Quantitative Blood Flow Measurements in the Common Carotid Artery: A Comparative Study of High-Frame-Rate Ultrasound Vector Flow Imaging, Pulsed Wave Doppler, and Phase Contrast Magnetic Resonance Imaging
Abstract
:1. Introduction
2. Materials and Methods
2.1. V Flow Technique Description
2.2. Ultrasound Scan Setup
2.3. PC-MRI Scan Setup
2.4. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
List of Abbreviations
References
- North American Symptomatic Carotid Endarterectomy Trial (NASCET) Steering Committee. North American Symptomatic Cartotid Endarterectomy Trial: Methods, patient characteristics, and progress. Stroke 1991, 22, 711–720. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- European Carotid Surgery Trialists’ Collaborative Group. Randomised trial of endarterectomy for recently symptomatic carotid stenosis: Final results of the MRC European Carotid Surgery Trial (ECST). Lancet 1998, 351, 1379–1387. [Google Scholar] [CrossRef]
- Grant, E.G.; Benson, C.B.; Moneta, G.L.; Alexandrov, A.V.; Baker, J.D.; Bluth, E.I.; Carroll, B.A.; Eliasziw, M.; Gocke, J.; Hertzberg, B.S.; et al. Carotid artery stenosis: Gray-scale and Doppler US diagnosis—Society of Radiologists in Ultrasound Consensus Conference. Radiology 2003, 229, 340–346. [Google Scholar] [CrossRef] [PubMed]
- Carpenter, J.P.; Lexa, F.J.; Davis, J.T. Determination of sixty percent or greater carotid artery stenosis by duplex Doppler ultrasonography. J. Vasc. Surg. 1995, 22, 697–703. [Google Scholar] [CrossRef] [Green Version]
- Moneta, G.L.; Edwards, J.M.; Papanicolaou, G.; Hatsukami, T.; Taylor, L.M., Jr.; Strandness, D.E., Jr.; Porter, J.M. Screening for asymptomatic internal carotid artery stenosis: Duplex criteria for discriminating 60% to 99% stenosis. J. Vasc. Surg. 1995, 21, 989–994. [Google Scholar] [CrossRef] [Green Version]
- Jensen, J.A. Estimation of Blood Velocities using Ultrasound: A Signal Processing Approach; Cambridge University Press: New York, NY, USA, 1996. [Google Scholar]
- Ford, M.D.; Xie, Y.J.; Wasserman, B.A.; Steinman, D.A. Is flow in the common carotid artery fully developed? Physiol. Meas. 2008, 29, 1335–1349. [Google Scholar] [CrossRef] [PubMed]
- Manbachi, A.; Hoi, Y.; Wasserman, B.A.; Lakatta, E.G.; Steinman, D.A. On the shape of the common carotid artery with implications for blood velocity profiles. Physiol. Meas. 2011, 32, 1885–1897. [Google Scholar] [CrossRef] [Green Version]
- Hansen, K.L.; Udesen, J.; Gran, F.; Jensen, J.A.; Nielsen, M.B. In-vivo examples of flow patterns with the fast vector velocity ultrasound method. Ultraschall Med. 2009, 30, 471–477. [Google Scholar] [CrossRef]
- Jensen, J.A.; Nikolov, S.I.; Hansen, K.L.; Stuart, M.B.; Hoyos, C.A.V.; Schou, M.; Ommen, M.L.; Øygard, S.H.; Jørgensen, L.T.; Traberg, M.S.; et al. History and latest advances in flow estimation technology: From 1-D in 2-D to 3-D in 4-D. In Proceedings of the 2019 IEEE International Ultrasonics Symposium (IUS), Glasgow, UK, 6–9 October 2019. [Google Scholar]
- Goddi, A.; Fanizza, M.; Bortolotto, C.; Raciti, M.V.; Fiorina, I.; He, X.; Du, Y.; Calliada, F. Vector flow imaging techniques: An innovative ultrasonographic technique for the study of blood flow. J. Clin. Ultrasound 2017, 45, 582–588. [Google Scholar] [CrossRef]
- Trahey, G.E.; Allison, J.W.; Von, R.O.T. Angle independent ultrasonic detection of blood flow. IEEE Trans. Biomed. Eng. 1987, 34, 965–967. [Google Scholar] [CrossRef]
- Jensen, J.A.; Nikolov, S.I.; Yu, A.C.H.; Garcia, D. Ultrasound vector flow imaging–Part I: Sequential systems. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2016, 63, 1704–1723. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jensen, J.A.; Nikolov, S.I.; Yu, A.C.H.; Garcia, D. Ultrasound vector flow imaging–Part II: Parallel systems. IEEE Trans Ultrason. Ferroelectr. Freq. Control 2016, 63, 1722–1732. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Udesen, J.; Gran, F.; Hansen, K.L.; Jensen, J.A.; Thomsen, C.; Nielsen, M.B. High framerate blood vector velocity imaging using plane waves: Simulations and preliminary experiments. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2008, 55, 1729–1743. [Google Scholar] [CrossRef] [PubMed]
- Jensen, J.A. A new estimator for vector velocity estimation. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2001, 48, 886–894. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Uejima, T.; Koike, A.; Sawada, H.; Aizawa, T.; Ohtsuki, S.; Tanaka, M.; Furukawa, T.; Fraser, A.G. A new echocardiographic method for identifying vortex flow in the left ventricle: Numerical validation. Ultrasound Med. Biol. 2010, 36, 772–788. [Google Scholar] [CrossRef]
- Dunmire, B.; Beach, K.W.; Labs, K.-H.; Plett, M.; Strandness, D.E., Jr. Cross-beam vector Doppler ultrasound for angle-independent velocity measurements. Ultrasound Med. Biol. 2000, 26, 1213–1235. [Google Scholar] [CrossRef]
- Yiu, B.Y.S.; Lai, S.S.M.; Yu, A.C.H. Vector projectile imaging: Time-resolved dynamic visualization of complex flow patterns. Ultrasound Med. Biol. 2014, 40, 2295–2309. [Google Scholar] [CrossRef]
- Leow, C.H.; Bazigou, E.; Eckersley, R.J.; Yu, A.C.H.; Weinberg, P.D.; Tang, M.-X. Flow velocity mapping using contrast enhanced high-frame-rate plane wave ultrasound and image tracking: Methods and initial in vitro and in vivo evaluation. Ultrasound Med. Biol. 2015, 41, 2913–2925. [Google Scholar] [CrossRef] [Green Version]
- Hansen, K.L.; Udesen, J.; Oddershede, N.; Henze, L.; Thomsen, C.; Jensen, J.A.; Nielsen, M.B. In vivo comparison of three ultrasound vector velocity techniques to MR phase contrast angiography. Ultrasonics 2009, 49, 659–667. [Google Scholar] [CrossRef]
- Brandt, A.H.; Hansen, K.L.; Ewertsen, C.; Holbek, S.; Olesen, J.B.; Moshavegh, R.; Thomsen, C.; Jensen, J.A.; Nielsen, M.B. A comparison study of vector velocity, spectral Doppler and magnetic resonance of blood flow in the common carotid artery. Ultrasound Med. Biol. 2018, 44, 1751–1761. [Google Scholar] [CrossRef]
- Du, Y.; Shen, Y.; Yiu, B.Y.S.; Yu, A.C.H.; Zhu, L. High frame rate vector flow imaging: Development as a new diagnostic mode on a clinical scanner. In Proceedings of the 2018 IEEE International Ultrasonics Symposium (IUS), Kobe, Japan, 22–25 October 2018. [Google Scholar]
- Du, Y.; Fan, R.; Li, Y. Ultrasound Imaging Method and System. U.S. Application Patent US20170071576A1, 16 March 2017. [Google Scholar]
- Yu, A.C.H.; Yiu, Y.S. Apparatus for Ultrasound Flow Vector Imaging and Methods Thereof. U.S. Patent US10231695B2, 19 March 2019. [Google Scholar]
- Kasai, C.; Namekawa, K.; Koyano, A.; Omoto, R. Real time two-dimensional blood flow imaging using an autocorrelation technique. IEEE Trans. Sonics Ultrason. 1985, 32, 458–464. [Google Scholar] [CrossRef]
- Newhouse, V.L.; Furgason, E.S.; Johnson, G.F.; Wolf, D.A. The dependence of ultrasound Doppler bandwidth on beam geometry. IEEE Trans Sonics Ultrason. 1980, 27, 50–59. [Google Scholar] [CrossRef]
- Hoskins, P.R.; Fish, P.J.; Pye, S.D.; Anderson, T. Finite beam-width ray model for geometric spectral broadening. Ultrasound Med. Biol. 1999, 25, 391–404. [Google Scholar] [CrossRef]
- Fish, P.J. Nonstationarity broadening in pulsed Doppler spectrum measurements. Ultrasound Med. Biol. 1991, 17, 147–155. [Google Scholar] [CrossRef]
- Du, Y.; Ding, H.; He, L.; Deng, L.; Alfred, C.H.; Yiu, B.Y.; Zhu, L. Ultrasound vector flow imaging compared with phase contrast magnetic resonance imaging for estimating blood flow velocity and volume flow in the common carotid artery. In Proceedings of the 2021 IEEE International Ultrasonics Symposium (IUS), Xi’an, China, 11–16 September 2021. [Google Scholar]
- Hansen, K.L.; Møller-Sørensen, H.; Kjaergaard, J.; Jensen, M.B.; Lund, J.T.; Pedersen, M.M.; Lange, T.; Jensen, J.A.; Nielsen, M.B. Intra-operative vector flow imaging using ultrasound of the ascending aorta among 40 patients with normal, stenotic and replaced aortic valves. Ultrasound Med. Biol. 2016, 42, 2412–2422. [Google Scholar] [CrossRef] [PubMed]
- Hansen, K.L.; Moller-Sorensen, H.; Kjaergaard, J.; Jensen, M.B.; Lund, J.T.; Pedersen, M.M.; Lange, T.; Jensen, J.A.; Nielsen, M.B. Aortic valve stenosis increase helical flow and flow complexity: A study of intra-operative cardiac vector flow imaging. Ultrasound Med. Biol. 2017, 43, 1607–1617. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hansen, K.L.; Moller-Sorensen, H.; Kjaergaard, J.; Jensen, M.B.; Jensen, J.A.; Nielsen, M.B. Vector flow imaging of the ascending aorta in patients with tricuspid and bicuspid aortic valve stenosis treated with biological and mechanical implants. Ultrasound Med. Biol. 2020, 46, 64–72. [Google Scholar] [CrossRef] [Green Version]
- Holbek, S.; Ewertsen, C.; Bouzari, H.; Pihl, M.J.; Hansen, K.L.; Stuart, M.B.; Thomsen, C.; Nielsen, M.B.; Jensen, J.A. Ultrasonic 3-D vector flow method for quantitative in vivo peak velocity and flow rate estimation. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2017, 64, 544–554. [Google Scholar] [CrossRef] [Green Version]
- Holbek, S.; Hansen, K.L.; Bouzari, H.; Ewertsen, C.; Stuart, M.B.; Thomsen, C.; Nielsen, M.B.; Jensen, J.A. Common carotid artery flow measured by 3-D ultrasonic vector flow imaging and validated with magnetic resonance imaging. Ultrasound Med. Biol. 2017, 43, 2213–2220. [Google Scholar] [CrossRef]
Error [%]: Mean ± Std | Maximum Velocity | Mean Velocity | Volume Flow |
---|---|---|---|
PW | 53.44 ± 29.68 | 27.83 ± 31.60 | 21.01 ± 29.64 |
V Flow | 9.40 ± 14.91 | 21.52 ± 14.46 | −2.80 ± 14.01 |
Error [%]: Median | Maximum Velocity | Mean Velocity | Volume Flow |
PW | 49.79 | 23.83 | 25.48 |
V Flow | 11.84 | 19.28 | 10.38 |
r-Value (no. of Vessels) | Maximum Velocity | Mean Velocity | Volume Flow |
PW | 0.74 (60 CCAs) | 0.71 (61 CCAs) | 0.34 (61 CCAs) |
V Flow | 0.84 (61 CCAs) | 0.86 (61 CCAs) | 0.7 (61 CCAs) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Du, Y.; Ding, H.; He, L.; Yiu, B.Y.S.; Deng, L.; Yu, A.C.H.; Zhu, L. Quantitative Blood Flow Measurements in the Common Carotid Artery: A Comparative Study of High-Frame-Rate Ultrasound Vector Flow Imaging, Pulsed Wave Doppler, and Phase Contrast Magnetic Resonance Imaging. Diagnostics 2022, 12, 690. https://doi.org/10.3390/diagnostics12030690
Du Y, Ding H, He L, Yiu BYS, Deng L, Yu ACH, Zhu L. Quantitative Blood Flow Measurements in the Common Carotid Artery: A Comparative Study of High-Frame-Rate Ultrasound Vector Flow Imaging, Pulsed Wave Doppler, and Phase Contrast Magnetic Resonance Imaging. Diagnostics. 2022; 12(3):690. https://doi.org/10.3390/diagnostics12030690
Chicago/Turabian StyleDu, Yigang, Haiyan Ding, Le He, Billy Y. S. Yiu, Linsong Deng, Alfred C. H. Yu, and Lei Zhu. 2022. "Quantitative Blood Flow Measurements in the Common Carotid Artery: A Comparative Study of High-Frame-Rate Ultrasound Vector Flow Imaging, Pulsed Wave Doppler, and Phase Contrast Magnetic Resonance Imaging" Diagnostics 12, no. 3: 690. https://doi.org/10.3390/diagnostics12030690
APA StyleDu, Y., Ding, H., He, L., Yiu, B. Y. S., Deng, L., Yu, A. C. H., & Zhu, L. (2022). Quantitative Blood Flow Measurements in the Common Carotid Artery: A Comparative Study of High-Frame-Rate Ultrasound Vector Flow Imaging, Pulsed Wave Doppler, and Phase Contrast Magnetic Resonance Imaging. Diagnostics, 12(3), 690. https://doi.org/10.3390/diagnostics12030690