Gla-Rich Protein, Magnesium and Phosphate Associate with Mitral and Aortic Valves Calcification in Diabetic Patients with Moderate CKD
Abstract
:1. Introduction
2. Materials and Methods
2.1. Patients
2.2. Laboratory Measurements
2.3. Blood Pressure
2.4. Evaluation of Mitral and Aortic Valve Calcification
2.5. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
6. Patents
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Mizobuchi, M.; Towler, D.; Slatopolsky, E. Vascular calcification: The killer of patients with chronic kidney disease. J. Am. Soc. Nephrol. 2009, 20, 1453–1464. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schlieper, G.; Schurgers, L.; Brandenburg, V.; Reutelingsperger, C.; Floege, J. Vascular calcification in chronic kidney disease: An update. Nephrol. Dial. Transplant. 2016, 31, 31–39. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, M.; Li, X.C.; Lu, L.; Cao, Y.; Sun, R.R.; Chen, S.; Zhang, P.Y. Cardiovascular disease and its relationship with chronic kidney disease. Eur. Rev. Med. Pharmacol. Sci. 2014, 18, 2918–2926. [Google Scholar] [PubMed]
- Bailey, G.; Meadows, J.; Morrison, A.R. Imaging Atherosclerotic Plaque Calcification: Translating Biology. Curr. Atheroscler. Rep. 2016, 18, 51. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Raggi, P.; Bellasi, A.; Ferramosca, E.; Islam, T.; Muntner, P.; Block, G.A. Association of pulse wave velocity with vascular and valvular calcification in hemodialysis patients. Kidney Int. 2007, 71, 802–807. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhu, D.; Mackenzie, N.C.; Farquharson, C.; Macrae, V.E. Mechanisms and clinical consequences of vascular calcification. Front. Endocrinol. 2012, 3, 95. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dweck, M.R.; Boon, N.A.; Newby, D.E. Calcific aortic stenosis: A disease of the valve and the myocardium. J. Am. Coll. Cardiol. 2012, 60, 1854–1863. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brandenburg, V.M.; Schuh, A.; Kramann, R. Valvular Calcification in Chronic Kidney Disease. Adv. Chronic Kidney Dis. 2019, 26, 464–471. [Google Scholar] [CrossRef] [PubMed]
- Wang, A.Y.; Wang, M.; Woo, J.; Lam, C.W.; Li, P.K.; Lui, S.F.; Sanderson, J.E. Cardiac valve calcification as an important predictor for all-cause mortality and cardiovascular mortality in long-term peritoneal dialysis patients: A prospective study. J. Am. Soc. Nephrol. 2003, 14, 159–168. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kramer, H.; Toto, R.; Peshock, R.; Cooper, R.; Victor, R. Association between chronic kidney disease and coronary artery calcification: The Dallas Heart Study. J. Am. Soc. Nephrol. 2005, 16, 507–513. [Google Scholar] [CrossRef] [PubMed]
- Ix, J.H.; Shlipak, M.G.; Katz, R.; Budoff, M.J.; Shavelle, D.M.; Probstfield, J.L.; Takasu, J.; Detrano, R.; O’Brien, K.D. Kidney function and aortic valve and mitral annular calcification in the Multi-Ethnic Study of Atherosclerosis (MESA). Am. J. Kidney Dis. 2007, 50, 412–420. [Google Scholar] [CrossRef] [PubMed]
- Ureña, P.; Malergue, M.C.; Goldfarb, B.; Prieur, P.; Guédon-Rapoud, C.; Pétrover, M. Evolutive aortic stenosis in hemodialysis patients: Analysis of risk factors. Nephrologie 1999, 20, 217–225. [Google Scholar] [PubMed]
- Ureña-Torres, P.; D’Marco, L.; Raggi, P.; García-Moll, X.; Brandenburg, V.; Mazzaferro, S.; Lieber, A.; Guirado, L.; Bover, J. Valvular heart disease and calcification in CKD: More common than appreciated. Nephrol. Dial. Transplant. 2020, 35, 2046–2053. [Google Scholar] [CrossRef] [PubMed]
- Garland, J.S.; Holden, R.M.; Groome, P.A.; Lam, M.; Nolan, R.L.; Morton, A.R.; Pickett, W. Prevalence and associations of coronary artery calcification in patients with stages 3 to 5 CKD without cardiovascular disease. Am. J. Kidney Dis. 2008, 52, 849–858. [Google Scholar] [CrossRef] [PubMed]
- Guerraty, M.A.; Chai, B.; Hsu, J.Y.; Ojo, A.O.; Gao, Y.; Yang, W.; Keane, M.G.; Budoff, M.J.; Mohler, E.R. CRIC Study Investigators. Relation of aortic valve calcium to chronic kidney disease (from the Chronic Renal Insufficiency Cohort Study). Am. J. Cardiol. 2015, 115, 1281–1286. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kidney Disease: Improving Global Outcomes (KDIGO) CKD-MBD Work Group. KDIGO clinical practice guideline for the diagnosis, evaluation, prevention, and treatment of chronic kidney disease–mineral and bone disorder (CKD-MBD). Kidney Int. Suppl. 2009, 76, S1–S130. [Google Scholar] [CrossRef] [PubMed]
- Marwick, T.H.; Amann, K.; Bangalore, S.; Cavalcante, J.L.; Charytan, D.M.; Craig, J.C.; Gill, J.S.; Hlatky, M.A.; Jardine, A.G.; Landmesser, U.; et al. Chronic kidney disease and valvular heart disease: Conclusions from a Kidney Disease: Improving Global Outcomes (KDIGO) Controversies Conference. Kidney Int. 2019, 96, 836–849. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Movahed, M.R.; Saito, Y.; Ahmadi-Kashani, M.; Ebrahimi, R. Mitral annulus calcification is associated with valvular and cardiac structural abnormalities. Cardiovasc. Ultrasound 2007, 5, 14. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Baumgartner, H.; Iung, B.; Otto, C.M. Timing of intervention in asymptomatic patients with valvular heart disease. Eur. Heart J. 2020, 41, 4349–4356. [Google Scholar] [CrossRef] [PubMed]
- Surmann-Schmitt, C.; Dietz, U.; Kireva, T.; Adam, N.; Park, J.; Tagariello, A.; Onnerfjord, P.; Heinegård, D.; Schlötzer-Schrehardt, U.; Deutzmann, R.; et al. Ucma, a novel secreted cartilage-specific protein with implications in osteogenesis. J. Biol. Chem. 2008, 283, 7082–7093. [Google Scholar] [CrossRef] [Green Version]
- Viegas, C.S.; Rafael, M.S.; Enriquez, J.L.; Teixeira, A.; Vitorino, R.; Luís, I.M.; Costa, R.M.; Santos, S.; Cavaco, S.; Neves, J.; et al. Gla-rich protein acts as a calcification inhibitor in the human cardiovascular system. Arterioscler. Thromb. Vasc. Biol. 2015, 35, 399–408. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Viegas, C.S.; Santos, L.; Macedo, A.L.; Matos, A.A.; Silva, A.P.; Neves, P.L.; Staes, A.; Gevaert, K.; Morais, R.; Vermeer, C.; et al. Chronic kidney disease circulating calciprotein particles and extracellular vesicles promote vascular calcification: A role for GRP (Gla-rich protein). Arterioscler. Thromb. Vasc. Biol. 2018, 38, 575–587. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Viegas, C.S.; Costa, R.M.; Santos, L.; Videira, P.A.; Silva, Z.; Araújo, N.; Macedo, A.L.; Matos, A.P.; Vermeer, C.; Simes, D.C. Gla-rich protein function as an anti-inflammatory agent in monocytes/macrophages: Implications for calcification-related chronic inflammatory diseases. PLoS ONE 2017, 12, e0177829. [Google Scholar] [CrossRef] [PubMed]
- Silva, A.P.; Viegas, C.S.; Mendes, F.; Macedo, A.; Guilherme, P.; Tavares, N.; Dias, C.; Rato, F.; Santos, N.; Faísca, M.; et al. Gla-Rich Protein (GRP) as an Early and Novel Marker of Vascular Calcification and Kidney Dysfunction in Diabetic Patients with CKD: A Pilot Cross-Sectional Study. J. Clin. Med. 2020, 9, 635. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Care, D. Classification and Diagnosis of Diabetes. Am. Diabetes Assoc. Diabetes Care 2016, 39 (Suppl. 1), S13–S22. [Google Scholar] [CrossRef] [Green Version]
- Silva, A.P.; Mendes, F.; Carias, E.; Gonçalves, R.B.; Fragoso, A.; Dias, C.; Tavares, N.; Café, H.M.; Santos, N.; Rato, F.; et al. Plasmatic Klotho and FGF23 levels as biomarkers of CKD-associated cardiac disease in type 2 diabetic patients. Int. J. Mol. Sci. 2019, 20, 1536. [Google Scholar] [CrossRef] [Green Version]
- Silva, A.P.; Fragoso, A.; Silva, C.; Viegas, C.; Tavares, N.; Guilherme, P.; Santos, N.; Rato, F.; Camacho, A.; Cavaco, C.; et al. What is the role of apelin regarding cardiovascular risk and progression of renal disease in type 2 diabetic patients with diabetic nephropathy? BioMed Res. Int. 2013, 2013, 247649. [Google Scholar] [CrossRef] [Green Version]
- Ribeiro, A.L.; Mendes, F.; Carias, E.; Rato, F.; Santos, N.; Neves, P.L.; Silva, A.P. FGF23-klotho axis as predictive factors of fractures in type 2 diabetics with early chronic kidney disease. J. Diabetes Complicat. 2020, 34, 107476. [Google Scholar] [CrossRef] [PubMed]
- Levey, A.S.; Stevens, L.A.; Schmid, C.H.; Zhang, Y.L.; Castro, A.F.; Feldman, H.I.; Kusek, J.W.; Eggers, P.; Van Lente, F.; Greene, T.; et al. CKD-EPI (Chronic Kidney Disease Epidemiology Collaboration). A new equation to estimate glomerular filtration rate. Ann. Intern. Med. 2009, 150, 604–612. [Google Scholar] [CrossRef] [PubMed]
- Ketteler, M.; Block, G.A.; Evenepoel, P.; Fukagawa, M.; Herzog, C.A.; McCann, L.; Moe, S.M.; Shroff, R.; Tonelli, M.A.; Toussaint, N.D.; et al. Executive summary of the 2017 KDIGO Chronic Kidney Disease-Mineral and Bone Disorder (CKD-MBD) Guideline Update: What’s changed and why it matters. Kidney Int. 2017, 92, 26–36. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pawade, T.; Clavel, M.A.; Tribouilloy, C.; Dreyfus, J.; Mathieu, T.; Tastet, L.; Renard, C.; Gun, M.; Jenkins, W.S.A.; Macron, L.; et al. Computed Tomography Aortic Valve Calcium Scoring in Patients with Aortic Stenosis. Circ. Cardiovasc. Imaging 2018, 11, e007146. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Di Lullo, L.; Gorini, A.; Bellasi, A.; Morrone, L.F.; Rivera, R.; Russo, L.; Santoboni, A.; Russo, D. Fibroblast growth factor 23 and parathyroid hormone predict extent of aortic valve calcifications in patients with mild to moderate chronic kidney disease. Clin. Kidney J. 2015, 8, 732–736. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wilkins, G.T.; Weyman, A.E.; Abascal, V.M.; Block, P.C.; Palacios, I.F. Percutaneous balloon dilatation of the mitral valve: An analysis of echocardiographic variables related to outcome and the mechanism of dilatation. Br. Heart J. 1988, 60, 299–308. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hénaut, L.; Massy, Z.A. Magnesium as a Calcification Inhibitor. Adv. Chronic Kidney Dis. 2018, 25, 281–290. [Google Scholar] [CrossRef]
- Ter Braake, A.D.; Vervloet, M.G.; de Baaij, J.H.; Hoenderop, J.G. Magnesium to prevent kidney disease-associated vascular calcification: Crystal clear? Nephrol. Dial. Transplant. 2020, 29, gfaa222. [Google Scholar] [CrossRef]
- Sprague, S.M.; Martin, K.J.; Coyne, D.W. Phosphate Balance and CKD-Mineral Bone Disease. Kidney Int. Rep. 2021, 6, 2049–2058. [Google Scholar] [CrossRef]
- Zhou, C.; Shi, Z.; Ouyang, N.; Ruan, X. Hyperphosphatemia and Cardiovascular Disease. Front. Cell Dev. Biol. 2021, 9, 370. [Google Scholar] [CrossRef]
- Cozzolino, M.; Ciceri, P.; Galassi, A.; Mangano, M.; Carugo, S.; Capelli, I.; Cianciolo, G. The Key Role of Phosphate on Vascular Calcification. Toxins 2019, 11, 213. [Google Scholar] [CrossRef] [Green Version]
- Negrea, L.; DeLozier, S.J.; Janes, J.L.; Rahman, M.; Dobre, M. Serum Magnesium and Cardiovascular Outcomes and Mortality in CKD: The Chronic Renal Insufficiency Cohort (CRIC). Kidney Med. 2021, 3, 183–192.e1. [Google Scholar] [CrossRef]
- Ribeiro, S.; Ramos, A.; Brandão, A.; Rebelo, J.R.; Guerra, A.; Resina, C.; Vila-Lobos, A.; Carvalho, F.; Remédio, F.; Ribeiro, F. Cardiac valve calcification in haemodialysis patients: Role of calcium-phosphate metabolism. Nephrol. Dial. Transplant. 1998, 13, 2037–2040. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nestico, P.F.; DePace, N.L.; Kotler, M.N.; Rose, L.I.; Brezin, J.H.; Swartz, C.; Mintz, G.S.; Schwartz, A.B. Calcium phosphorus metabolism in dialysis patients with and without mitral anular calcium: Analysis of 30 patients. Am. J. Cardiol. 1983, 51, 497–500. [Google Scholar] [CrossRef] [PubMed]
- Linefsky, J.P.; O’Brien, K.D.; Katz, R.; de Boer, I.H.; Barasch, E.; Jenny, N.S.; Siscovick, D.S.; Kestenbaum, B. Association of serum phosphate levels with aortic valve sclerosis and annular calcification: The cardiovascular health study. J. Am. Coll. Cardiol. 2011, 58, 291–297. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Adeney, K.L.; Siscovick, D.S.; Ix, J.H.; Seliger, S.L.; Shlipak, M.G.; Jenny, N.S.; Kestenbaum, B.R. Association of serum phosphate with vascular and valvular calcification in moderate CKD. J. Am. Soc. Nephrol. 2009, 20, 381–387. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hisamatsu, T.; Miura, K.; Fujiyoshi, A.; Kadota, A.; Miyagawa, N.; Satoh, A.; Zaid, M.; Yamamoto, T.; Horie, M.; Ueshima, H.; et al. Serum magnesium, phosphorus, and calcium levels and subclinical calcific aortic valve disease: A population-based study. Atherosclerosis 2018, 273, 145–152. [Google Scholar] [CrossRef] [PubMed]
- Ter Braake, A.D.; Govers, L.P.; Peeters, M.J.; van Zuilen, A.D.; Wetzels, J.F.; Blankenstijn, P.J.; Hoenderop, J.G.; de Baaij, J.H.; van den Brand, J.A.; MASTERPLAN Study Group. Low plasma magnesium concentration and future abdominal aortic calcifications in moderate chronic kidney disease. BMC Nephrol. 2021, 22, 71. [Google Scholar] [CrossRef] [PubMed]
- Fragoso, A.; Silva, A.P.; Gundlach, K.; Büchel, J.; Neves, P.L. Magnesium and FGF-23 are independent predictors of pulse pressure in pre-dialysis diabetic chronic kidney disease patients. Clin. Kidney J. 2014, 7, 161–166. [Google Scholar] [CrossRef] [Green Version]
- Silva, A.P.; Gundlach, K.; Büchel, J.; Jerónimo, T.; Fragoso, A.; Silva, C.; Guilherme, P.; Santos, N.; Faísca, M.; Neves, P. Low Magnesium Levels and FGF-23 Dysregulation Predict Mitral Valve Calcification as well as Intima Media Thickness in Predialysis Diabetic Patients. Int. J. Endocrinol. 2015, 2015, 308190. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sakaguchi, Y.; Iwatani, H.; Hamano, T.; Tomida, K.; Kawabata, H.; Kusunoki, Y.; Shimomura, A.; Matsui, I.; Hayashi, T.; Tsubakihara, Y.; et al. Magnesium modifies the association between serum phosphate and the risk of progression to end-stage kidney disease in patients with non-diabetic chronic kidney disease. Kidney Int. 2015, 88, 833–842. [Google Scholar] [CrossRef] [Green Version]
- Sikura, K.É.; Potor, L.; Szerafin, T.; Zarjou, A.; Agarwal, A.; Arosio, P.; Poli, M.; Hendrik, Z.; Méhes, G.; Oros, M.; et al. Potential Role of H-Ferritin in Mitigating Valvular Mineralization. Arterioscler. Thromb. Vasc. Biol. 2019, 39, 413–431. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Willems, B.A.; Furmanik, M.; Caron, M.M.; Chatrou, M.L.L.; Kusters, D.H.M.; Welting, T.J.M.; Stock, M.; Rafael, M.S.; Viegas, C.S.B.; Simes, D.C.; et al. Ucma/GRP inhibits phosphate-induced vascular smooth muscle cell calcification via SMAD-dependent BMP signaling. Sci. Rep. 2018, 8, 4961. [Google Scholar] [CrossRef] [PubMed]
- Nielsen, F.H. Magnesium deficiency and increased inflammation: Current perspectives. J. Inflamm. Res. 2018, 11, 25–34. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vankova, D.; Pasheva, M.; Angelov, A.; Yotov, Y.; Galunska, B. Is circulating gla-rich protein linked with coronary calcium and cardiovascular pathology in patients with atrial fibrillation or heart failure? A pilot study. Scr. Sci. Med. 2021, 53, 21–27. [Google Scholar] [CrossRef]
- Viegas, C.; Araújo, N.; Marreiros, C.; Simes, D. The interplay between mineral metabolism, vascular calcification and inflammation in Chronic Kidney Disease (CKD): Challenging old concepts with new facts. Aging 2019, 11, 4274–4299. [Google Scholar] [CrossRef] [PubMed]
- Sakaguchi, Y.; Hamano, T.; Obi, Y.; Monden, C.; Oka, T.; Yamaguchi, S.; Matsui, I.; Hashimoto, N.; Matsumoto, A.; Shimada, K.; et al. A Randomized Trial of Magnesium Oxide and Oral Carbon Adsorbent for Coronary Artery Calcification in Predialysis CKD. J. Am. Soc. Nephrol. 2019, 30, 1073–1085. [Google Scholar] [CrossRef] [PubMed]
- Fliser, D.; Kollerits, B.; Neyer, U.; Ankerst, D.P.; Lhotta, K.; Lingenhel, A.; Ritz, E.; Kronenberg, F. Fibroblast growth factor 23 (FGF23) predicts progression of chronic kidney disease: The Mild to Moderate Kidney Disease (MMKD) Study. J. Am. Soc. Nephrol. 2007, 18, 2600–2608. [Google Scholar] [CrossRef] [PubMed]
- Chathoth, S.; Al-Mueilo, S.; Cyrus, C.; Vatte, C.; Al-Nafaie, A.; Al-Ali, R.; Keating, B.J.; Al-Muhanna, F.; Al Ali, A. Elevated Fibroblast Growth Factor 23 Concentration: Prediction of Mortality among Chronic Kidney Disease Patients. Cardiorenal. Med. 2015, 6, 73–82. [Google Scholar] [CrossRef] [Green Version]
- Desjardins, L.; Liabeuf, S.; Renard, C.; Lenglet, A.; Lemke, H.D.; Choukroun, G.; Drueke, T.B.; Massy, Z.A.; European Uremic Toxin (EUTox) Work Group. FGF23 is independently associated with vascular calcification but not bone mineral density in patients at various CKD stages. Osteoporos. Int. 2012, 23, 2017–2025. [Google Scholar] [CrossRef]
- Zhang, M.; Yan, J.; Zhu, M.; Ni, Z. Fibroblast growth factor 23 predicts coronary calcification and poor prognosis in patients with chronic kidney disease stages 3-5D. Ann. Clin. Lab. Sci. 2015, 45, 17–22. [Google Scholar] [PubMed]
- Marthi, A.; Donovan, K.; Haynes, R.; Wheeler, D.C.; Baigent, C.; Rooney, C.M.; Landray, M.J.; Moe, S.M.; Yang, J.; Holland, L.; et al. Fibroblast Growth Factor-23 and Risks of Cardiovascular and Noncardiovascular Diseases: A Meta-Analysis. J. Am. Soc. Nephrol. 2018, 29, 2015–2027. [Google Scholar] [CrossRef] [Green Version]
- Chudek, J.; Kocełak, P.; Owczarek, A.; Bożentowicz-Wikarek, M.; Mossakowska, M.; Olszanecka-Glinianowicz, M.; Wiecek, A. Fibroblast growth factor 23 (FGF23) and early chronic kidney disease in the elderly. Nephrol. Dial. Transplant. 2014, 29, 1757–1763. [Google Scholar] [CrossRef]
- Chu, C.; Elitok, S.; Zeng, S.; Xiong, Y.; Hocher, C.F.; Hasan, A.A.; Krämer, B.K.; Hocher, B. C-terminal and intact FGF23 in kidney transplant recipients and their associations with overall graft survival. BMC Nephrol. 2021, 22, 125. [Google Scholar] [CrossRef] [PubMed]
- Eisenga, M.F.; van Londen, M.; Leaf, D.E.; Nolte, I.M.; Navis, G.; Bakker, S.J.L.; de Borst, M.H.; Gaillard, C.A. C-Terminal Fibroblast Growth Factor 23, Iron Deficiency, and Mortality in Renal Transplant Recipients. J. Am. Soc. Nephrol. 2017, 28, 3639–3646. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- van Breda, F.; Emans, M.E.; van der Putten, K.; Braam, B.; van Ittersum, F.J.; Kraaijenhagen, R.J.; de Borst, M.H.; Vervloet, M.; Gaillard, C.A. Relation between Red Cell Distribution Width and Fibroblast Growth Factor 23 Cleaving in Patients with Chronic Kidney Disease and Heart Failure. PLoS ONE 2015, 10, e0128994. [Google Scholar] [CrossRef] [Green Version]
- Donate-Correa, J.; Martín-Núñez, E.; Hernández-Carballo, C.; Ferri, C.; Tagua, V.G.; Delgado-Molinos, A.; López-Castillo, Á.; Rodríguez-Ramos, S.; Cerro-López, P.; López-Tarruella, V.C.; et al. Fibroblast growth factor 23 expression in human calcified vascular tissues. Aging 2019, 11, 7899–7913. [Google Scholar] [CrossRef]
General Characteristics | Mitral Valve | Aortic Valve | ||
---|---|---|---|---|
Calcified/ Non-Calcified | p Value | Calcified/ Non-Calcified | p Value | |
n = 29/51 | n = 29/51 | |||
Age (years) | 56.1 ± 9.8/60.2 ± 2.5 | 0.349 | 58.8 ± 8.7/56.6 ± 9.7 | 0.349 |
Gender (f–m) | 10–19/14–37 | 0.340 | 8–21/16–35 | 0.463 |
BMI (Kg/m2) | 24.16 ± 2.67/23.4 ± 4.20 | 0.450 | 24.07 ± 3.26/24.3 ± 2.03 | 0.289 |
Hb (g/dL) | 12.93 ± 1.82/12.35 ± 1.52 | 0.234 | 12.87 ± 3.22/12.4 ± 2.5 | 0.230 |
Albumin (g/dL) | 4.17 ± 1.72/4.14 ± 1.53 | 0.765 | 4.82 ± 1.52/4.14 ± 0.4 | 0.835 |
ACR (µg/mg) | 155.2 ± 24.49/166.4 ± 2.3 | 0.650 | 153 ± 26.8/125.7 ± 17.4 | 0.745 |
eGFR (mL/min per 1.73 m2) | 37.1 ± 14.7/53.0 ± 17.9 | <0.0001 | 34.6 ± 11.19/54.4 ± 17.6 | <0.0001 |
Phosphate (P) (mg/dL) | 4.2 ± 0.6/3.8 ± 0.6 | 0.001 | 4.3 ± 0.6/3.7 ± 0.59 | 0.001 |
Calcium (Ca) (mg/dL) | 9.3 ± 0.50/9.5 ± 0.6 | 0.119 | 9.3 ± 0.5/9.5 ± 0.6 | 0.119 |
Magnesium (Mg) (mg/dL) | 1.2 ± 0.7/1.6 ± 0.7 | 0.029 | 1.16 ± 0.66/1.7 ± 0.74 | 0.001 |
PTH (pg/mL) | 149.2 ± 10.4/104.5 ± 35.5 | 0.025 | 173.2 ± 78.9/91.2 ± 8.7 | 0.030 |
Calcium x Phosphate (CaxP) (mg2/dL2) | 34.4 ± 5.66/35.6 ± 6.05 | 0.538 | 36.5 ± 6.2/35.6 ± 5.7 | 0.528 |
FGF-23 (RU/mL) | 197.08 ± 20.9/90.3 ± 29.5 | <0.0001 | 201.1 ± 10.1/97.8 ± 15.14 | <0.0001 |
1.25(OH)2 Vitamin D (pg/mL) | 20.7 ± 7.2/22.7 ± 7.6 | 0.312 | 22.5 ± 7.2/20.8 ± 7.2 | 0.311 |
GRP (ng/mL) | 0.59 ± 0.28/1.1 ± 0.6 | <0.0001 | 0.53 ± 0.22/1.1 ± 0.58 | <0.0001 |
α-Klotho (pg/mL) | 189.2 ± 71.7/319.6 ± 51.05 | 0.002 | 190.5 ± 80.2/318.4 ± 46.1 | 0.002 |
TNFα (pg/mL) | 5.4 ± 1.9/3.1 ± 1.3 | 0.037 | 7.1 ± 1.8/3.07 ± 2.1 | 0.037 |
HbA1c (%) | 7.25 ± 1.20/7.36 ± 1.61 | 0.518 | 6.06 ± 0.20/6.8 ± 0.3 | 0.329 |
Systolic BP (mmHg) | 127 ± 9.8/127.2 ± 7.84 | 0.353 | 128.5 ± 8.8 /126.7 ± 8.8 | 0.353 |
Diastolic BP (mmHg) | 74.7 ± 8.2/73.3 ± 8.14 | 0.323 | 73 ± 8.3/74.5 ± 3.4 | 0.371 |
Diabetes-related CKD evolution time (months) | 12 ± 0.7/10 ± 0.8 | 0.123 | 12 ± 1.3/12.5 ± 2.5 | 0.992 |
RAS inhibitor/or ACEI (%) | 78.7/21.3 | 0.068 | 50.7/47.3 | 0.184 |
Calcium channel blockers with renoprotective action (%) | 35.6/64.4 | 0.052 | 48.6/32.4 | 0.151 |
Variables | GRP | Calcified Mitral Valve | eGFR | |||
---|---|---|---|---|---|---|
r | p Value | r | p value | r | p Value | |
GRP | 1.00 | −0.754 | <0.0001 | 0.823 | <0.0001 | |
Calcified mitral valve | −0.754 | <0.0001 | 1.00 | −0.421 | <0.0001 | |
eGFR | 0.823 | <0.0001 | −0.421 | <0.0001 | 1.00 |
Variables | GRP | Calcified Aortic Valve | eGFR | |||
---|---|---|---|---|---|---|
r | p Value | r | p Value | r | p Value | |
GRP | 1.00 | −0.786 | <0.0001 | 0.823 | <0.0001 | |
Calcified aortic valve | −0.786 | <0.0001 | 1.00 | −0.525 | <0.0001 | |
eGFR | 0.823 | <0.0001 | −0.525 | <0.0001 | 1.00 |
Variables | Calcified Mitral Valve | Calcified Aortic Valve | ||
---|---|---|---|---|
ORa (95% CI) | p Value | ORa (95% CI) | p Value | |
Age | 1.024 (0.974–1.077) | 0.345 | 1.043 (0.977–1.256) | 0.300 |
eGFR | 0.945 (0.915–0.976) | 0.001 | 0.900 (0.780–0.998) | <0.0001 |
TNFα | 1.193 (1.019–1.397) | 0.028 | 1.340 (1.056–1.500) | 0.024 |
Ca | 0.566 (0.267–1.197) | 0.136 | 0.574 (0.272–1.213) | 0.146 |
P | 2.310 (1.111–4.803) | 0.025 | 4.340 (1.004–8.745) | <0.0001 |
CaxP | 1.022 (0.945–1.105) | 0.585 | 1.026 (0.949–1.109) | 0.522 |
PTH | 1.003 (0.999–1.006) | 0.155 | 1.006 (1.001–1.011) | 0.024 |
Mg | 0.489 (0.254–0.942 | 0.033 | 0.332 (0.161–0.682) | 0.014 |
GRP | 0.450 (0.234–0.657) | <0.0001 | 0.567 (0.367–0.905) | <0.0001 |
1.25(OH)2 Vitamin D | 1.040 (0.974–1.110) | 0.246 | 1.040 (0.974–1.110) | 0.246 |
FGF-23 | 1.011 (1.005–1.017) | <0.0001 | 1.210(1.000–1.400) | <0.0001 |
α-Klotho | 0.995 (0.992–0.998) | 0.002 | 0.980 (0.880–0.990) | 0.003 |
Variables | Calcified Mitral Valve | Calcified Aortic Valve | ||
---|---|---|---|---|
ORa (95% CI) | p Value | ORa (95% CI) | p Value | |
eGFR | 0.995 (0.935–1.058) | 0.865 | 0.902 (0.905–1.042) | 0.440 |
TNFα | 1.043 (0.843–1.245) | 0.188 | 1.105 (0.929–1.401) | 0.184 |
P | 1.078 (1.000–1.612) | 0.001 | 1.497 (1.004 -2.378) | 0.002 |
GRP | 0.268 (0.101–0.725) | 0.005 | 0.202 (0.109–0.401) | 0.022 |
Mg | 0.747 (0.263–0.921) | 0.003 | 0.580 (0.173–0.948) | 0.008 |
FGF-23 | 1.209 (1.099–1.619) | 0.035 | 1.126 (1.034–1.436) | 0.011 |
α-Klotho PTH | 1.002 (0.997–1.037 | 0.505 | 1.002 (0.995–1.009) 0.999 (0.890–1.002) | 0.564 0.055 |
Variables | Calcified Mitral Valve | Calcified Aortic Valve | ||||||
---|---|---|---|---|---|---|---|---|
aPR | Robust Std. Err. | (95% CI) | p Value | aPR | Robust Std. Err. | (95% CI) | p Value | |
Age | 1.023 | 0.0530 | 0.500–1.054 | 0.130 | 1.018 | 0.0175 | 0.987–1.050 | 0.263 |
eGFR | 1.003 | 0.1310 | 0.978–1.015 | 0.813 | 0.999 | 0.0189 | 0.963–1.037 | 0.962 |
TNFα | 1.035 | 0.0255 | 0.984–1.088 | 0.179 | 1.037 | 0.236 | 0.990–1.086 | 0.125 |
Ca | 0.470 | 0.1297 | 0.304–1.105 | 0.136 | 0.752 | 0.3234 | 0.399–1.416 | 0.377 |
P | 1.110 | 0.0352 | 1.001–2.803 | 0.032 | 1.720 | 0.3054 | 1.396–3.310 | 0.002 |
CaxP | 1.011 | 0.0259 | 0.961–1.064 | 0.677 | 0.965 | 0.0262 | 0.917–1.016 | 0.179 |
Mg | 0.762 | 0.2779 | 0.256–0.963 | 0.028 | 0.809 | 0.3712 | 0.391–0.974 | 0.006 |
PTH | 1.000 | 0.0010 | 0.998–1.002 | 0.790 | 1.003 | 0.1008 | 0.901–1.124 | 0.071 |
GRP | 0.750 | 0.0197 | 0.456–0.976 | 0.024 | 0.813 | 0.2430 | 0.113–0.937 | <0.0001 |
1.25(OH)2 Vitamin D | 1.020 | 0.0175 | 0.986–1.056 | 0.253 | 0.991 | 0.0126 | 0.967–1.016 | 0.489 |
FGF-23 | 1.002 | 0.0116 | 0.999–1.005 | 0.204 | 0.998 | 0.1021 | 0.994–1.003 | 0.258 |
α-Klotho | 1.000 | 0.0015 | 0.996–1.002 | 0.818 | 1.000 | 0.0014 | 0.998–1.003 | 0.843 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Silva, A.P.; Viegas, C.S.B.; Guilherme, P.; Tavares, N.; Dias, C.; Rato, F.; Santos, N.; Faísca, M.; de Almeida, E.; Neves, P.L.; et al. Gla-Rich Protein, Magnesium and Phosphate Associate with Mitral and Aortic Valves Calcification in Diabetic Patients with Moderate CKD. Diagnostics 2022, 12, 496. https://doi.org/10.3390/diagnostics12020496
Silva AP, Viegas CSB, Guilherme P, Tavares N, Dias C, Rato F, Santos N, Faísca M, de Almeida E, Neves PL, et al. Gla-Rich Protein, Magnesium and Phosphate Associate with Mitral and Aortic Valves Calcification in Diabetic Patients with Moderate CKD. Diagnostics. 2022; 12(2):496. https://doi.org/10.3390/diagnostics12020496
Chicago/Turabian StyleSilva, Ana P., Carla S. B. Viegas, Patrícia Guilherme, Nelson Tavares, Carolina Dias, Fátima Rato, Nélio Santos, Marília Faísca, Edgar de Almeida, Pedro L. Neves, and et al. 2022. "Gla-Rich Protein, Magnesium and Phosphate Associate with Mitral and Aortic Valves Calcification in Diabetic Patients with Moderate CKD" Diagnostics 12, no. 2: 496. https://doi.org/10.3390/diagnostics12020496
APA StyleSilva, A. P., Viegas, C. S. B., Guilherme, P., Tavares, N., Dias, C., Rato, F., Santos, N., Faísca, M., de Almeida, E., Neves, P. L., & Simes, D. C. (2022). Gla-Rich Protein, Magnesium and Phosphate Associate with Mitral and Aortic Valves Calcification in Diabetic Patients with Moderate CKD. Diagnostics, 12(2), 496. https://doi.org/10.3390/diagnostics12020496