/1.73 m2 | 48 | Mean 77 | Prospective multicenter study | All patients in whom the attending physician requested cTn for suspected ACS, at least one creatinine measurement during index presentation | STEMI, not living in Scotland |
Twerenbold 0/1 | 2018 | (APACE) | 487 | EPI formula eGFR < 60 mL/min/1.73 m2 | 58 | Median 79 | Prospective multicenter study | Adult patients presenting to the ed with symptoms suggestive of AMI (e.g., acute chest discomfort and angina paectoris) with an onset or peak within the last 12 h | Dialysis patients, STEMI, patients in whom the final diagnosis remained unclear, patients with no available hs-cTnT or hs-cTNI concentrations determined on presentation to the ED and after 1 h |
Chotivanawan | 2012 | Thailand | 89 | Cockcroft–Gault formula additional analysis MDRD eGFR < 60 mL/min/1.73 m2 | 58 | Mean 67 | Prospective single-center study | Patients with CKD without history of MI within 14 days | History of angina pectoris or heart failure that may be angina equivalences, burn, acute neurological disease such as cerebral infarction or intracranial hemorrhage, severe sepsis, acute pulmonary embolism, pulmonary hypertension, myocarditis, pericarditis, tachyarrhythmias, receiving chemotherapy, or chest trauma |
Twerenbold | 2015 | Europe (APACE) | 447 | MDRD < 60 mL/min/1.73 m2 | 56 | Median 77 | Prospective multicenter study | Adult patients presenting to the ED with symptoms suggestive of AMI (e.g., acute chest discomfort and angina pectoris) with an onset or peak within the last 12 h | Terminal kidney failure, no creatinine or cTn measurement were taken or the final diagnose was unclear |
Sitthichanbuncha | 2015 | Thailand | 210 | EPI formula eGFR < 60 mL/min/1.73 m2 | 60 | Mean 71 | Single-center prospective study | Admitted to ED with chest pain, hs-TnT results and coronary angiographic results after 2 h of chest pain | Hemodialysis, inappropriate time of hs-TnT level, stress-induced cardiomyopathy, and pulmonary embolism |
Troponin Assay | Manufacture | Suggested Cut-Off | Manufacture URL | Sensitivity % | Specificity % | Statistical Analysis | Endpoints | |
---|---|---|---|---|---|---|---|---|
Soeiro | cTnI | Siemens | 5.1 ng/L | 40 ng/L | 80.60% | 42% | ROC 95% confidence interval | NSTEMI (significant coronary lesion (>70%) viewed with coronary angiography or cardiac MR) |
Sukonthasarn | cTnT | Roche | 100 ng/L | 14 ng/L | 90.90% | 84,50% | ROC | AMI |
Chenevier-Gobeaux | hS-cTnT | Roche | 35.8 ng/L for AMI 43.2 ng/L for NSTEMI | 14 ng/L | AMI = 94 NSTEMI = 92 | AMI = 86 NSTEMI = 88 | ROC Kruskal–Wallis for multiple comparisons | AMI (STEMI and NSTEMI combined) and NSTEMI (separately) |
Kraus | (1) hs-cTnI (2) hs-cTnT | (1) Abbot (2) Roche | (1) 54.0 ng/L (2) 50 ng/L | (1) 30 ng/L (2) 14 ng/L | hs-cTnI = 82 hs-cTnT = 66 | hs-cTnI = 90 hs-cTnT = 80 | ROC (used an algorithm that worked better) | NSTEMI |
Ryu | cTnT | Roche | 350 ng/L | 14 ng/L | 95 | 97 | ROC | AMI |
Lim | hs-cTnI | Siemens | HD = 75 ng/L PD = 144 ng/L | 47.34 | hd = 93.3 pd = 100 | hd = 60.76 pd = 83.1 | ROC | STEMI and NSTEMI |
Yang | hs-cTnT | Roche | CKD3-5 = 129 ng/L CKD3 = 99.55 CKD4 = 129.45 CKD5%D = 105.5 CKD5wD = 149.35 | 14 ng/L | total 75.2 CKD3 = 82.8 CKD4 = 73.2 CKD5%D = 81 CKD5wD = 79.2 | total 83.2 CKD3 = 82.1 CKD4 = 85.4 CKD5%D = 88.9 CKD5wD = 81.9 | ROC | STEMI and NSTEMI |
Flores-Solís | cTnI | (1) Beckman Coulter (2) BioMérieux | (1) 110 (2) 60 | (1) 40 ng/L (2) 110 ng/L | (1) = 68% (2) = 75% | (1) = 83% (2) = 79% | ROC | ACS |
Canney | hs-cTnT | Roche | 30–44 mL/min = 22.7 ng/L 20–29 mL/min = 26.8 ng/L <20 mL/min = 35.5 ng/L | 14 ng/L | NA | NA | Repeated log-rank test | CV risk in asymptomatic patients. |
Iwasaki | cTnT | Roche | CKD 1–2 = 47 ng/L CKD 3 = 88 ng/L CKD 4–5 = 180 CKD5d = 270 | 14 ng/L | CKD 1–2 = 59.3 CKD 3 = 55.6 CKD 4–5 = 66.7 CKD 5d = 64.3 | CKD 1–2 = 80.0 ng/mL CKD 3 = 92.2 CKD 4–5 = 89.7 CKD 5d = 78.8 | ROC | ACS |
Miller-Hodges & Anand | (1) cTnI (2) hs-cTnI | (1) Abbot (2) Abbot | <5 ng/L for hs-cTnI a threshold for risk stratification from earlier studies by the authors | 16 ng/L in women 34 ng/L in men | 98.9 | 22.8 | Evaluation of sensitivity, specificity for the 5 ng/L threshold | NSTEMI or cardiovascular death within 30 days |
Twerenbold 0/1 | (1) hs-cTnT (2) hs-cTnI | (1) Roche (2) Abbot | (1) Rule-in 0 h ≥ 52 ng/L OR 1 h–change ≥5 ng/L (2) Rule-in 0 h ≥ 52 ng/L OR 1 h–change ≥ 6 ng/L | (1) 14 ng/L (2) 26.2 ng/L | hs-cTnT rule out 100% rule out hs-cTnI 98.6 | hs-cTnT rule in 88.7% rule in hs-cTnI 84.4 | ROC comparison of ROC | NSTEMI |
Chotivanawan | hs-cTnT | Roche | CKD 3–5 0.139 ng/mL stage 3 = 0.052 stage 4 = 0.136 stage 5 = 0.297 ng/mL | 14 ng/L | NA | NA | Mean | Mean of hs-cTnT in asymptomatic patients |
Twerenbold | (1) hs-cTnT (2) cTnI (3) hs-cTnI (4) cTnI (5) hs-cTnI (6) c TnI (7) hs-cTnI | (1) Roche (2) Abbott (3) Abbot (4) Siemens (5) Siemens (6) Beckman-Coulter (7) Beckman-Coulter | (1) = 29.5 ng/L, (2) = 27 ng/L (3) = 29.4 ng/L, (4) = 46 ng/L, (5) = 32.0 ng/L (6) = 36 ng/L (7) = 25.9 ng/L | (1) = 14 ng/L (2) = 28 ng/L (3) = 26.2 ng/L (4) = 40 ng/L (5) = 9.0 ng/L (6) = 42 ng/L (7) = 9.2 | (1) = 84 (2) = 79 (3) = 76 (4) = 77 (5) = 82 (6) = 81 (7) = 81 | (1) = 79 (2) = 87 (3) = 85 (4) = 84 (5) = 83 (6) = 88 (7) = 83 | ROC | AMI |
Sitthichanbuncha | hs-cTnT | Roche | 41 ng/L | 14 ng/L | CKD3: 67 CKD4-5: 71 | ROC | Coronary artery occlusion 70% |
Outcome | Cut-Off (95%CI) | Sensitivity (95%CI) | Specificity (95%CI) | AUC | (95%CI) |
---|---|---|---|---|---|
All | 72.6 (25.75; 119.45) | 0.78 (0.52; 0.93) | 0.84 (0.62; 0.96) | 0.89 | (0.79; 0.96) * (0.73; 0.91) + |
TNT without dialysis | 47.89 (23.95; 71.83) | 0.76 (0.52; 0.92) | 0.78 (0.54; 0.92) | 0.85 | (0.72; 0.95) * (0.65; 0.87) + |
TNT with dialysis | 239.75 (69.27; 410.23) | 0.88 (0.48; 0.99) | 0.92 (0.6; 1) | 0.96 | (0.85; 1.00) * (0.79; 0.95) + |
TNI without dialysis | 42.45 (33.83; 51.08) | 0.77 (0.72; 0.81) | 0.86 (0.84; 0.88) | 0.89 | (0.86; 0.92) * (0.88; 0.91) + |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kampmann, J.; Heaf, J.; Backer Mogensen, C.; Pedersen, A.K.; Granhøj, J.; Mickley, H.; Brandt, F. Troponin Cut-Offs for Acute Myocardial Infarction in Patients with Impaired Renal Function—A Systematic Review and Meta-Analysis. Diagnostics 2022, 12, 276. https://doi.org/10.3390/diagnostics12020276
Kampmann J, Heaf J, Backer Mogensen C, Pedersen AK, Granhøj J, Mickley H, Brandt F. Troponin Cut-Offs for Acute Myocardial Infarction in Patients with Impaired Renal Function—A Systematic Review and Meta-Analysis. Diagnostics. 2022; 12(2):276. https://doi.org/10.3390/diagnostics12020276
Chicago/Turabian StyleKampmann, Jan, James Heaf, Christian Backer Mogensen, Andreas Kristian Pedersen, Jeff Granhøj, Hans Mickley, and Frans Brandt. 2022. "Troponin Cut-Offs for Acute Myocardial Infarction in Patients with Impaired Renal Function—A Systematic Review and Meta-Analysis" Diagnostics 12, no. 2: 276. https://doi.org/10.3390/diagnostics12020276
APA StyleKampmann, J., Heaf, J., Backer Mogensen, C., Pedersen, A. K., Granhøj, J., Mickley, H., & Brandt, F. (2022). Troponin Cut-Offs for Acute Myocardial Infarction in Patients with Impaired Renal Function—A Systematic Review and Meta-Analysis. Diagnostics, 12(2), 276. https://doi.org/10.3390/diagnostics12020276