Deep Learning and Domain-Specific Knowledge to Segment the Liver from Synthetic Dual Energy CT Iodine Scans
Abstract
:1. Introduction
- We define an image translation paradigm for creating synth-DECT MDI scans from SECT scans. This is performed by using co-registered DECT scan pairs to train a system that maps SECT scans to the synth-DECT MDI scans.
- We study the benefits of using the synth-DECT MDI scans for liver segmentation in CT scans. We analyze their utility with four existing semantic segmentation algorithms. We found that the synthetic scans yielded superior performance over the original SECT scans when used as input.
- We hypothesized that synth-DECT MDI scans would provide greater benefit when less training data were available compared to SECT scans, and we confirm that this hypothesis is generally supported in a study.
- We additionally observed that the public dataset we used had distortions throughout the ground truth annotations of several scans, but the systems trained with the synth-DECT MDI scans correctly outlined the true extent of the liver for most scans, despite errors in the ground truth used for training.
2. Related Works
3. Materials and Methods
3.1. Generating Synth-DECT MDI Scans
3.1.1. Implementation Details
3.1.2. Image Preprocessing
3.2. Semantic Segmentation Algorithms
- Three-dimensional u-net with two residual connections [36,37]. This is the enhanced version of the u-net that includes parametric rectified linear units and residual units, which are known to improve training speed, mitigate the degradation issue of deep networks [38,39], and produce a network robust against variations in datasets [36].
- SegResNet [40] without the variational autoencoder. This network uses ResNet [41] for the encoder section but includes group normalization, which divides channels into groups and normalizes within each group [42]. The grouping alleviates the limitations of batch normalization for small batch sizes [42].
Image Preprocessing
3.3. Dataset Splits and Statistical Analysis
Statistical Analysis
4. Results
4.1. Image Translation
4.2. Comparing SECT vs. Synth-DECT MDI Scans for Semantic Segmentation
4.2.1. Main Results
4.2.2. Performance with Increasing Training Set Size
4.2.3. Failure Mode Analysis
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- McCollough, C.H.; Leng, S.; Yu, L.; Fletcher, J.G. Dual-and multi-energy CT: Principles, technical approaches, and clinical applications. Radiology 2015, 276, 637–653. [Google Scholar] [CrossRef] [PubMed]
- Lu, F.; Wu, F.; Hu, P.; Peng, Z.; Kong, D. Automatic 3D liver location and segmentation via convolutional neural network and graph cut. Int. J. Comput. Assist. Radiol. Surg. 2017, 12, 171–182. [Google Scholar] [CrossRef] [PubMed]
- Hsieh, J. Computed Tomography: Principles, Design, Artifacts, and Recent Advances; SPIE Press: Washington, DC, USA, 2003; Volume 114. [Google Scholar]
- Muenzel, D.; Lo, G.C.; Yu, H.S.; Parakh, A.; Patino, M.; Kambadakone, A.; Rummeny, E.J.; Sahani, D.V. Material density iodine images in dual-energy CT: Detection and characterization of hypervascular liver lesions compared to magnetic resonance imaging. Eur. J. Radiol. 2017, 95, 300–306. [Google Scholar] [CrossRef] [PubMed]
- Mahmood, U.; Horvat, N.; Horvat, J.V.; Ryan, D.; Gao, Y.; Carollo, G.; DeOcampo, R.; Do, R.K.; Katz, S.; Gerst, S.; et al. Rapid switching kVp dual energy CT: Value of reconstructed dual energy CT images and organ dose assessment in multiphasic liver CT exams. Eur. J. Radiol. 2018, 102, 102–108. [Google Scholar] [CrossRef]
- Amer, A.M.; Li, Y.; Summerlin, D.; Burgan, C.M.; McNamara, M.M.; Smith, A.D.; Morgan, D.E. Pancreatic Ductal Adenocarcinoma: Interface Enhancement Gradient Measured on Dual-Energy CT Images Improves Prognostic Evaluation. Radiol. Imaging Cancer 2020, 2, e190074. [Google Scholar] [CrossRef]
- Tsurusaki, M.; Sofue, K.; Hori, M.; Sasaki, K.; Ishii, K.; Murakami, T.; Kudo, M. Dual-energy computed tomography of the liver: Uses in clinical practices and applications. Diagnostics 2021, 11, 161. [Google Scholar] [CrossRef]
- Yue, X.; Jiang, Q.; Hu, X.; Cen, C.; Song, S.; Qian, K.; Lu, Y.; Yang, M.; Li, Q.; Han, P. Quantitative dual-energy CT for evaluating hepatocellular carcinoma after transarterial chemoembolization. Sci. Rep. 2021, 11, 11127. [Google Scholar] [CrossRef] [PubMed]
- Tamm, E.P.; Le, O.; Liu, X.; Layman, R.R.; Cody, D.D.; Bhosale, P.R. “How to” incorporate dual-energy imaging into a high volume abdominal imaging practice. Abdom. Radiol. 2017, 42, 688–701. [Google Scholar] [CrossRef] [Green Version]
- Sodickson, A.D.; Keraliya, A.; Czakowski, B.; Primak, A.; Wortman, J.; Uyeda, J.W. Dual energy CT in clinical routine: How it works and how it adds value. Emerg. Radiol. 2021, 28, 103–117. [Google Scholar] [CrossRef]
- Liao, Y.; Wang, Y.; Li, S.; He, J.; Zeng, D.; Bian, Z.; Ma, J. Pseudo dual energy CT imaging using deep learning-based framework: Basic material estimation. In Medical Imaging 2018: Physics of Medical Imaging; International Society for Optics and Photonics: Washington, DC, USA, 2018; Volume 10573, p. 105734N. [Google Scholar]
- Feng, C.; Kang, K.; Xing, Y. Fully connected neural network for virtual monochromatic imaging in spectral computed tomography. J. Med. Imaging 2018, 6, 011006. [Google Scholar] [CrossRef]
- Shi, Z.; Li, J.; Li, H.; Hu, Q.; Cao, Q. A virtual monochromatic imaging method for spectral CT based on Wasserstein generative adversarial network with a hybrid loss. IEEE Access 2019, 7, 110992–111011. [Google Scholar] [CrossRef]
- Zhao, W.; Lv, T.; Lee, R.; Chen, Y.; Xing, L. Obtaining dual-energy computed tomography (CT) information from a single-energy CT image for quantitative imaging analysis of living subjects by using deep learning. In Pacific Symposium on Biocomputing 2020; World Scientific: Honolulu, HI, USA, 2019; pp. 139–148. [Google Scholar]
- Yao, L.; Li, S.; Li, D.; Zhu, M.; Gao, Q.; Zhang, S.; Bian, Z.; Huang, J.; Zeng, D.; Ma, J. Leveraging deep generative model for direct energy-resolving CT imaging via existing energy-integrating CT images. In Medical Imaging 2020: Physics of Medical Imaging; International Society for Optics and Photonics: Washington, DC, USA, 2020; Volume 11312, p. 113124U. [Google Scholar]
- Lartaud, P.J.; Rouchaud, A.; Dessouky, R.; Vlachomitrou, A.S.; Rouet, J.M.; Nempont, O.; Boussel, L.; Douek, P. CASPER: Conventional CT database Augmentation using deep learning based SPEctral CT images geneRation. In Proceedings of the 2020 15th IEEE International Conference on Signal Processing (ICSP), Beijing, China, 6–9 December 2020; Volume 1, pp. 537–541. [Google Scholar]
- Cong, W.; Xi, Y.; De Man, B.; Wang, G. Monochromatic image reconstruction via machine learning. Mach. Learn. Sci. Technol. 2021, 2, 025032. [Google Scholar] [CrossRef]
- Lyu, T.; Zhao, W.; Zhu, Y.; Wu, Z.; Zhang, Y.; Chen, Y.; Luo, L.; Li, S.; Xing, L. Estimating dual-energy CT imaging from single-energy CT data with material decomposition convolutional neural network. Med. Image Anal. 2021, 70, 102001. [Google Scholar] [CrossRef] [PubMed]
- Kawahara, D.; Ozawa, S.; Kimura, T.; Nagata, Y. Image synthesis of monoenergetic CT image in dual-energy CT using kilovoltage CT with deep convolutional generative adversarial networks. J. Appl. Clin. Med. Phys. 2021, 22, 184–192. [Google Scholar] [CrossRef] [PubMed]
- Funama, Y.; Oda, S.; Kidoh, M.; Nagayama, Y.; Goto, M.; Sakabe, D.; Nakaura, T. Conditional generative adversarial networks to generate pseudo low monoenergetic CT image from a single-tube voltage CT scanner. Phys. Medica 2021, 83, 46–51. [Google Scholar] [CrossRef] [PubMed]
- Isola, P.; Zhu, J.Y.; Zhou, T.; Efros, A.A. Image-to-image translation with conditional adversarial networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 1125–1134. [Google Scholar]
- Cong, W.; Wang, G. Monochromatic CT image reconstruction from current-integrating data via deep learning. arXiv 2017, arXiv:1710.03784. [Google Scholar]
- Li, S.; Wang, Y.; Liao, Y.; He, J.; Zeng, D.; Bian, Z.; Ma, J. Pseudo dual energy CT imaging using deep learning based framework: Initial study. arXiv 2017, arXiv:1711.07118. [Google Scholar]
- Zhao, W.; Lv, T.; Chen, Y.; Xing, L. Dual-energy CT imaging using a single-energy CT data via deep learning: A contrast-enhanced CT study. Int. J. Radiat. Oncol. Biol. Phys. 2020, 108, S43. [Google Scholar] [CrossRef]
- Cong, W.; Xi, Y.; Fitzgerald, P.; De Man, B.; Wang, G. Virtual monoenergetic CT imaging via deep learning. Patterns 2020, 1, 100128. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.K.; Liu, C.C.; Yang, C.H.; Huang, H.M. Generation of Brain Dual-Energy CT from Single-Energy CT Using Deep Learning. J. Digit. Imaging 2021, 34, 149–161. [Google Scholar] [CrossRef] [PubMed]
- Wu, W.; Hu, D.; Niu, C.; Broeke, L.V.; Butler, A.P.; Cao, P.; Atlas, J.; Chernoglazov, A.; Vardhanabhuti, V.; Wang, G. Deep learning based spectral CT imaging. Neural Netw. 2021, 144, 342–358. [Google Scholar] [CrossRef] [PubMed]
- Seibold, C.; Fink, M.A.; Goos, C.; Kauczor, H.U.; Schlemmer, H.P.; Stiefelhagen, R.; Kleesiek, J. Prediction of low-keV monochromatic images from polyenergetic CT scans for improved automatic detection of pulmonary embolism. In Proceedings of the 2021 IEEE 18th International Symposium on Biomedical Imaging (ISBI), Nice, France, 13–16 April 2021; pp. 1017–1020. [Google Scholar]
- McCollough, C.H.; Boedeker, K.; Cody, D.; Duan, X.; Flohr, T.; Halliburton, S.S.; Hsieh, J.; Layman, R.R.; Pelc, N.J. Principles and applications of multienergy CT: Report of AAPM Task Group 291. Med. Phys. 2020, 47, e881–e912. [Google Scholar] [CrossRef] [PubMed]
- Rister, B.; Yi, D.; Shivakumar, K.; Nobashi, T.; Rubin, D.L. CT-ORG, a new dataset for multiple organ segmentation in computed tomography. Sci. Data 2020, 7, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Clark, K.; Vendt, B.; Smith, K.; Freymann, J.; Kirby, J.; Koppel, P.; Moore, S.; Phillips, S.; Maffitt, D.; Pringle, M.; et al. The Cancer Imaging Archive (TCIA): Maintaining and operating a public information repository. J. Digit. Imaging 2013, 26, 1045–1057. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McCollough, C.; Cody, D.; Edyvean, S.; Geise, R.; Gould, B.; Keat, N.; Huda, W.; Judy, P.; Kalender, W.; McNitt-Gray, M.; et al. The Measurement, Reporting, and Management of Radiation Dose in CT; Report of the AAPM Task Group 23; American Association of Physicists in Medicine: College Park, MD, USA, 2008; pp. 1–28. [Google Scholar]
- Matsumoto, K.; Jinzaki, M.; Tanami, Y.; Ueno, A.; Yamada, M.; Kuribayashi, S. Virtual monochromatic spectral imaging with fast kilovoltage switching: Improved image quality as compared with that obtained with conventional 120-kVp CT. Radiology 2011, 259, 257–262. [Google Scholar] [CrossRef]
- He, K.; Liu, X.; Shahzad, R.; Reimer, R.; Thiele, F.; Niehoff, J.; Wybranski, C.; Bunck, A.C.; Zhang, H.; Perkuhn, M. Advanced Deep Learning Approach to Automatically Segment Malignant Tumors and Ablation Zone in the Liver With Contrast-Enhanced CT. Front. Oncol. 2021, 2735. [Google Scholar] [CrossRef]
- Yang, D.; Myronenko, A.; Wang, X.; Xu, Z.; Roth, H.R.; Xu, D. T-AutoML: Automated Machine Learning for Lesion Segmentation using Transformers in 3D Medical Imaging. In Proceedings of the IEEE/CVF International Conference on Computer Vision, Montreal, QC, Canada, 10–17 October 2021; pp. 3962–3974. [Google Scholar]
- Kerfoot, E.; Clough, J.; Oksuz, I.; Lee, J.; King, A.P.; Schnabel, J.A. Left-ventricle quantification using residual U-Net. In Proceedings of the International Workshop on Statistical Atlases and Computational Models of the Heart, Granada, Spain, 16 September 2018; pp. 371–380. [Google Scholar]
- Siddique, N.; Paheding, S.; Elkin, C.P.; Devabhaktuni, V. U-net and its variants for medical image segmentation: A review of theory and applications. IEEE Access 2021, 9, 82031–82057. [Google Scholar] [CrossRef]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Delving deep into rectifiers: Surpassing human-level performance on imagenet classification. In Proceedings of the IEEE International Conference on Computer Vision, Santiago, Chile, 7–13 December 2015; pp. 1026–1034. [Google Scholar]
- Zhang, Z.; Liu, Q.; Wang, Y. Road extraction by deep residual u-net. IEEE Geosci. Remote Sens. Lett. 2018, 15, 749–753. [Google Scholar] [CrossRef] [Green Version]
- Myronenko, A. 3D MRI brain tumor segmentation using autoencoder regularization. In Proceedings of the International MICCAI Brainlesion Workshop, Granada, Spain, 16 September 2018; pp. 311–320. [Google Scholar]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Identity mappings in deep residual networks. In Proceedings of the European Conference on Computer Vision, Amsterdam, The Netherlands, 11–14 October 2016; pp. 630–645. [Google Scholar]
- Wu, Y.; He, K. Group normalization. In Proceedings of the European conference on computer vision (ECCV), Munich, Germany, 8–14 September 2018; pp. 3–19. [Google Scholar]
- Consortium, T.M. Project MONAI. 2020. Available online: http://doi.org/10.5281/zenodo.4323059 (accessed on 10 January 2022).
- Isensee, F.; Petersen, J.; Klein, A.; Zimmerer, D.; Jaeger, P.F.; Kohl, S.; Wasserthal, J.; Koehler, G.; Norajitra, T.; Wirkert, S.; et al. nnU-Net: Self-adapting Framework for U-Net-Based Medical Image Segmentation. In Bildverarbeitung für die Medizin 2019; Springer: Berlin/Heidelberg, Germany, 2019; p. 22. [Google Scholar]
- Bilic, P.; Christ, P.F.; Vorontsov, E.; Chlebus, G.; Chen, H.; Dou, Q.; Fu, C.W.; Han, X.; Heng, P.A.; Hesser, J.; et al. The liver tumor segmentation benchmark (lits). arXiv 2019, arXiv:1901.04056. [Google Scholar]
- Milletari, F.; Navab, N.; Ahmadi, S.A. V-net: Fully convolutional neural networks for volumetric medical image segmentation. In Proceedings of the 2016 Fourth International Conference on 3D Vision (3DV), Stanford, CA, USA, 25–28 October 2016; pp. 565–571. [Google Scholar]
- Yao, Y.; Sang, Y.; Zhao, Z.; Cao, Y. Research on Segmentation and Recognition of Liver CT Image Based on Multi-scale Feature Fusion. In Proceedings of the 2021 2nd International Symposium on Computer Engineering and Intelligent Communications (ISCEIC), Nanjing, China, 6–8 August 2021; pp. 330–334. [Google Scholar]
- Xia, X.; Hao, N. Improved 3D fully convolutional network based on squeeze-excitation method for liver segmentation. J. Phys. Conf. Ser. 2021, 2004, 012007. [Google Scholar] [CrossRef]
- Tran, S.T.; Cheng, C.H.; Nguyen, T.T.; Le, M.H.; Liu, D.G. TMD-Unet: Triple-Unet with multi-scale input features and dense skip connection for medical image segmentation. Healthcare 2021, 9, 54. [Google Scholar] [CrossRef]
- Simpson, A.L.; Antonelli, M.; Bakas, S.; Bilello, M.; Farahani, K.; van Ginneken, B.; Kopp-Schneider, A.; Landman, B.A.; Litjens, G.; Menze, B.; et al. A large annotated medical image dataset for the development and evaluation of segmentation algorithms. arXiv 2019, arXiv:1902.09063. [Google Scholar]
- Wang, Z.; Bovik, A.C.; Sheikh, H.R.; Simoncelli, E.P. Image quality assessment: From error visibility to structural similarity. IEEE Trans. Image Process. 2004, 13, 600–612. [Google Scholar] [CrossRef] [Green Version]
- Sugino, T.; Kawase, T.; Onogi, S.; Kin, T.; Saito, N.; Nakajima, Y. Loss weightings for improving imbalanced brain structure segmentation using fully convolutional networks. Healthcare 2021, 9, 938. [Google Scholar] [CrossRef] [PubMed]
- Corrias, G.; Sawan, P.; Mahmood, U.; Zheng, J.; Capanu, M.; Salvatore, M.; Spinato, G.; Saba, L.; Mannelli, L. Dual energy computed tomography analysis in cancer patients: What factors affect iodine concentration in contrast enhanced studies? Eur. J. Radiol. 2019, 120, 108698. [Google Scholar] [CrossRef]
- Mileto, A.; Ananthakrishnan, L.; Morgan, D.E.; Yeh, B.M.; Marin, D.; Kambadakone, A.R. Clinical implementation of dual-energy CT for gastrointestinal imaging. Am. J. Roentgenol. 2021, 217, 651–663. [Google Scholar] [CrossRef] [PubMed]
- Mahmood, U.; Shrestha, R.; Bates, D.D.B.; Mannelli, L.; Corrias, G.; Erdi, Y.E.; Kanan, C. Detecting Spurious Correlations with Sanity Tests for Artificial Intelligence Guided Radiology Systems. Front. Digit. Health 2021, 3, 85. [Google Scholar] [CrossRef] [PubMed]
Pix2Pix | Liver Segmentation | |
---|---|---|
Internal Data | Public Data | |
Pixel Annotations | No | Yes |
CT Vendor | General Electric | ** |
CT Model | HD750 | ** |
Total # Patients | 100 | 140 |
# Used for Train | 80 | 79 |
# Used for Val | 10 | 26 |
# for test | 10 | 26 |
Average age (min to max) | 59 (18 to 88) | ** |
Scan start time after contrast administration | 30 to 35s | ** |
Range of slices (min/max) | 32 to 94 | 42 to 1026 |
Tube potential (kVp) | 120 | ** |
Slice thickness (mm) | 2.5 | 0.45 to 6.0 mm |
Pixel dimensions (mm) | 0.606 to 0.977 | 0.56 to 1.0 mm |
Tube current modulation index | NA | ** |
Tube current range | 260 to 600 mA | ** |
Rotation time (s) | 0.7 | ** |
Pitch | 0.984 | ** |
Reconstruction algorithm | FBP * | ** |
Reconstruction kernel | Standard | ** |
Iterative reconstruction strength | 20% ASiR *** | ** |
# of data channels | 64 | ** |
Size of a single data channel (mm) | 0.625 | ** |
Bowtie filter | Large Body | ** |
Held Out Test Set | Generalization Test Set | |||
---|---|---|---|---|
Model | Single Energy CT | Single Energy CT | SECT | Synthetic |
3D u-net | 0.92 ± 0.01 | 0.95 ± 0.06 | 0.83 ± 0.01 | 0.89 ± 0.01 |
SegResNet | 0.89 ± 0.02 | 0.94 ± 0.01 | 0.88 ± 0.02 | 0.89 ± 0.01 |
DynUNET | 0.89 ± 0.01 | 0.90 ± 0.01 | 0.82 ± 0.03 | 0.86 ± 0.01 |
VNET | 0.89 ± 0.01 | 0.93 ± 0.01 | 0.85 ± 0.02 | 0.88 ± 0.01 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mahmood, U.; Bates, D.D.B.; Erdi, Y.E.; Mannelli, L.; Corrias, G.; Kanan, C. Deep Learning and Domain-Specific Knowledge to Segment the Liver from Synthetic Dual Energy CT Iodine Scans. Diagnostics 2022, 12, 672. https://doi.org/10.3390/diagnostics12030672
Mahmood U, Bates DDB, Erdi YE, Mannelli L, Corrias G, Kanan C. Deep Learning and Domain-Specific Knowledge to Segment the Liver from Synthetic Dual Energy CT Iodine Scans. Diagnostics. 2022; 12(3):672. https://doi.org/10.3390/diagnostics12030672
Chicago/Turabian StyleMahmood, Usman, David D. B. Bates, Yusuf E. Erdi, Lorenzo Mannelli, Giuseppe Corrias, and Christopher Kanan. 2022. "Deep Learning and Domain-Specific Knowledge to Segment the Liver from Synthetic Dual Energy CT Iodine Scans" Diagnostics 12, no. 3: 672. https://doi.org/10.3390/diagnostics12030672
APA StyleMahmood, U., Bates, D. D. B., Erdi, Y. E., Mannelli, L., Corrias, G., & Kanan, C. (2022). Deep Learning and Domain-Specific Knowledge to Segment the Liver from Synthetic Dual Energy CT Iodine Scans. Diagnostics, 12(3), 672. https://doi.org/10.3390/diagnostics12030672