Interexaminer Reliability and Validity of Quantity of Cervical Mobility during Online Dynamic Inspection
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Type and Sample
2.2. Study Outcomes
2.3. Statistical Analysis
3. Results
3.1. Sociodemographic Variables
3.2. Reliability and Validity Studies
3.2.1. Interexaminer Reliability of the “ROM in Visual Inspection”
3.2.2. Interexaminer Reliability of the “Classification of Mobility”
3.2.3. Validity of “ROM in Visual Inspection”
3.3. Examiners Difficulties and Advice
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Swinkels, R.A.H.M.; Swinkels-Meewisse, I.E.J.C.M. Normal Values for Cervical Range of Motion. Spine 2014, 39, 362–367. [Google Scholar] [CrossRef] [PubMed]
- Nordin, M.; Carragee, E.J.; Hogg-Johnson, S.; Weiner, S.S.; Hurwitz, E.L.; Peloso, P.M.; Guzman, J.; van der Velde, G.; Carroll, L.; Holm, L.W.; et al. Assessment of Neck Pain and Its Associated Disorders. J. Manip. Physiol. Ther. 2009, 32, S117–S140. [Google Scholar] [CrossRef] [PubMed]
- Pan, F.; Arshad, R.; Zander, T.; Reitmaier, S.; Schroll, A.; Schmidt, H. The effect of age and sex on the cervical range of motion—A systematic review and meta-analysis. J. Biomech. 2018, 75, 13–27. [Google Scholar] [CrossRef] [PubMed]
- Schaufele, M.K.; Boden, S.D. Physical function measurements in neck pain. Phys. Med. Rehabil. Clin. N. Am. 2003, 14, 569–588. [Google Scholar] [CrossRef]
- Feipel, V.; Rondelet, B.; Le Pallec, J.-P.; Rooze, M. Normal global motion of the cervical spine: An electrogoniometric study. Clin. Biomech. 1999, 14, 462–470. [Google Scholar] [CrossRef]
- Torres-Cueco, R. La Columna Cervical: Síndromes Clínicos y su Tratamiento Manipulativo, 1st ed.; Editorial Médica Panamericana: Madrid, Spain, 2008; pp. 207–249. [Google Scholar]
- Magee, D. Orthopedic Physical Assessment, 6th ed.; Elsevier: Maryland Heights, MO, USA, 1997; pp. 9–120. [Google Scholar]
- Lynch-Caris, T.; Majeske, K.D.; Brelin-Fornari, J.; Nashi, S. Establishing reference values for cervical spine range of motion in pre-pubescent children. J. Biomech. 2008, 41, 2714–2719. [Google Scholar] [CrossRef]
- Song, H.; Zhai, X.; Gao, Z.; Lu, T.; Tian, Q.; Li, H.; He, X. Reliability and validity of a Coda Motion 3-D Analysis system for measuring cervical range of motion in healthy subjects. J. Electromyogr. Kinesiol. 2018, 38, 56–66. [Google Scholar] [CrossRef]
- Rodríguez-Sanz, J.; Carrasco-Uribarren, A.; Cabanillas-Barea, S.; Hidalgo-García, C.; Fanlo-Mazas, P.; Lucha-López, M.O.; Tricás-Moreno, J.M. Validity and reliability of two Smartphone applications to measure the lower and upper cervical spine range of motion in subjects with chronic cervical pain. J. Back Musculoskelet. Rehabil. 2019, 32, 619–627. [Google Scholar] [CrossRef] [Green Version]
- Ghorbani, F.; Kamyab, M.; Azadinia, F. Smartphone Applications as a Suitable Alternative to CROM Device and Inclinometers in Assessing the Cervical Range of Motion in Patients with Nonspecific Neck Pain. J. Chiropr. Med. 2020, 19, 38–48. [Google Scholar] [CrossRef]
- Sedrez, J.A.; Furlanetto, T.S.; Gelain, G.M.; Candotti, C.T. Validity and Reliability of Smartphones in Assessing Spinal Kinematics: A Systematic Review and Meta-analysis. J. Manip. Physiol. Ther. 2020, 43, 635–645. [Google Scholar] [CrossRef]
- Law, E.Y.H.; Chiu, T.T.-W. Measurement of Cervical Range of Motion (CROM) by electronic CROM goniometer: A test of relia-bility and validity. J. Back Musculoskelet. Rehabil. 2013, 26, 141–148. [Google Scholar] [CrossRef] [PubMed]
- Youdas, J.W.; Garrett, T.R.; Suman, V.J.; Bogard, C.L.; O Hallman, H.; Carey, J.R. Normal Range of Motion of the Cervical Spine: An Initial Goniometric Study. Phys. Ther. 1992, 72, 770–780. [Google Scholar] [CrossRef] [PubMed]
- Rheault, W.; Albright, B.; Byers, C.; Franta, M.; Johnson, A.; Skowronek, M.; Dougherty, J. Intertester Reliability of the Cervical Range of Motion Device. J. Orthop. Sports Phys. Ther. 1992, 15, 147–150. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wibault, J.; Vaillant, J.; Vuillerme, N.; Dedering, A.; Peolsson, A. Using the cervical range of motion (CROM) device to assess head repositioning accuracy in individuals with cervical radiculopathy in comparison to neck- healthy individuals. Man Ther. 2013, 18, 403–409. [Google Scholar] [CrossRef] [Green Version]
- Williams, M.A.; McCarthy, C.; Chorti, A.; Cooke, M.W.; Gates, S. A Systematic Review of Reliability and Validity Studies of Methods for Measuring Active and Passive Cervical Range of Motion. J. Manip. Physiol. Ther. 2010, 33, 138–155. [Google Scholar] [CrossRef]
- Fletcher, J.P.; Bandy, W.D. Intrarater Reliability of CROM Measurement of Cervical Spine Active Range of Motion in Persons with and Without Neck Pain. J. Orthop. Sports Phys. Ther. 2008, 38, 640–645. [Google Scholar] [CrossRef]
- Audette, I.; Dumas, J.-P.; Côté, J.N.; De Serres, S.J. Validity and Between-Day Reliability of the Cervical Range of Motion (CROM) Device. J. Orthop. Sports Phys. Ther. 2010, 40, 318–323. [Google Scholar] [CrossRef]
- Wolan-Nieroda, A.; Guzik, A.; Mocur, P.; Drużbicki, M.; Maciejczak, A. Assessment of Interrater and Intrarater Reliability of Cervical Range of Motion (CROM) Goniometer. BioMed Res. Int. 2020, 2020, 1–8. [Google Scholar] [CrossRef]
- Youdas, J.W.; Carey, J.R.; Garrett, T.R. Reliability of Measurements of Cervical Spine Range of Motion—Comparison of Three Methods. Phys. Ther. 1991, 71, 98–104. [Google Scholar] [CrossRef]
- Hole, D.; Cook, J.; Bolton, J. Reliability and concurrent validity of two instruments for measuring cervical range of motion: Effects of age and gender. Man Ther. 1995, 1, 36–42. [Google Scholar] [CrossRef]
- Lemeunier, N.; Jeoun, E.; Suri, M.; Tuff, T.; Shearer, H.; Mior, S.; Wong, J.; da Silva-Oolup, S.; Torres, P.; D’Silva, C.; et al. Reliability and validity of clinical tests to assess posture, pain location, and cervical spine mobility in adults with neck pain and its associated disorders: Part 4. A systematic review from the cervical assessment and diagnosis research evaluation (CADRE) collaboration. Musculoskelet. Sci. Pract. 2018, 38, 128–147. [Google Scholar] [CrossRef] [PubMed]
- Viikari-Juntura, E. Interexaminer Reliability of Observations in Physical Examinations of the Neck. Phys. Ther. 1987, 67, 1526–1532. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dunleavy, K.; Neil, J.; Tallon, A.; Adamo, D.E. Reliability and validity of cervical position measurements in individuals with and without chronic neck pain. J. Man Manip. Ther. 2014, 23, 188–196. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Good, D.W.; Lui, D.F.; Leonard, M.; Morris, S.; McElwain, J.P. Skype: A tool for functional assessment in orthopaedic research. J. Telemed. Telecare 2012, 18, 94–98. [Google Scholar] [CrossRef]
- Whitcroft, K.L.; Massouh, L.; Amirfeyz, R.; Bannister, G. Comparison of Methods of Measuring Active Cervical Range of Motion. Spine 2010, 35, E976–E980. [Google Scholar] [CrossRef]
- Toomingas, A.; Németh, G.; Alfredsson, L. Self-administered examination versus conventional medical examination of the musculoskeletal system in the neck, shoulders, and upper limbs. J. Clin. Epidemiol. 1995, 48, 1473–1483. [Google Scholar] [CrossRef]
- Anton, D.; Berges, I.; Bermúdez, J.; Goñi, A.; Illarramendi, A. A Telerehabilitation System for the Selection, Evaluation and Remote Management of Therapies. Sensors 2018, 18, 1459. [Google Scholar] [CrossRef] [Green Version]
- Lade, H.; McKenzie, S.; Steele, L.; Russell, T.G. Validity and reliability of the assessment and diagnosis of musculoskeletal elbow disorders using telerehabilitation. J. Telemed. Telecare 2012, 18, 413–418. [Google Scholar] [CrossRef]
- Mani, S.; Sharma, S.; Omar, B.; Paungmali, A.; Joseph, L. Validity and reliability of Internet-based physiotherapy assessment for musculoskeletal disorders: A systematic review. J. Telemed. Telecare 2017, 23, 379–391. [Google Scholar] [CrossRef]
- Durfee, W.K.; Savard, L.; Weinstein, S. Technical Feasibility of Teleassessments for Rehabilitation. IEEE Trans. Neural Syst. Rehabil. Eng. 2007, 15, 23–29. [Google Scholar] [CrossRef]
- Russell, T. Goniometry via the internet. Aust. J. Physiother. 2007, 53, 136. [Google Scholar] [CrossRef]
- Russell, T.G.; Blumke, R.; Richardson, B.; Truter, P. Telerehabilitation mediated physiotherapy assessment of ankle disorders. Physiother. Res. Int. 2010, 15, 167–175. [Google Scholar] [CrossRef] [PubMed]
- Chiang, C.; Singh, R.H.; Lalvani, N.; Stein, K.S.; Lorenz, D.H.; Lay, C.; Dodick, D.W.; Newman, L.C. Patient experience of telemedicine for headache care during the COVID-19 pandemic: An American Migraine Foundation survey study. Headache J. Head Face Pain 2021, 61, 734–739. [Google Scholar] [CrossRef] [PubMed]
- Palacín-Marín, F.; Esteban-Moreno, B.; Olea, N.; Herrera-Viedma, E.; Arroyo-Morales, M. Agreement Between Telerehabilitation and Face-to-Face Clinical Outcome Assessments for Low Back Pain in Primary Care. Spine 2013, 38, 947–952. [Google Scholar] [CrossRef] [PubMed]
- Wilke, J.; Niederer, D.; Vogt, L.; Banzer, W. Reliability of measuring half-cycle cervical range of motion may be increased using a spirit level for calibration. Musculoskelet. Sci. Pract. 2018, 33, 99–104. [Google Scholar] [CrossRef]
- Inokuchi, H.; Tojima, M.; Mano, H.; Ishikawa, Y.; Ogata, N.; Haga, N. Neck range of motion measurements using a new three-dimensional motion analysis system: Validity and repeatability. Eur. Spine J. 2015, 24, 2807–2815. [Google Scholar] [CrossRef]
- Hoppenbrouwers, M.; Eckhardt, M.M.; Verkerk, K.; Verhagen, A. Reproducibility of the Measurement of Active and Passive Cervical Range of Motion. J. Manip. Physiol. Ther. 2006, 29, 363–367. [Google Scholar] [CrossRef]
- De Koning, C.H.P.; Van Den Heuvel, S.P.; Staal, J.B.; Smits-Engelsman, B.C.M.; Hendriks, E.J.M. Clinimetric evaluation of active range of motion measures in patients with non-specific neck pain: A systematic review. Eur. Spine J. 2008, 17, 905–921. [Google Scholar] [CrossRef] [Green Version]
- Piva, S.R.; Erhard, R.E.; Childs, J.D.; Browder, D.A. Inter-tester reliability of passive intervertebral and active movements of the cervical spine. Man Ther. 2006, 11, 321–330. [Google Scholar] [CrossRef]
- Jones, A.Y.; Dean, E.; Hui-Chan, C. Comparison of teaching and learning outcomes between video-linked, web-based, and classroom tutorials: An innovative international study of profession education in physical therapy. Comput. Educ. 2010, 54, 1193–1201. [Google Scholar] [CrossRef]
- Ullucci, P.A.; Tudini, F.; Moran, M. Reliability of Smartphone Inclinometry to Measure Upper Cervical Range of Motion. J. Sport Rehabil. 2019, 28, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Cleland, J.A.; Childs, J.D.; Fritz, J.M.; Whitman, J.M. Interrater Reliability of the History and Physical Examination in Patients With Mechanical Neck Pain. Arch. Phys. Med. Rehabil. 2006, 87, 1388–1395. [Google Scholar] [CrossRef] [PubMed]
- Fjellner, A.; Bexander, C.; Faleij, R.; Strender, L.-E. Interexaminer reliability in physical examination of the cervical spine. J. Manip. Physiol. Ther. 1999, 22, 511–516. [Google Scholar] [CrossRef]
- Koo, T.K.; Li, M.Y. A Guideline of Selecting and Reporting Intraclass Correlation Coefficients for Reliability Research. J. Chiropr. Med. 2016, 15, 155–163. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pujalte, G.; Loeffert, J.R.; Bertasi, T.G.O.; Bertasi, R.A.O.; Anderson, T.F.; Esser, S.M.; Paredes-Molina, C.S.; Albano-Aluquin, S.A. Cervical Spine Evaluation by Telephone and Video Visit. Cureus 2021, 13, e19741. [Google Scholar] [CrossRef] [PubMed]
- Christensen, E.; Castle, K.B.; Hussey, E. Clinical Feasibility of 2-Dimensional Video Analysis of Active Cervical Motion in Congenital Muscular Torticollis. Pediatr. Phys. Ther. 2015, 27, 276–283. [Google Scholar] [CrossRef]
- Pool, J.J.; Hoving, J.L.; de Vet, H.C.; van Mameren, H.; Bouter, L. The interexaminer reproducibility of physical examination of the cervical spine. J. Manip. Physiol. Ther. 2004, 27, 84–90. [Google Scholar] [CrossRef] [Green Version]
- Jasiewicz, J.M.; Treleaven, J.; Condie, P.; Jull, G. Wireless orientation sensors: Their suitability to measure head movement for neck pain assessment. Man Ther. 2007, 12, 380–385. [Google Scholar] [CrossRef]
- Van Suijlekom, H.A.; de Vet, H.C.W.; van den Berg, S.G.M.; Weber, W.E.J. Interobserver Reliability in Physical Examination of the Cervical Spine in Patients with Headache. Headache 2000, 40, 581–586. [Google Scholar] [CrossRef] [Green Version]
- Allahyari, T.; Sahraneshin Samani, A.; Khalkhali, H.R. Validity of the Microsoft Kinect for measurement of neck angle: Comparison with electrogoniometry. Int. J. Occup. Saf. Ergon. 2017, 23, 524–532. [Google Scholar] [CrossRef]
- Strimpakos, N. The assessment of the cervical spine. Part 1: Range of motion and proprioception. J. Bodyw. Mov. Ther. 2011, 15, 114–124. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schiefer, C.; Kraus, T.; Ellegast, R.P.; Ochsmann, E. A technical support tool for joint range of motion determination in functional diagnostics—An inter-rater study. J. Occup. Med. Toxicol. 2015, 10, 1–13. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vieira Érica, E.C.; Meziat-Filho, N.A.; Ferreira, A.S. Photogrammetric Variables Used by Physical Therapists to Detect Neck Pain and to Refer for Physiotherapeutic Intervention: A Cross-Sectional Study. J. Manip. Physiol. Ther. 2019, 42, 254–266. [Google Scholar] [CrossRef] [PubMed]
- O’leary, S.; Christensen, S.W.; Verouhis, A.; Pape, M.; Nilsen, O.; McPhail, S.M. Agreement between physiotherapists rating scapular posture in multiple planes in patients with neck pain: Reliability study. Physiotherapy 2015, 101, 381–388. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cabana, F.; Boissy, P.; Tousignant, M.; Moffet, H.; Corriveau, H.; Dumais, R. Interrater Agreement Between Telerehabilitation and Face-to-Face Clinical Outcome Measurements for Total Knee Arthroplasty. Telemed. e-Health 2010, 16, 293–298. [Google Scholar] [CrossRef] [PubMed]
- Truter, P.; Russell, T.; Fary, R. The Validity of Physical Therapy Assessment of Low Back Pain via Telerehabilitation in a Clinical Setting. Telemed. e-Health 2014, 20, 161–167. [Google Scholar] [CrossRef] [PubMed]
- Russell, T.; Jull, G.; Wootton, R. Can the Internet be used as a medium to evaluate knee angle? Man Ther. 2003, 8, 242–246. [Google Scholar] [CrossRef]
- Basteris, A.; Pedler, A.; Sterling, M. Evaluating the neck joint position sense error with a standard computer and a webcam. Man Ther. 2016, 26, 231–234. [Google Scholar] [CrossRef]
- Maloney, S.; Chamberlain, M.; Morrison, S.; Kotsanas, G.; Keating, J.L.; Ilic, D. Health Professional Learner Attitudes and Use of Digital Learning Resources. J. Med. Internet Res. 2013, 15, e7. [Google Scholar] [CrossRef]
- Stander, J.; Grimmer, K.; Brink, Y. Learning styles of physiotherapists: A systematic scoping review. BMC Med. Educ. 2019, 19, 2. [Google Scholar] [CrossRef]
- Mącznik, A.K.; Ribeiro, D.C.; Baxter, G.D. Online technology use in physiotherapy teaching and learning: A systematic review of effectiveness and users’ perceptions. BMC Med. Educ. 2015, 15, 160. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brown, G.A.; Bice, M.R.; Shaw, B.S.; Shaw, I. Online quizzes promote inconsistent improvements on in-class test performance in introductory anatomy and physiology. Adv. Physiol. Educ. 2015, 39, 63–66. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guzman, J.; Haldeman, S.; Carroll, L.J.; Carragee, E.J.; Hurwitz, E.L.; Peloso, P.; Nordin, M.; Cassidy, J.D.; Holm, L.W.; Côté, P.; et al. Clinical practice implications of the Bone and Joint Decade 2000–2010 Task Force on Neck Pain and Its Associated Disorders: From concepts and findings to recommendations. J. Manip. Physiol. 2009, 32 (Suppl. 2), S227–S243. [Google Scholar] [CrossRef] [PubMed]
- Orr, R.; Foster, S. Increasing Student Success Using Online Quizzing in Introductory (Majors) Biology. CBE—Life Sci. Educ. 2013, 12, 509–514. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Physiotherapy Course | Reliability of “ROM in Visual Inspection” | Reliability of “Classification of Mobility” |
---|---|---|
FLEXION–EXTENSION | ||
2nd Course | 0.75 (0.30–0.91) | 0.03 |
3rd Course | 0.96 (0.88–0.98) | 0.62 |
4th Course | 0.81 (0.47–0.98) | 0.52 |
LATERAL FLEXIONS | ||
2nd Course | 0.91 (0.75–0.97) | 0.51 |
3rd Course | 0.93 (0.81–0.98) | 0.54 |
4th Course | 0.81 (0.45–0.93) | 0.26 |
ROTATIONS | ||
2nd Course | 0.93 (0.80–0.98) | 0.90 |
3rd Course | 0.97 (0.90–0.90) | 0.58 |
4th Course | 0.96 (0.90–0.99) | 0.74 |
Physiotherapy Grade | Validity of “ROM in Visual Inspection” |
---|---|
FLEXION–EXTENSION | |
2nd Course | 0.94 (0.83–0.98) |
3rd Course | 0.83 (0.50–0.94) |
4th Course | 0.96 (0.88–0.99) |
LATERAL FLEXIONS | |
2nd Course | 0.88 (0.67–0.96) |
3rd Course | 0.91 (0.75–0.97) |
4th Course | 0.90 (0.72–0.97) |
ROTATIONS | |
2nd Course | 0.90 (0.71–0.96) |
3rd Course | 0.96 (0.88–0.99) |
4th Course | 0.93 (0.80–0.88) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Leonet-Tijero, L.; Corral-de-Toro, J.; Rodríguez-Sanz, J.; Hernández-Secorún, M.; Abenia-Benedí, H.; Lucha-López, M.O.; Monti-Ballano, S.; Müller-Thyssen-Uriarte, J.; Tricás-Vidal, H.; Hidalgo-García, C.; et al. Interexaminer Reliability and Validity of Quantity of Cervical Mobility during Online Dynamic Inspection. Diagnostics 2022, 12, 546. https://doi.org/10.3390/diagnostics12020546
Leonet-Tijero L, Corral-de-Toro J, Rodríguez-Sanz J, Hernández-Secorún M, Abenia-Benedí H, Lucha-López MO, Monti-Ballano S, Müller-Thyssen-Uriarte J, Tricás-Vidal H, Hidalgo-García C, et al. Interexaminer Reliability and Validity of Quantity of Cervical Mobility during Online Dynamic Inspection. Diagnostics. 2022; 12(2):546. https://doi.org/10.3390/diagnostics12020546
Chicago/Turabian StyleLeonet-Tijero, Leire, Jaime Corral-de-Toro, Jacobo Rodríguez-Sanz, Mar Hernández-Secorún, Hugo Abenia-Benedí, María Orosia Lucha-López, Sofía Monti-Ballano, Julián Müller-Thyssen-Uriarte, Héctor Tricás-Vidal, César Hidalgo-García, and et al. 2022. "Interexaminer Reliability and Validity of Quantity of Cervical Mobility during Online Dynamic Inspection" Diagnostics 12, no. 2: 546. https://doi.org/10.3390/diagnostics12020546
APA StyleLeonet-Tijero, L., Corral-de-Toro, J., Rodríguez-Sanz, J., Hernández-Secorún, M., Abenia-Benedí, H., Lucha-López, M. O., Monti-Ballano, S., Müller-Thyssen-Uriarte, J., Tricás-Vidal, H., Hidalgo-García, C., & Tricás-Moreno, J. M. (2022). Interexaminer Reliability and Validity of Quantity of Cervical Mobility during Online Dynamic Inspection. Diagnostics, 12(2), 546. https://doi.org/10.3390/diagnostics12020546