Is Nerve Electrophysiology a Robust Primary Endpoint in Clinical Trials of Treatments for Diabetic Peripheral Neuropathy?
Abstract
:1. Introduction
2. Methods
Inclusion and Exclusion Criteria
3. Results
3.1. Protein Kinase C Beta (PKC-β) Inhibitor—Ruboxistaurin (RBX)
3.2. Aldose Reductase Inhibitors (ARI)
3.2.1. Sorbinil
3.2.2. Ranirestat
3.2.3. Zenerastat
3.2.4. Ponalrestat
3.2.5. Fidarestat
3.2.6. Tolrestat
3.3. Acetyl-L-Carnitine (Levacecarnine)
3.4. Recombinant Human Nerve Growth Factor (rhNGF)
3.5. Neurotrophic Peptide/ACTH4-9/acth (4-9)-msh (4-9) Analogue
3.6. Antioxidants—Thioctic Acid/α-lipoic Acid
3.7. Angiotensin-Converting-Enzyme (ACE) Inhibitor—Trandolapril
3.8. Fatty Acids: γ-Linolenic Acid (GLA)
3.9. C-Peptide
Study | Country | Drug | N (Total) | Multi-Centre (M) vs. Single Centre Study (S) | Outcome of the Study | Placebo Group Outcome | |
---|---|---|---|---|---|---|---|
Control | Drug | ||||||
Wahren et al. [21] | Multiple | C-Peptide | 106 | 144 | M | ↑SNCV, ↑VPT, ↔ mTNCS ↔ SNAP | ↑SNCV, ↑MNCV ↓SNAP |
Ziegler et al. [22] | Multiple | A-lipoic acid | 227 | 233 | M | ↔ NIS-LL + 7, ↔ peroneal MNCV, ↔ SNAP | ↔ NIS-LL + 7, ↔ peroneal MNCV, ↔ SNAP |
Brooks et al. [25] | Australia | Ruboxistaurin (PKCI) 32 mg | 11 | 9 | M | ↔ SkBF ↔ nerve conduction parameters | ↑peroneal NCV |
Vinik et al. [27] | Multiple | Ruboxistaurin | 68 | 137 | M | ↔/↑ VDT, ↔/↑ NTSS | ? |
Sorbinil Retinopathy Trial [29] | - | Sorbinil | 103 | 89 | - | ↓DSP, ↔ median nerve sensation + motor measures, ↑ peroneal nerve NCV, ↔DN early clinical signs and symptoms | ↓DSP, ↓peroneal MNCV |
Jennings et al. [30] | United Kingdom | Sorbinil (250 mg) | 6 | 8 | - | ↔/↑ AER, ↔ MCBMT, ↔ neurophysiology, ↓IVPR to collagen + ADP | ↓AER, ↔ MCBMT, ↑ IVPR to collagen + ADP |
O’Hare et al. [31] | United Kingdom | Sorbinil | 10 | 21 | - | ↔ Metabolic control, ↔ neuropathy severity, ↔self-assessed symptom scores, 4 neuropathic ulcers developed, ↔ clinical manifestation, ↔ neurophysiology | ↔ Metabolic control, ↔ neuropathy severity, 1 neuropathic ulcer developed |
Bril et al. [32] | Canada | Ranirestat | 134 | 415 | M | ↑ motor NCV | ↔ NCV |
Greene et al. [33] | United States of America | Zenerestat | 50 | 158 | M | ↑ NCV, ↑nerve fibre density | ↓ sural sensory MNFD, ↑ HbA1c, ↓ neurophysiology |
Brown et al. [34] | United States of America | Zenerestat | 472 | 956 | M | ↑/↔ NCS | ↓NCS, ↓QST |
Laudadio et al. [35] | United States of America | Ponalrestat | 211 | 213 | M | ↔NCS | ↓toe VPT, ↓Valsalva ratio, |
Sundkvist et al. [36] | Sweden | Ponalrestat (600 mg) | 99 | 216 | M | ↔VPT, ↔ NCV, ↔ NAPA, ↔ 30:15 ratio | ↔VPT, ↔ NCV, ↓ 30:15 ratio |
Ziegler et al. [37] | Germany | Ponalrestat | 21 | 39 | - | ↔HRV, ↔ E/I ratio, ↔ symptoms, ↔ neurophysiology | ? |
Hotta et al. [38] | Japan | Fidarestat 1 mg | 102 | 90 | M | Mostly ↑ neurophysiology, ↑ symptoms | ↔/↓ neurophysiology |
Santiago et al. [39] | United States of America | Tolrestat (200 mg/400 mg) | 192 | 180 | M | ↑MNCV, ↑ toe sensation, ameliorated pain | ↓ MNCV |
De Grandis et al. [40] | Italy | Acetyl-L-Carnitine (Levacecarnine) | 166 | 167 | M | ↑ NCV, ↑ NCA, ↑ VAS | ↑ VAS |
Apfel et al. [41] | United States of America | rhNGF | 515 | 504 | M | ↑ GSA, ↑ in 2 PBQ domains, ↔ NIS | ↔ NIS |
Bravenboer et al. [42] | Netherlands | ORG2766 | 32 | 30 | - | ↑VPT | ? |
Relanovic et al. [44] | Croatia | Thioctic acid (α-lipoic acid | 20 | 90 | M | ↑ NCS | - |
Malik et al. [45] | United Kingdom | Trandolapril | 23 | 23 | S | ↑ Peroneal MCV, ↑M-wave amplitude, ↓F-wave latency, ↑sural nerve action potential amplitude | ↔ VPT, ↔ Autonomic function, ↔ NSDS |
Keen et al. [47] | United Kingdom | ɣ-Linolenic acid | 57 | 54 | M | ↑MNCV, ↑ SNAP, ↑CMAP, ↑hot and cold thresholds, ↑ sensation, ↑ tendon reflexes, ↑ muscle strength | - |
Author | Year | Trial Length (Weeks) | Overall Participant Total | Male | Female | Ethnicity | Age in Years Mean (SD) | Aetiology of Diabetes | HbA1c (%) |
---|---|---|---|---|---|---|---|---|---|
O’Hare et al. [31] | 1988 | 60 | 31 | NS | NS | NS | NS | NS | NS |
Jennings et al. [30] | 1990 | 104 | 14 | NS | NS | NS | NS | NS | NS |
Ziegler et al. [37] | 1991 | 52 | 60 | 33 | 27 | NS | PL: 46.9 + 2.5, TX: 52.8 + 1.3 | IDDM + NIDDM | PL baseline: 9.1 ± 0.3, Range 7.3–12.2, PL at 4 weeks 8.5 ± 0.3, PL at weeks 13–529.5 ± 0.4 TX baseline: 9.5 ± 0.2, Range 7.0–12.7%, Tx at 4 weeks: 9.2 ± 0.3, TX at weeks 13–52: 9.2 ± 0.2. |
Sundkvist et al. [36] | 1992 | 78 | 315 | 246 | 69 | NS | PL: 48 ± 11, TX: 45 ± 12, Total 46 ± 12 | Insulin treated + non-insulin treated | Baseline TX 8.79 ± 2.25. Baseline PL: 8.79 ± 2.17 |
Santiago et al. [39] | 1993 | 52 | 372 | 289 | 83 | NS | PL: 57.9 ± 10.5, Range 25–78; TX: 58.1 ± 10.9, Range 26–76 | IDDM + NIDDM | PL mean 6.8 ± 1.2, range 4.1–11.2; TX: 6.7 ± 1.1, range 3.5–9.4 |
Sorbinil Retinopathy Trial [29] | 1993 | 208 | 192 | NS | NS | NS | 18–56 | IDDM | NS |
Keen et al. [47] | 1993 | 52 | 111 | 81 | 30 | NS | PL: 52.9 ± 11.4, TX: 53.3 ± 11.1 | NS | PL 9.6 ± 2.2, TX 9.7 ± 2.2 |
Bravenboer et al. [42] | 1994 | 52 | 62 | 39 | 23 | NS | PL: 47.1 + 10.7, TX: 47.5 + 12.8 | IDDM | PL 9.7 ± 2.3, TX 9.0 ± 2.5 |
Malik et al. [45] | 1998 | 52 | 46 | 46 | 0 | NS | PL: 48·2 ± 11·0 TX: 48·7 ± 11·6 | T1DM or T2DM | TX 10.1 ± 2.02; PL 10.8 ± 1.16 |
Laudadio et al. [35] | 1998 | 78 | 424 | NS | NS | NS | 18–65 IC | Conventional insulin/oral hypoglycaemic agents/dietary control | IC 6.8–15.0 |
Relanovic et al. [44] | 1999 | 102 | 110 | 28 | 37 | NS | PL: 57.3 ± 6.4, TX (600 mg): 58.1 ± 17.3, TX (1200 mg): 58.0 4 ± 5.5 | T1DM + T2DM | Baseline: PL 93 4 ± 2.2, TX (600 mg) 88 ± 1.5, TX (1200 mg) 9.1 4 ± 2.2 At 102 weeks: PL 9.14 ± 2.4, TX (600 mg) 9.2 ± 2.2, TX (1200 mg) 8.0 ± 1.5. |
Greene et al. [33] | 1999 | 52 | 208 | 127 | 81 | NS | PL: 52.0 ± 1.7, TX (300 mg): 53.4 ± 1.4, TX (600 mg): 50.0 ± 1.7, TX (1200 mg): 52.8 ± 1.8 | T1DM or T2DM | PL: 10.3 ± 0.3, TX (300 mg): 10.0 ± 0.3, TX (600 mg): 11.2 ± 0.2, TX (1200 mg) 10.4 ± 0.3 |
Apfel et al. [41] | 2000 | 52 | 1019 | 643 | 376 | NS | Baseline—PL 55.8 ± 10.4, Range 19–74, TX: 55.1 ± 11.3, Range 22–75 | T1DM (26%) or T2DM (74%) | PL mean 8.7 ± 1.8), TX 8.8 ± 1.8 |
Hotta et al. [38] | 2001 | 52 | 192 | 109 | 83 | NS | PL: 56.7 ± 0.7; TX: 57.3 ± 0.9 | Type 1—PL: 5 (4.9%), TX: 4 (4.4%). Type 2—PL: 97 (95.1%), TX: 86 (95.6%) | Baseline PL 7.9 ± 0.2; at 52 weeks 7.9 ± 0.2. Baseline TX 7.7 ± 0.1; at 52 weeks 7.9 ± 0.1 |
De Grandis et al. [40] | 2002 | 52 | 333 | NS | NS | NS | NS | NS | NS |
Brown et al. [34] | 2004 | 52 | 1428 | 872 | 556 | White 1185, Hispanic 92, Black 91 | PL: 51.9 ± 10.3, TX low dose: 52.9 ± 9.8, TX high dose: 52.5 ± 9.7 | T1DM or T2DM (N = 1161) | PL: 7.7 ± SD1.5 (range 4.8–11.7), TX low dose 7.8 ± 1.7 (4–12), TX high dose 7.8 ± 1.5 (4–12.4) |
Vinik et al. [27] | 2005 | 52 | 205 | 122 | 83 | NS | Total: 45.6 ± 8.41 | T1DM + T2DM | Total: 8.8 ± 1.49 |
Brooks et al. [25] | 2008 | 52 | 20 | 4 | 14 | NS | PL 47.8 ± 10.7; TX 51.6 ± 7.6 | T1DM or T2DM | PL 7.0 ± 1.2; TX 7.4 ± 1.5 |
Bril et al. [32] | 2009 | 52 | 549 | 342 | 207 | NS | Total: 55.6 ± 9.0 | T1DM or T2DM | Total: 8.3 ± 1.4 |
Ziegler et al. [22] | 2011 | 208 | 460 | 302 | 152 | NS | Baseline—PL 53.9 ± 7.6, TX: 53.3 ± 8.3, | 344 participants with T2DM, 110 participants with T1D | Baseline PL.8 ± 1.9, Baseline TX 8.9 ± 1.8 |
Wahren et al. [21] | 2016 | 52 | 250 | 137 | 113 | NS | PL 47.1 ± 1.2, TX 46.1 ± 1.1 | T1DM | PL: 7.9 ± 0.1, TX: 7.8 ± 0.1 |
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Shaw, J.; Zimmet, P. The epidemiology of diabetic neuropathy. Diabetes Rev. 1999, 7, 245–252. [Google Scholar]
- Skljarevski, V.; Malik, R.A. Diabetic Neuropathy: Clinical Management; Contemporary Diabetes; Malik, R.A., Veves, A., Eds.; Humana Press: Totowa, NJ, USA, 2007. [Google Scholar]
- Nascimento, O.; Pupe, C.; Cavalcanti, E. Diabetic neuropathy. Rev. Dor. 2016, 17 (Suppl. S1), 46–51. [Google Scholar] [CrossRef]
- Yorek, M.A. Vascular Impairment of Epineurial Arterioles of the Sciatic Nerve: Implications for Diabetic Peripheral Neuropathy. Rev. Diabet. Stud. RDS 2015, 12, 13–28. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gæde, P.; Lund-Andersen, H.; Parving, H.-H.; Pedersen, O. Effect of a Multifactorial Intervention on Mortality in Type 2 Diabetes. N. Engl. J. Med. 2008, 358, 580–591. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nathan, D.M.; DCCT/Edic Research Group. The diabetes control and complications trial/epidemiology of diabetes interventions and complications study at 30 years: Overview. Diabetes Care 2014, 37, 9–16. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ware, J.E.; Gandek, B. Overview of the SF-36 Health Survey and the International Quality of Life Assessment (IQOLA) Project. J. Clin. Epidemiol. 1998, 51, 903–912. [Google Scholar] [CrossRef]
- Iqbal, Z.; Azmi, S.; Yadav, R.; Ferdousi, M.; Kumar, M.; Cuthbertson, D.J.; Lim, J.; Malik, R.A.; Alam, U. Diabetic Peripheral Neuropathy: Epidemiology, Diagnosis, and Pharmacotherapy. Clin. Ther. 2018, 40, 828–849. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Javed, S.; Alam, U.; Malik, R.A. Treating Diabetic Neuropathy: Present Strategies and Emerging Solutions. Rev. Diabet. Stud. RDS 2015, 12, 63–83. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Malik, R.A. Why are there no good treatments for diabetic neuropathy? Lancet. Diabetes Endocrinol. 2014, 2, 607–609. [Google Scholar] [CrossRef]
- Quattrini, C.; Tavakoli, M.; Jeziorska, M.; Kallinikos, P.; Tesfaye, S.; Finnigan, J.; Marshall, A.; Boulton, A.J.M.; Efron, N.; Malik, R.A. Surrogate Markers of Small Fiber Damage in Human Diabetic Neuropathy. Diabetes 2007, 56, 2148–2154. [Google Scholar] [CrossRef] [Green Version]
- Dyck, P.J.; Overland, C.J.; Low, P.A.; Litchy, W.J.; Davies, J.L.; Dyck, P.J.B.; O’Brien, P.C.; (Coordinating Committee) for the Cl, vs. NPhys Trial Investigators. Signs and symptoms versus nerve conduction studies to diagnose diabetic sensorimotor polyneuropathy: Cl vs. NPhys trial. Muscle Nerve 2010, 42, 157–164. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mythili, A.; Kumar, K.D.; Subrahmanyam, K.A.; Venkateswarlu, K.; Butchi, R.G. A comparative study of examination scores and quantitative sensory testing in diagnosis of diabetic polyneuropathy. Int. J. Diabetes Dev. Ctries 2010, 30, 43–48. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jia, Z.R.; Wang, T.T.; Wang, H.X. Significance of quantitative sensory testing in the diagnosis of diabetic peripheral neuropathy. J. Clin. Neurophysiol. 2014, 31, 437–440. [Google Scholar] [CrossRef]
- Yang, Z.; Chen, R.; Zhang, Y.; Huang, Y.; Hong, T.; Sun, F.; Ji, L.; Zhan, S. Scoring systems to screen for diabetic peripheral neuropathy. Cochrane Metabolic and Endocrine Disorders Group. Cochrane Database Syst. Rev. 2018, 2018, CD010974. [Google Scholar]
- Dyck, P.J.; Albers, J.W.; Wolfe, J.; Bolton, C.F.; Walsh, N.; Klein, C.J.; Zafft, A.J.; Russell, J.W.; Thomas, K.; Davies, J.L.; et al. A trial of proficiency of nerve conduction: Greater standardization still needed. Muscle Nerve 2013, 48, 369–374. [Google Scholar] [CrossRef] [Green Version]
- Boulton AJ, M.; Malik, R.A.; Arezzo, J.C.; Sosenko, J.M. Diabetic Somatic Neuropathies. Diabetes Care 2004, 27, 1458–1486. [Google Scholar] [CrossRef] [Green Version]
- Arezzo, J.C. The use of electrophysiology for the assessment of diabetic neuropathy. Neurosci. Res. Commun. 1997, 21, 13–23. [Google Scholar] [CrossRef]
- Dyck, P.J.; Norell, J.E.; Tritschler, H.; Schuette, K.; Samigullin, R.; Ziegler, D.; Bastyr, J.E.; Litchy, W.J.; O’Brien, P.C. Challenges in Design of Multicenter Trials: End points assessed longitudinally for change and monotonicity. Diabetes Care 2007, 30, 2619–2625. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Boulton, A.J.M. Whither Clinical Research in Diabetic Sensorimotor Peripheral Neuropathy? Probl. End Point Sel. Clin. Trials 2007, 30, 2752–2753. [Google Scholar] [CrossRef] [Green Version]
- Wahren, J.; Foyt, H.; Daniels, M.; Arezzo, J.C. Long-Acting C-Peptide and Neuropathy in Type 1 Diabetes: A 12-Month Clinical Trial. Diabetes Care 2016, 39, 596–602. [Google Scholar] [CrossRef] [Green Version]
- Ziegler, D.; Low, P.A.; Litchy, W.J.; Boulton, A.J.; Vinik, A.I.; Freeman, R.; Samigullin, R.; Tritschler, H.; Munzel, U.; Dyck, P.J.; et al. Efficacy and Safety of Antioxidant Treatment With α-Lipoic Acid Over 4 Years in Diabetic Polyneuropathy: The NATHAN 1 trial. Diabetes Care 2011, 34, 2054–2060. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bansal, D.; Badhan, Y.; Gudala, K.; Schifano, F. Ruboxistaurin for the treatment of diabetic peripheral neuropathy: A systematic review of randomized clinical trials. Diabetes Metab. J. 2013, 37, 375–384. [Google Scholar] [CrossRef] [Green Version]
- Boyd, A.; Casselini, C.; Vinik, E.; Vinik, A. Quality of life and objective measures of diabetic neuropathy in a prospective placebo-controlled trial of ruboxistaurin and topiramate. J. Diabetes Sci. Technol. 2011, 5, 714–722. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brooks, B.; Delaney-Robinson, C.; Molyneaux, L.; Yue, D.K. Endothelial and neural regulation of skin microvascular blood flow in patients with diabetic peripheral neuropathy: Effect of treatment with the isoform-specific protein kinase C beta inhibitor, ruboxistaurin. J. Diabetes Its Complicat. 2008, 22, 88–95. [Google Scholar] [CrossRef]
- Tesfaye, S.; Tandan, R.; Bastyr, E.J., III; Kles, K.A.; Skljarevski, V.; Price, K.L.; Ruboxistaurin Study Group. Factors That Impact Symptomatic Diabetic Peripheral Neuropathy in Placebo-Administered Patients From Two 1-Year Clinical Trials. Diabetes Care 2007, 30, 2626–2632. [Google Scholar] [CrossRef] [Green Version]
- Vinik, A.I.; Bril, V.; Kempler, P.; Litchy, W.J.; Tesfaye, S.; Price, K.L.; Bastyr, E.J., III; MBBQ Study Group. Treatment of symptomatic diabetic peripheral neuropathy with the protein kinase C beta-inhibitor ruboxistaurin mesylate during a 1-year, randomized, placebo-controlled, double-blind clinical trial. Clin. Ther. 2005, 27, 1164–1180. [Google Scholar] [CrossRef] [PubMed]
- Chalk, C.; Benstead, T.J.; Moore, F. Aldose reductase inhibitors for the treatment of diabetic polyneuropathy. Cochrane Database Syst. Rev. 2007, Cd004572. [Google Scholar] [CrossRef]
- Sorbinil Retinopathy Trial Research Group. The sorbinil retinopathy trial: Neuropathy results. Neurology 1993, 43, 1141–1149. [Google Scholar] [CrossRef]
- Jennings, P.E.; Nightingale, S.; Guen, C.L.; Lawson, N.; Williamson, J.R.; Hoffman, P.; Barnett, A.H. Prolonged aldose reductase inhibition in chronic peripheral diabetic neuropathy: Effects on microangiopathy. Diabet. Med. A J. Br. Diabet. Assoc. 1990, 7, 63–68. [Google Scholar] [CrossRef]
- O’Hare, J.P.; Morgan, M.H.; Alden, P.; Chissel, S.; O’Brien IA, D.; Corrall, R.J.M. Aldose reductase inhibition in diabetic neuropathy: Clinical and neurophysiological studies of one year’s treatment with sorbinil. Diabet. Med. A J. Br. Diabet. Assoc. 1988, 5, 537–542. [Google Scholar] [CrossRef] [PubMed]
- Bril, V.; Hirose, T.; Tomioka, S.; Buchanan, R. Ranirestat for the management of diabetic sensorimotor polyneuropathy. Diabetes Care 2009, 32, 1256–1260. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Greene, D.A.; Arezzo, J.C.; Brown, M.B. Effect of aldose reductase inhibition on nerve conduction and morphometry in diabetic neuropathy. Zenarestat Study Group. Neurology 1999, 53, 580–591. [Google Scholar] [CrossRef] [PubMed]
- Brown, M.J.; Bird, S.J.; Watling, S.; Kaleta, H.; Hayes, L.; Eckert, S.; Foyt, H.L. Natural progression of diabetic peripheral neuropathy in the Zenarestat study population. Diabetes Care 2004, 27, 1153–1159. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Laudadio, C.; Sima, A.A. Progression rates of diabetic neuropathy in placebo patients in an 18-month clinical trial. Ponalrestat Study Group. J. Diabetes Its Complicat. 1998, 12, 121–127. [Google Scholar] [CrossRef]
- Sundkvist, G.; Armstrong, F.M.; Bradbury, J.E.; Chaplin, C.; Ellis, S.H.; Owens, D.R.; Rosén, I.; Sönksen, S.; United Kingdom/Scandinavian Ponalrestat Trial. Peripheral and autonomic nerve function in 259 diabetic patients with peripheral neuropathy treated with ponalrestat (an aldose reductase inhibitor) or placebo for 18 months. J. Diabetes Its Complicat. 1992, 6, 123–130. [Google Scholar] [CrossRef]
- Ziegler, D.; Mayer, P.; Rathmann, W.; Gries, F.A. One-year treatment with the aldose reductase inhibitor, ponalrestat, in diabetic neuropathy. Diabetes Res. Clin. Pract. 1991, 14, 63–73. [Google Scholar] [CrossRef]
- Hotta, N.; Toyota, T.; Matsuoka, K.; Shigeta, Y.; Kikkawa, R.; Kaneko, T.; Takahashi, A.; Sugimura, K.; Koike, Y.; Ishii, J.; et al. Clinical efficacy of fidarestat, a novel aldose reductase inhibitor, for diabetic peripheral neuropathy: A 52-week multicenter placebo-controlled double-blind parallel group study. Diabetes Care 2001, 24, 1776–1782. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Santiago, J.V.; Sönksen, P.H.; Boulton, A.J.; Macleod, A.; Beg, M.; Bochenek, W.; Graepel, G.J.; Gonen, B.; Tolrestat Study Group. Withdrawal of the aldose reductase inhibitor tolrestat in patients with diabetic neuropathy: Effect on nerve function. J. Diabetes Its Complicat. 1993, 7, 170–178. [Google Scholar] [CrossRef]
- De Grandis, D.; Minardi, C. Acetyl-L-carnitine (levacecarnine) in the treatment of diabetic neuropathy. A long-term, randomised, double-blind, placebo-controlled study. Drugs RD 2002, 3, 223–231. [Google Scholar] [CrossRef] [PubMed]
- Apfel, S.C.; Schwartz, S.; Adornato, B.T.; Freeman, R.; Biton, V.; Rendell, M.; Vinik, A.; Giuliani, M.; Stevens, J.C.; Barbano, R.; et al. Efficacy and safety of recombinant human nerve growth factor in patients with diabetic polyneuropathy: A randomized controlled trial. JAMA 2000, 284, 2215–2221. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bravenboer, B.; Hendrikse, P.H.; Oey, P.L.; Van Huffelen, A.C.; Groenhout, C.; Gispen, W.H.; Erkelens, D.W. Randomized double-blind placebo-controlled trial to evaluate the effect of the ACTH4-9 analogue ORG 2766 in IDDM patients with neuropathy. Diabetologia 1994, 37, 408–413. [Google Scholar] [CrossRef] [PubMed]
- Agathos, E.; Tentolouris, A.; Eleftheriadou, I.; Katsaouni, P.; Nemtzas, I.; Petrou, A.; Papanikolaou, C.; Tentolouris, N. Effect of alpha-lipoic acid on symptoms and quality of life in patients with painful diabetic neuropathy. J. Int. Med. Res. 2018, 46, 1779–1790. [Google Scholar] [CrossRef]
- Reljanovic, M.; Reichel, G.; Rett, K.; Lobisch, M.; Schuette, K.; Möller, W.; Tritschler, H.-J.; Mehnert, H. Treatment of diabetic polyneuropathy with the antioxidant thioctic acid (alpha-lipoic acid): A two year multicenter randomized double-blind placebo-controlled trial (ALADIN II). Alpha Lipoic Acid in Diabetic Neuropathy. Free Radic. Res. 1999, 31, 171–179. [Google Scholar] [CrossRef]
- Malik, R.A.; Williamson, S.; Abbott, C.; Carrington, A.L.; Iqbal, J.; Schady, W.; Boulton, A.J. Effect of angiotensin-converting-enzyme (ACE) inhibitor trandolapril on human diabetic neuropathy: Randomised double-blind controlled trial. Lancet 1998, 352, 1978–1981. [Google Scholar] [CrossRef]
- Horrobin, D.F. The use of gamma-linolenic acid in diabetic neuropathy. Agents Actions Suppl. 1992, 37, 120–144. [Google Scholar] [CrossRef]
- Keen, H.; Payan, J.; Allawi, J.; Walker, J.; Jamal, G.A.; Weir, A.I.; Henderson, L.M.; Bissessar, E.A.; Watkins, P.J.; γ-Linolenic Acid Multicenter Trial Group; et al. Treatment of diabetic neuropathy with gamma-linolenic acid. Diabetes Care 1993, 16, 8–15. [Google Scholar] [CrossRef]
- Malik, R.A. International Review of Neurobiology; Calcutt, N.A., Fernyhough, P., Eds.; Academic Press: Cambridge, MA, USA, 2016; Volume 127, pp. 287–317. [Google Scholar]
- Fadavi, H.; Tavakoli, M.; Foden, P.; Ferdousi, M.; Petropoulos, I.N.; Jeziorska, M.; Chaturvedi, N.; Boulton, A.J.M.; Malik, R.A.; Abbott, C.A. Explanations for less small fibre neuropathy in South Asian versus European subjects with type 2 diabetes in the UK. Diabetes/Metab. Res. Rev. 2018, 34, e3044. [Google Scholar] [CrossRef]
- Perkins, B.A.; Dholasania, A.; Buchanan, R.A.; Bril, V. Short-term metabolic change is associated with improvement in measures of diabetic neuropathy: A 1-year placebo cohort analysis. Diabet. Med. A J. Br. Diabet. Assoc. 2010, 27, 1271–1279. [Google Scholar] [CrossRef] [PubMed]
- Malik, R.A.; Veves, A.; Tesfaye, S.; Smith, G.; Cameron, N.; Zochodne, D.; Lauria, G.; Toronto Consensus Panel on Diabetic Neuropathy. Small fibre neuropathy: Role in the diagnosis of diabetic sensorimotor polyneuropathy. Diabetes/Metab. Res. Rev. 2011, 27, 678–684. [Google Scholar] [CrossRef]
- Najafi, M.; Hasanzadeh, G.; Hadian, M.R.; Musa, A.E.; Shirazi, A. Electrophysiological measurements of diabetic peripheral neuropathy: A systematic review. Diabetes Metab. Syndr. Clin. Res. Rev. 2018, 12, 591–600. [Google Scholar] [CrossRef]
- Malik, R.A.; Tesfaye, S.; Newrick, P.G.; Walker, D.; Rajbhandari, S.M.; Siddique, I.; Sharma, A.K.; Boulton, A.J.M.; King, R.H.M.; Ward, J.D.; et al. Sural nerve pathology in diabetic patients with minimal but progressive neuropathy. Diabetologia 2005, 48, 578–585. [Google Scholar] [CrossRef]
- Bevilacqua, N.J.; Rogers, L.C.; Malik, R.A.; Armstrong, D.G. Technique of the sural nerve biopsy. J. Foot Ankle Surg. 2007, 46, 139–142. [Google Scholar] [CrossRef] [PubMed]
- Lauria, G.; Devigili, G. Skin biopsy as a diagnostic tool in peripheral neuropathy. Nat. Clin. Practice. Neurol. 2007, 3, 546–557. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lauria, G.; Lombardi, R.; Camozzi, F.; Devigili, G. Skin biopsy for the diagnosis of peripheral neuropathy. Histopathology 2009, 54, 273–285. [Google Scholar] [CrossRef] [PubMed]
- Smith, A.G.; Howard, J.R.; Kroll, R.; Ramachandran, P.; Hauer, P.; Singleton, J.R.; McArthur, J. The reliability of skin biopsy with measurement of intraepidermal nerve fiber density. J. Neurol. Sci. 2005, 228, 65–69. [Google Scholar] [CrossRef] [PubMed]
- Lauria, G.; Bakkers, M.; Schmitz, C.; Lombardi, R.; Penza, P.; Devigili, G.; Smith, A.G.; Hsieh, S.-T.; Mellgren, S.I.; Merkies, I.S.; et al. Intraepidermal nerve fiber density at the distal leg: A worldwide normative reference study. J. Peripher. Nerv. Syst. JPNS 2010, 15, 202–207. [Google Scholar] [CrossRef] [PubMed]
- Hossain, P.; Sachdev, A.; Malik, R.A. Early detection of diabetic peripheral neuropathy with corneal confocal microscopy. Lancet 2005, 366, 1340–1343. [Google Scholar] [CrossRef]
- Petropoulos, I.N.; Alam, U.; Fadavi, H.; Asghar, O.; Green, P.; Ponirakis, G.; Marshall, A.; Boulton, A.J.M.; Tavakoli, M.T.; Malik, R.A. Corneal Nerve Loss Detected With Corneal Confocal Microscopy Is Symmetrical and Related to the Severity of Diabetic Polyneuropathy. Diabetes Care 2013, 36, 3646–3651. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Petropoulos, I.N.; Manzoor, T.; Morgan, P.; Fadavi, H.; Asghar, O.; Alam, U.; Ponirakis, G.; Dabbah, M.A.; Chen, X.; Malik, R.A.; et al. Repeatability of in vivo corneal confocal microscopy to quantify corneal nerve morphology. Cornea 2013, 32, e83–e89. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Petropoulos, I.N.; Alam, U.; Fadavi, H.; Marshall, A.; Asghar, O.; Dabbah, M.A.; Chen, X.; Graham, J.; Ponirakis, G.; Malik, R.A.; et al. Rapid Automated Diagnosis of Diabetic Peripheral Neuropathy With In Vivo Corneal Confocal Microscopy. Investig. Ophthalmol. Vis. Sci. 2014, 55, 2071–2078. [Google Scholar] [CrossRef] [PubMed]
- Alam, U.; Jeziorska, M.; Petropoulos, I.N.; Asghar, O.; Fadavi, H.; Ponirakis, G.; Marshall, A.; Tavakoli, M.; Boulton, A.J.M.; Malik, R.A.; et al. Diagnostic utility of corneal confocal microscopy and intra-epidermal nerve fibre density in diabetic neuropathy. PLoS ONE 2017, 12, e0180175. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, X.; Graham, J.; Dabbah, M.A.; Petropoulos, I.N.; Ponirakis, G.; Asghar, O.; Alam, U.; Marshall, A.; Fadavi, H.; Malik, R.A.; et al. Small nerve fiber quantification in the diagnosis of diabetic sensorimotor polyneuropathy: Comparing corneal confocal microscopy with intraepidermal nerve fiber density. Diabetes Care 2015, 38, 1138–1144. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pritchard, N.; Edwards, K.; Russell, A.W.; Perkins, B.A.; Malik, R.A.; Efron, N. Corneal confocal microscopy predicts 4-year incident peripheral neuropathy in type 1 diabetes. Diabetes Care 2015, 38, 671–675. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tavakoli, M.; Mitu-Pretorian, M.; Petropoulos, I.N.; Fadavi, H.; Asghar, O.; Alam, U.; Ponirakis, G.; Jeziorska, M.; Marshall, A.; Malik, R.A.; et al. Corneal confocal microscopy detects early nerve regeneration in diabetic neuropathy after simultaneous pancreas and kidney transplantation. Diabetes 2013, 62, 254–260. [Google Scholar] [CrossRef] [Green Version]
- Mehra, S.; Tavakoli, M.; Kallinikos, P.A.; Efron, N.; Boulton, A.J.; Augustine, T.; Malik, R.A. Corneal confocal microscopy detects early nerve regeneration after pancreas transplantation in patients with type 1 diabetes. Diabetes Care 2007, 30, 2608–2612. [Google Scholar] [CrossRef] [Green Version]
- Azmi, S.; Jeziorska, M.; Ferdousi, M.; Petropoulos, I.N.; Ponirakis, G.; Marshall, A.; Alam, U.; Asghar, O.; Atkinson, A.; Malik, R.A.; et al. Early nerve fibre regeneration in individuals with type 1 diabetes after simultaneous pancreas and kidney transplantation. Diabetologia 2019, 62, 1478–1487. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Adam, S.; Azmi, S.; Ho, J.H.; Liu, Y.; Ferdousi, M.; Siahmansur, T.; Kalteniece, A.; Marshall, A.; Dhage, S.S.; Soran, H.; et al. Improvements in Diabetic Neuropathy and Nephropathy After Bariatric Surgery: A Prospective Cohort Study. Obes. Surg. 2021, 31, 554–563. [Google Scholar] [CrossRef]
- Ponirakis, G.; Abdul-Ghani, M.A.; Jayyousi, A.; Almuhannadi, H.; Petropoulos, I.N.; Khan, A.; Gad1, H.; Migahid, O.; Megahed, A.; Malik, R.A.; et al. Effect of treatment with exenatide and pioglitazone or basal-bolus insulin on diabetic neuropathy: A substudy of the Qatar Study. BMJ Open Diabetes Res. Care 2020, 8, e001420. [Google Scholar] [CrossRef] [PubMed]
- Azmi, S.; Ferdousi, M.; Petropoulos, I.N.; Ponirakis, G.; Fadavi, H.; Tavakoli, M.; Alam, U.; Jones, W.; Marshall, A.; Malik, R.A.; et al. Corneal confocal microscopy shows an improvement in small-fiber neuropathy in subjects with type 1 diabetes on continuous subcutaneous insulin infusion compared with multiple daily injection. Diabetes Care 2015, 38, e3–e4. [Google Scholar] [CrossRef] [Green Version]
- Brines, M.; Culver, D.A.; Ferdousi, M.; Tannemaat, M.; Van Velzen, M.; Dahan, A.; Malik, R.A. Corneal nerve fiber size adds utility to the diagnosis and assessment of therapeutic response in patients with small fiber neuropathy. Sci. Rep. 2018, 8, 4734. [Google Scholar] [CrossRef] [Green Version]
- Brines, M.; Dunne, A.N.; Van Velzen, M.; Proto, P.L.; Ostenson, C.-G.; Kirk, R.I.; Petropoulos, I.N.; Javed, S.; Malik, R.A.; Cerami, A.; et al. ARA 290, a nonerythropoietic peptide engineered from erythropoietin, improves metabolic control and neuropathic symptoms in patients with type 2 diabetes. Mol. Med. 2015, 20, 658–666. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Britten-Jones, A.C.; Kamel, J.T.; Roberts, L.J.; Braat, S.; Craig, J.P.; MacIsaac, R.J.; Downie, L.E. Investigating the Neuroprotective Effect of Oral Omega-3 Fatty Acid Supplementation in Type 1 Diabetes (nPROOFS1): A Randomized Placebo-Controlled Trial. Diabetes 2021, 70, 1794–1806. [Google Scholar] [CrossRef] [PubMed]
- Lewis, E.J.; Perkins, B.A.; Lovblom, L.E.; Bazinet, R.P.; Wolever, T.M.; Bril, V. Effect of omega-3 supplementation on neuropathy in type 1 diabetes: A 12-month pilot trial. Neurology 2017, 88, 2294–2301. [Google Scholar] [CrossRef] [PubMed]
- Petropoulos, I.N.; Ponirakis, G.; Khan, A.; Gad, H.; Almuhannadi, H.; Brines, M.; Cerami, A.; Malik, R.A. Corneal confocal microscopy: Ready for prime time. Clin. Exp. Optom. 2020, 103, 265–277. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Al-Bazz, D.Y.; Nelson, A.J.; Burgess, J.; Petropoulos, I.N.; Nizza, J.; Marshall, A.; Brown, E.; Cuthbertson, D.J.; Marshall, A.G.; Malik, R.A.; et al. Is Nerve Electrophysiology a Robust Primary Endpoint in Clinical Trials of Treatments for Diabetic Peripheral Neuropathy? Diagnostics 2022, 12, 731. https://doi.org/10.3390/diagnostics12030731
Al-Bazz DY, Nelson AJ, Burgess J, Petropoulos IN, Nizza J, Marshall A, Brown E, Cuthbertson DJ, Marshall AG, Malik RA, et al. Is Nerve Electrophysiology a Robust Primary Endpoint in Clinical Trials of Treatments for Diabetic Peripheral Neuropathy? Diagnostics. 2022; 12(3):731. https://doi.org/10.3390/diagnostics12030731
Chicago/Turabian StyleAl-Bazz, Dalal Y., Andrew J. Nelson, Jamie Burgess, Ioannis N. Petropoulos, Jael Nizza, Anne Marshall, Emily Brown, Daniel J. Cuthbertson, Andrew G. Marshall, Rayaz A. Malik, and et al. 2022. "Is Nerve Electrophysiology a Robust Primary Endpoint in Clinical Trials of Treatments for Diabetic Peripheral Neuropathy?" Diagnostics 12, no. 3: 731. https://doi.org/10.3390/diagnostics12030731
APA StyleAl-Bazz, D. Y., Nelson, A. J., Burgess, J., Petropoulos, I. N., Nizza, J., Marshall, A., Brown, E., Cuthbertson, D. J., Marshall, A. G., Malik, R. A., & Alam, U. (2022). Is Nerve Electrophysiology a Robust Primary Endpoint in Clinical Trials of Treatments for Diabetic Peripheral Neuropathy? Diagnostics, 12(3), 731. https://doi.org/10.3390/diagnostics12030731