Deep-Learning-Aided Detection of Mycobacteria in Pathology Specimens Increases the Sensitivity in Early Diagnosis of Pulmonary Tuberculosis Compared with Bacteriology Tests
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Subjects
2.2. Annotation
2.3. Construction of AI-Assisted Pathology
2.4. Validation of the AI-Assisted Pathology
2.5. Statistical Analysis
3. Results
3.1. Patient Characteristics
3.2. Bacteriological Examination by Bronchoscopy
3.3. Pathological Examination
3.4. Comparison between Pathology, Bacteriology, and Final Diagnosis
3.5. Comparison of the Number of AFB Detected by AI and Bacteriological Tests
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- World Health Organization. Global Tuberculosis Report 2020; WHO: Geneva, Switzerland, 2020. [Google Scholar]
- Lewinsohn, D.M.; Leonard, M.K.; LoBue, P.A.; Cohn, D.L.; Daley, C.L.; Desmond, E.; Keane, J.; Lewinsohn, D.A.; Loeffler, A.M.; Mazurek, G.H.; et al. Official American Thoracic Society/Infectious Diseases Society of America/Centers for Disease Control and Prevention Clinical Practice Guidelines: Diagnosis of tuberculosis in adults and children. Clin. Infect. Dis. 2017, 64, 111–115. [Google Scholar] [CrossRef] [PubMed]
- Griffith, D.E.; Aksamit, T.; Brown-Elliott, B.A.; Catanzaro, A.; Daley, C.; Gordin, F.; Holland, S.M.; Horsburgh, R.; Huitt, G.; Iademarco, M.F.; et al. An official ATS/IDSA statement: Diagnosis, treatment, and prevention of nontuberculous mycobacterial diseases. Am. J. Respir. Crit. Care. Med. 2007, 175, 367–416. [Google Scholar] [CrossRef] [PubMed]
- Falkinham, J.O., 3rd. Nontuberculous mycobacteria in the environment. Clin. Chest. Med. 2002, 23, 529–551. [Google Scholar] [CrossRef]
- von Reyn, C.F.; Waddell, R.D.; Eaton, T.; Arbeit, R.D.; Maslow, J.N.; Barber, T.W.; Brindle, R.J.; Gilks, C.F.; Lumio, J.; Lähdevirta, J.; et al. Isolation of Mycobacterium avium complex from water in the United States, Finland, Zaire, and Kenya. J. Clin. Microbiol. 1993, 31, 3227–3230. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Prevots, D.R.; Shaw, P.A.; Strickland, D.; Jackson, L.A.; Raebel, M.A.; Blosky, M.A.; Montes de Oca, R.; Shea, Y.R.; Seitz, A.E.; Holland, S.M.; et al. Nontuberculous mycobacterial lung disease prevalence at four integrated health care delivery systems. Am. J. Respir. Crit. Care. Med. 2010, 182, 970–976. [Google Scholar] [CrossRef] [Green Version]
- O’Brien, R.J.; Geiter, L.J.; Snider, D.E., Jr. The epidemiology of nontuberculous mycobacterial diseases in the United States. Results from a national survey. Am. Rev. Respir. Dis. 1987, 135, 1007–1014. [Google Scholar] [PubMed]
- Wright, P.W.; Wallace, R.J., Jr.; Wright, N.W.; Brown, B.A.; Griffith, D.E. Sensitivity of fluorochrome microscopy for detection of Mycobacterium tuberculosis versus nontuberculous mycobacteria. J. Clin. Microbiol. 1998, 36, 1046–1049. [Google Scholar] [CrossRef] [Green Version]
- Miro, A.M.; Gibilara, E.; Powell, S.; Kamholz, S.L. The role of fiberoptic bronchoscopy for diagnosis of pulmonary tuberculosis in patients at risk for AIDS. Chest 1992, 101, 1211–1214. [Google Scholar] [CrossRef]
- Kennedy, D.J.; Lewis, W.P.; Barnes, P.F. Yield of bronchoscopy for the diagnosis of tuberculosis in patients with human immunodeficiency virus infection. Chest 1992, 102, 1040–1044. [Google Scholar] [CrossRef]
- Niazi, M.K.K.; Parwani, A.V.; Gurcan, M.N. Digital pathology and artificial intelligence. Lancet Oncol. 2019, 20, e253–e261. [Google Scholar] [CrossRef]
- Colling, R.; Pitman, H.; Oien, K.; Rajpoot, N.; Macklin, P.; CM-Path AI in Histopathology Working Group; Snead, D.; Sackville, T.; Verrill, C. Artificial intelligence in digital pathology: A roadmap to routine use in clinical practice. J. Pathol. 2019, 249, 143–150. [Google Scholar] [CrossRef] [PubMed]
- Salto-Tellez, M.; Maxwell, P.; Hamilton, P. Artificial intelligence-the third revolution in pathology. Histopathology 2019, 74, 372–376. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sakamoto, T.; Furukawa, T.; Lami, K.; Pham, H.H.N.; Uegami, W.; Kuroda, K.; Kawai, M.; Sakanashi, H.; Cooper, L.A.D.; Bychkov, A.; et al. A narrative review of digital pathology and artificial intelligence: Focusing on lung cancer. Transl. Lung Cancer Res. 2020, 9, 2255–2276. [Google Scholar] [CrossRef]
- Aeffner, F.; Zarella, M.D.; Buchbinder, N.; Bui, M.M.; Goodman, M.R.; Hartman, D.J.; Lujan, G.M.; Molani, M.A.; Parwani, A.V.; Lillard, K.; et al. Introduction to digital image analysis in whole-slide imaging: A white paper from the digital pathology association. J. Pathol. Inform. 2019, 10, 9. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Yang, D.M.; Rong, R.; Zhan, X.; Fujimoto, J.; Liu, H.; Minna, J.; Wistuba, I.I.; Xie, Y.; Xiao, G. Artificial intelligence in lung cancer pathology image analysis. Cancers 2019, 11, 1673. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Madabhushi, A.; Lee, G. Image analysis and machine learning in digital pathology: Challenges and opportunities. Med. Image Anal. 2016, 33, 170–175. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xiong, Y.; Ba, X.; Hou, A.; Zhang, K.; Chen, L.; Li, T. Automatic detection of mycobacterium tuberculosis using artificial intelligence. J. Thorac. Dis. 2018, 10, 1936–1940. [Google Scholar] [CrossRef] [Green Version]
- Yang, M.; Nurzynska, K.; Walts, A.E.; Gertych, A. A CNN-based active learning framework to identify mycobacteria in digitized Ziehl-Neelsen stained human tissues. Comput. Med. Imaging Graph. 2020, 84, 101752. [Google Scholar] [CrossRef]
- Asay, B.C.; Edwards, B.B.; Andrews, J.; Ramey, M.E.; Richard, J.D.; Podell, B.K.; Gutiérrez, J.F.M.; Frank, C.B.; Magunda, F.; Robertson, G.T.; et al. Digital image analysis of heterogeneous tuberculosis pulmonary pathology in non-clinical animal models using deep convolutional neural networks. Sci. Rep. 2020, 10, 6047. [Google Scholar] [CrossRef] [Green Version]
- Pham, H.H.N.; Futakuchi, M.; Bychkov, A.; Furukawa, T.; Kuroda, K.; Fukuoka, J. Detection of Lung Cancer Lymph Node Metastases from Whole-Slide Histopathologic Images Using a Two-Step Deep Learning Approach. Am. J. Pathol. 2019, 189, 2428–2439. [Google Scholar] [CrossRef]
- Im, J.G.; Itoh, H.; Shim, Y.S.; Lee, J.H.; Ahn, J.; Han, M.C.; Noma, S. Pulmonary tuberculosis: CT findings—Early active disease and sequential change with antituberculous therapy. Radiology 1993, 186, 653–660. [Google Scholar] [CrossRef] [PubMed]
- Santos, N.; Geraldes, M.; Afonso, A.; Almeida, V.; Correia-Neves, M. Diagnosis of tuberculosis in the wild boar (Sus scrofa): A comparison of methods applicable to hunter-harvested animals. PLoS ONE 2010, 5, e12663. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pantanowitz, L.; Wu, U.; Seigh, L.; LoPresti, E.; Yeh, F.C.; Salgia, P.; Michelow, P.; Hazelhurst, S.; Chen, W.Y.; Hartman, D.; et al. Artificial intelligence-based screening for mycobacteria in whole-slide images of tissue samples. Am. J. Clin. Pathol. 2021, 156, 117–128. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Hou, X.F.; Gao, L.; Deng, G.F.; Zhang, M.X.; Deng, Q.Y.; Ye, T.S.; Yang, Q.T.; Zhou, B.P.; Wen, Z.H.; et al. Indicators for prediction of Mycobacterium tuberculosis positivity detected with bronchoalveolar lavage fluid. Infect. Dis. Poverty 2018, 7, 22. [Google Scholar] [CrossRef]
- Salzman, S.H.; Schindel, M.L.; Aranda, C.P.; Smith, R.L.; Lewis, M.L. The role of bronchoscopy in the diagnosis of pulmonary tuberculosis in patients at risk for HIV infection. Chest 1992, 102, 143–146. [Google Scholar] [CrossRef]
- Walker, T.M.; Kohl, T.A.; Omar, S.V.; Hedge, J.; Elias, C.D.O.; Bradley, P.; Iqbal, Z.; Feuerriegel, S.; Niehaus, K.E.; Wilson, D.J.; et al. Whole-genome sequencing for prediction of Mycobacterium tuberculosis drug susceptibility and resistance: A retrospective cohort study. Lancet Infect. Dis. 2015, 15, 1193–1202. [Google Scholar] [CrossRef] [Green Version]
- Xie, Y.L.; Chakravorty, S.; Armstrong, D.T.; Hall, S.L.; Via, L.E.; Song, T.; Yuan, X.; Mo, X.; Zhu, H.; Xu, P.; et al. Evaluation of a rapid molecular drug-susceptibility test for tuberculosis. N. Engl. J. Med. 2017, 377, 1043–1054. [Google Scholar] [CrossRef] [Green Version]
- Cohen, K.A.; Manson, A.L.; Desjardins, C.A.; Abeel, T.; Earl, A.M. Deciphering drug resistance in Mycobacterium tuberculosis using whole-genome sequencing: Progress, promise, and challenges. Genome Med. 2019, 11, 45. [Google Scholar] [CrossRef] [Green Version]
- Jiang, F.; Huang, W.; Wang, Y.; Tian, P.; Chen, X.; Liang, Z. Nucleic acid amplification testing and sequencing combined with acid-fast staining in needle biopsy lung tissues for the diagnosis of smear-negative pulmonary tuberculosis. PLoS ONE 2016, 11, e0167342. [Google Scholar] [CrossRef] [Green Version]
Mycobacteriosis | Non-Mycobacteriosis | |
---|---|---|
Number | 16 | 26 |
Age | 71 (58–76) | 63 (46–69) |
Sex: Male | 8 (50%) | 11 (42%) |
Serological test: positive | ||
IGRA | 8 (50%) | 0 (0%) |
anti-MAC antibody * | 5 (31%) | 1 (4%) |
HRCT findings | ||
Nodular shadow | 13 (81%) | 16 (62%) |
Consolidation | 9 (56%) | 10 (38%) |
Cavity formation | 3 (19%) | 3 (12%) |
Bronchiectasis | 6 (38%) | 6 (23%) |
LN enlargement | 3 (19%) | 10 (38%) |
Final Diagnosis | ||
TB | 7 (44%) | 0 (0%) |
MAC infection | 7 (44%) | 0 (0%) |
Follow-up † | 2 (12%) | 0 (0%) |
Sarcoidosis | 0 (0%) | 10 (38%) |
Other infectious disease | 0 (0%) | 4 (15%) |
Interstitial lung disease | 0 (0%) | 3 (12%) |
Other ‡ | 0 (0%) | 9 (35%) |
TB | NTM Infection | All Mycobacteriosis | Non-Mycobacteriosis | |
---|---|---|---|---|
Number | 7 | 7 | 16 | 26 |
Bacteriological tests | ||||
Smear | 1 (14%) | 3 (43%) | 4 (25%) | 0 (0%) |
Culture | 2 (29%) | 5 (71%) | 7 (44%) | 0 (0%) |
NAAT | 2 (29%) | 7 (100%) | 9 (56%) | 0 (0%) |
Pathological tests | ||||
Pathology w/o AI | 2 (29%) | 0 (0%) | 2 (13%) | 0 (0%) |
Pathology with AI | 6 (86%) | 3 (43%) | 11 (69%) | 0 (0%) |
Smear or Culture | All Bacteriology | Pathology with AI | p-Value * | p-Value † | |
---|---|---|---|---|---|
TB (n = 7) | 2 (29%) | 2 (29%) | 6 (86%) | 0.046 | 0.046 |
NTM infection (n = 7) | 5 (71%) | 7 (100%) | 3 (43%) | 0.317 | 0.046 |
All mycobacteriosis (n = 16) | 7 (44%) | 9 (56%) | 11 (69%) | 0.206 | 0.527 |
Non-mycobacteriosis (n = 26) | 0 (0%) | 0 (0%) | 0 (0%) | N/A | N/A |
No | Age | Sex | Dx | Bacteriological Test | Pathological Test | Radiological Findings | ||||
---|---|---|---|---|---|---|---|---|---|---|
Smear | Culture | NAAT | Path w/o AI | Path with AI | AFB Count * | |||||
1 | 64 | F | TB | + | + | + | + | + | 3+ | nodular shadow, consolidation, cavity |
2 | 57 | M | TB | − | + | + | + | + | 2+ | consolidation, LN enlargement |
3 | 30 | M | TB | − | − | − | − | + | 1+ | nodular shadow, consolidation |
4 | 80 | F | TB | − | − | − | − | + | 1+ | nodular shadow, LN enlargement |
5 | 78 | F | TB | − | − | − | − | + | 2+ | nodular shadow |
6 | 55 | M | TB | − | − | − | − | + | 1+ | nodular shadow, LN enlargement |
7 | 30 | M | TB | − | − | − | − | − | − | nodular shadow, bronchiectasis |
8 | 70 | M | NTM | + | + | + | − | + | 3+ | nodular shadow, bronchiectasis |
9 | 74 | F | NTM | + | + | + | − | + | 1+ | consolidation, cavity, bronchiectasis |
10 | 62 | F | NTM | − | − | + | − | + | 1+ | nodular shadow, bronchiectasis |
11 | 71 | F | NTM | + | + | + | − | − | − | nodular shadow, consolidation, bronchiectasis |
12 | 78 | F | NTM | − | + | + | − | − | − | nodular shadow, consolidation |
13 | 70 | M | NTM | − | + | + | − | − | − | nodular shadow, consolidation |
14 | 76 | F | NTM | − | − | + | − | − | − | nodular shadow, consolidation, cavity |
15 | 74 | M | f/u | − | − | − | + | 1+ | nodular shadow | |
16 | 71 | M | f/u | − | − | − | + | 1+ | consolidation, bronchiectasis |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zaizen, Y.; Kanahori, Y.; Ishijima, S.; Kitamura, Y.; Yoon, H.-S.; Ozasa, M.; Mukae, H.; Bychkov, A.; Hoshino, T.; Fukuoka, J. Deep-Learning-Aided Detection of Mycobacteria in Pathology Specimens Increases the Sensitivity in Early Diagnosis of Pulmonary Tuberculosis Compared with Bacteriology Tests. Diagnostics 2022, 12, 709. https://doi.org/10.3390/diagnostics12030709
Zaizen Y, Kanahori Y, Ishijima S, Kitamura Y, Yoon H-S, Ozasa M, Mukae H, Bychkov A, Hoshino T, Fukuoka J. Deep-Learning-Aided Detection of Mycobacteria in Pathology Specimens Increases the Sensitivity in Early Diagnosis of Pulmonary Tuberculosis Compared with Bacteriology Tests. Diagnostics. 2022; 12(3):709. https://doi.org/10.3390/diagnostics12030709
Chicago/Turabian StyleZaizen, Yoshiaki, Yuki Kanahori, Sousuke Ishijima, Yuka Kitamura, Han-Seung Yoon, Mutsumi Ozasa, Hiroshi Mukae, Andrey Bychkov, Tomoaki Hoshino, and Junya Fukuoka. 2022. "Deep-Learning-Aided Detection of Mycobacteria in Pathology Specimens Increases the Sensitivity in Early Diagnosis of Pulmonary Tuberculosis Compared with Bacteriology Tests" Diagnostics 12, no. 3: 709. https://doi.org/10.3390/diagnostics12030709
APA StyleZaizen, Y., Kanahori, Y., Ishijima, S., Kitamura, Y., Yoon, H. -S., Ozasa, M., Mukae, H., Bychkov, A., Hoshino, T., & Fukuoka, J. (2022). Deep-Learning-Aided Detection of Mycobacteria in Pathology Specimens Increases the Sensitivity in Early Diagnosis of Pulmonary Tuberculosis Compared with Bacteriology Tests. Diagnostics, 12(3), 709. https://doi.org/10.3390/diagnostics12030709