Cardiac Computed Tomography Radiomics-Based Approach for the Detection of Left Ventricular Remodeling in Patients with Arterial Hypertension
Abstract
:1. Introduction
2. Materials and Methods
2.1. Population and Study Design
2.2. Data Collection
2.3. Image Acquisition and Analysis
2.4. Statistical Analysis
2.4.1. Classification Models
2.4.2. Ensemble Machine Learning Score (EML Score)
2.5. Relevant Features Selection
2.5.1. Smile Plot
2.5.2. Boruta Algorithm (BA)
3. Results
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Mannil, M.; Eberhard, M.; von Spiczak, J.; Walter Heindel, W.; Alkadhi, H.; Baessler, B. Artificial Intelligence and Texture Analysis in Cardiac Imaging. Curr. Cardiol. Rep. 2020, 22, 131. [Google Scholar] [CrossRef] [PubMed]
- Gillies, R.J.; Kinahan, P.E.; Hricak, H. Radiomics: Images are more than pictures, they are data. Radiology 2016, 278, 563–577. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Oikonomou, E.K.; Siddique, M.; Antoniades, C. Artificial intelligence in medical imaging: A radiomic guide to precision phenotyping of cardiovascular disease. Cardiovasc. Res. 2020, 116, 2040–2054. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Esposito, A.; Palmisano, A.; Antunes, S.; Colantoni, C.; Rancoita, P.M.V.; Vignale, D.; Vignale, D.; Della Bella, P.; Della Bella, P.; De Cobelli, F. Assessment of Remote Myocardium Heterogeneity in Patients with Ventricular Tachycardia Using Texture Analysis of Late Iodine Enhancement (LIE) Cardiac Computed Tomography (cCT) Images. Mol. Imaging Biol. 2018, 20, 816–825. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hinzpeter, R.; Wagner, M.W.; Wurnig, M.C.; Seifert, B.; Seifert, B.; Alkadhi, H. Texture analysis of acute myocardial infarction with CT: First experience study. PLoS ONE 2017, 12, e0186876. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kolossváry, M.; Karády, J.; Kikuchi, Y.; Ivanov, A.; Schlett, C.L.; Lu, M.T.; Foldyna, B.; Merkely, B.; Aerts, H.J.; Hoffmann, U.; et al. Radiomics versus Visual and Histogram-based Assessment to Identify Atheromatous Lesions at Coronary CT Angiography: An ex Vivo Study. Radiology 2019, 293, 89–96. [Google Scholar] [CrossRef] [PubMed]
- Zreik, M.; Van Hamersvelt, R.W.; Wolterink, J.M.; Leiner, T.; Viergever, M.A.; Viergever, M.A. A Recurrent CNN for Automatic Detection and Classification of Coronary Artery Plaque and Stenosis in Coronary CT Angiography. IEEE Trans. Med. Imaging 2019, 38, 1588–1598. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bourdillon, M.T.; Vasan, R.S. A Contemporary Approach to Hypertensive Cardiomyopathy: Reversing Left Ventricular Hypertrophy. Curr. Hypertens. Rep. 2020, 22, 85. [Google Scholar] [CrossRef] [PubMed]
- O’Brien, E.; Asmar, R.; Beilin, L.; Imai, Y.; Mancia, G.; Mengden, T.; Myers, M.; Padfield, P.; Palatini, P.; Parati, G.; et al. Practice guidelines of the European Society of Hypertension for clinic, ambulatory and self blood pressure measurement. J. Hypertens. 2005, 23, 697–701. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Collewet, G.; Strzelecki, M.; Mariette, F. Influence of MRI acquisition protocols and image intensity normalization methods on texture classification. Magn. Reson. Imaging 2004, 22, 81–91. [Google Scholar] [CrossRef] [PubMed]
- Szczypiński, P.M.; Strzelecki, M.; Materka, A.; Klepaczko, A. MaZda-A software package for image texture analysis. Comput. Methods Programs Biomed. 2009, 94, 66–76. [Google Scholar] [CrossRef] [PubMed]
- Cavallo, A.U.; Troisi, J.; Forcina, M.; Mari, P.V.; Forte, V.; Sperandio, M.; Pagano, S.; Cavallo, P.; Floris, R.; Garaci, F. Texture Analysis in the Evaluation of Covid-19 Pneumonia in Chest X-Ray Images: A Proof of Concept Study. Curr. Med. Imaging 2021, 17, 1094–1102. [Google Scholar] [CrossRef] [PubMed]
- Diao, K.Y.; Yang, Z.G.; Xu, H.Y.; Liu, X.; Zhang, Q.; Shi, K.; Jiang, L.; Xie, L.J.; Wen, L.Y.; Guo, Y.K. Histologic validation of myocardial fibrosis measured by T1 mapping: A systematic review and meta-analysis. J. Cardiovasc. Magn. Reson. 2016, 18, 92. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lazzeroni, D.; Rimoldi, O.; Camici, P.G. From left ventricular hypertrophy to dysfunction and failure. Circ. J. 2016, 80, 555–564. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Drazner, M.H. The progression of hypertensive heart disease. Circulation 2011, 123, 327–334. [Google Scholar] [CrossRef] [PubMed]
- González, A.; Ravassa, S.; López, B.; Moreno, M.U.; Beaumont, J.; San José, G.; Querejeta, R.; Bayés-Genís, A.; Díez, J. Myocardial remodeling in hypertension toward a new view of hypertensive heart disease. Hypertension 2018, 72, 549–558. [Google Scholar] [CrossRef]
HTN (n = 83) | NC (n = 75) | p-Value | |
---|---|---|---|
Sex (F) (%) | 35 (42.17%) | 45 (60%) | 0.038 |
Age | 65.63 ± 10.23 | 55.59 ± 12.42 | <0.001 |
Dyslipidemia | 18 (21.7%) | 10 (13.3%) | 0.24 |
BMI (kg/m2) | 28.4 ± 6.1 | 25.5 ± 4.9 | <0.001 |
Diabetes (%) | 18 (21.7%) | 4 (5.12%) | 0.006 |
LV Septum Width (mm) | 10.01 ± 2.7 | 8.15 ± 1.66 | <0.001 |
Systolic blood pressure (mmHg) | 131.6 ± 14.2 | 124 ± 11.8 | 0.06 |
Diastolic blood pressure (mmHg) | 77.6 ± 8.18 | 75.8 ± 10.1 | 0.3 |
HTN | NC | p-Value | |
---|---|---|---|
GeoF | 3495 ± 1246.18 | 2514.85 ± 735.74 | <0.001 |
GeoSxL | 18,978.13 ± 4315.37 | 18,074.65 ± 8676.49 | 0.005 |
GeoW3 | 1143.16 ± 329.01 | 1362.56 ± 357.21 | <0.001 |
GeoW5b | 0.023 ± 0.01 | 0.019 ± 0.005 | <0.001 |
GeoW12 | 0.47 ± 0.16 | 0.37 ± 0.12 | <0.001 |
GeoEl | 2.17 ± 0.82 | 1.55 ± 0.48 | <0.001 |
S(1,0)DifEntrp | 1.2 ± 0.04 | 1.19 ± 0.05 | 0.6 |
S(1,−1)DifEntrp | 1.31 ± 0.04 | 1.3 ± 0.04 | 0.7 |
S(2,0)DifEntrp | 1.4 ± 0.04 | 1.38 ± 0.05 | 0.07 |
S(0,2)DifEntrp | 1.39 ± 0.04 | 1.38 ± 0.05 | 0.77 |
S(2,2)DifEntrp | 1.44 ± 0.04 | 1.43 ± 0.05 | 0.2 |
S(2,−2)DifEntrp | 1.44 ± 0.04 | 1.43 ± 0.04 | 0.3 |
S(3,0)DifEntrp | 1.45 ± 0.04 | 1.44 ± 0.04 | 0.2 |
S(3,3)DifEntrp | 1.45 ± 0.04 | 1.44 ± 0.04 | 0.1 |
S(4,0)DifEntrp | 1.46 ± 0.04 | 1.45 ± 0.04 | 0.5 |
S(5,0)DifEntrp | 1.45 ± 0.03 | 1.45 ± 0.04 | 0.6 |
S(5,−5)DifEntrp | 1.46 ± 0.03 | 1.44 ± 0.04 | 0.04 |
Horzl_RLNonUni | 2939.47 ± 1051.8 | 2090.89 ± 646.64 | <0.001 |
Vertl_RLNonUni | 2904.91 ± 1033.5 | 2078.15 ± 637.73 | <0.001 |
45dgr_RLNonUni | 3045.01 ± 1080.71 | 2171.12 ± 664.71 | <0.001 |
135dr_RLNonUni | 3083.88 ± 1106.38 | 2202.61 ± 665.95 | <0.001 |
GrNonZeros | 0.98 ± 0.01 | 0.98 ± 0.01 | 0.8 |
WavEnLH_s-4 | 424.46 ± 111.54 | 465.10 ± 116.70 | 0.027 |
S | Sp | PPV | NPV | PLR | NLR | Accuracy | |
---|---|---|---|---|---|---|---|
GLM | 0.70 ± 0.10 | 0.64 ± 0.10 | 1.91 | 0.48 | 0.67 ± 0.10 | 0.67 ± 0.10 | 0.667 |
FLM | 0.54 ± 0.10 | 0.76 ± 0.09 | 2.28 | 0.60 | 0.72 ± 0.11 | 0.59 ± 0.0.9 | 0.664 |
RF | 0.87 ± 0.07 | 0.45 ± 0.11 | 1.59 | 0.29 | 0.63 ± 0.09 | 0.77 ± 0.12 | 0.667 |
GBT | 0.78 ± 0.09 | 0.55 ± 0.11 | 1.72 | 0.40 | 0.64 ± 0.09 | 0.71 ± 0.11 | 0.667 |
PLS-DA | 0.83 ± 0.08 | 0.77 ± 0.09 | 3.63 | 0.23 | 0.79 ± 0.08 | 0.81 ± 0.09 | 0.800 |
Ensemble | 0.70 ± 0.08 | 0.70 ± 0.08 | 2.32 | 0.43 | 0.72 ± 0.08 | 0.68 ± 0.08 | 0.7 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cavallo, A.U.; Troisi, J.; Muscogiuri, E.; Cavallo, P.; Rajagopalan, S.; Citro, R.; Bossone, E.; McVeigh, N.; Forte, V.; Di Donna, C.; et al. Cardiac Computed Tomography Radiomics-Based Approach for the Detection of Left Ventricular Remodeling in Patients with Arterial Hypertension. Diagnostics 2022, 12, 322. https://doi.org/10.3390/diagnostics12020322
Cavallo AU, Troisi J, Muscogiuri E, Cavallo P, Rajagopalan S, Citro R, Bossone E, McVeigh N, Forte V, Di Donna C, et al. Cardiac Computed Tomography Radiomics-Based Approach for the Detection of Left Ventricular Remodeling in Patients with Arterial Hypertension. Diagnostics. 2022; 12(2):322. https://doi.org/10.3390/diagnostics12020322
Chicago/Turabian StyleCavallo, Armando Ugo, Jacopo Troisi, Emanuele Muscogiuri, Pierpaolo Cavallo, Sanjay Rajagopalan, Rodolfo Citro, Eduardo Bossone, Niall McVeigh, Valerio Forte, Carlo Di Donna, and et al. 2022. "Cardiac Computed Tomography Radiomics-Based Approach for the Detection of Left Ventricular Remodeling in Patients with Arterial Hypertension" Diagnostics 12, no. 2: 322. https://doi.org/10.3390/diagnostics12020322
APA StyleCavallo, A. U., Troisi, J., Muscogiuri, E., Cavallo, P., Rajagopalan, S., Citro, R., Bossone, E., McVeigh, N., Forte, V., Di Donna, C., Giannini, F., Floris, R., Garaci, F., & Sperandio, M. (2022). Cardiac Computed Tomography Radiomics-Based Approach for the Detection of Left Ventricular Remodeling in Patients with Arterial Hypertension. Diagnostics, 12(2), 322. https://doi.org/10.3390/diagnostics12020322