Intracranial Flow Volume Estimation in Patients with Internal Carotid Artery Occlusion
Abstract
:1. Introduction
2. Materials and Methods
Statistical Analysis
3. Results
- Section 3.1—the number and percentage of patients with total CBF changes in different age groups.
- Section 3.2—the differences between the flow volume in the arteries with “significant compensation” and the reference values.
- Section 3.3—the pathways of collateral circulation—the number and percentage of arteries with compensatory increased flow volume, as well as side-by-side differences (contralateral vs. ipsilateral vessels).
- Section 3.4—Correlation of CBF and flow volumes in extracranial arteries with age.
- Section 3.5—Comparison of the number of male and female participants in our study group, by increasing age.
3.1. Cerebral Blood Flow Volume in the Whole Study Group (46 Patients)
3.2. The Degree of Compensation in Extracranial Arteries with Compensatory Increased Flow
3.3. The Pathways of Volumetric Flow Compensation in the Extracranial Arteries
- 23 contralateral ICA
- 16 contralateral ECA
- 17 contralateral VA
- 23 ipsilateral ECA
- 22 ipsilateral VA.
3.4. The Correlation between Volumetric Flow Compensation, Cerebral Blood Flow Volume, and Age
3.5. Number of Male and Female Patients in Study Group
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Sigvant, B.; Wiberg-Hedman, K.; Bergqvist, D.; Rolandsson, O.; Andersson, B.; Persson, E.; Wahlberg, E. A population-based study of peripheral arterial disease prevalence with special focus on critical limb ischemia and sex differences. J. Vasc. Surg. 2007, 45, 1185–1191. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- WHO: The Atlas of Heart Disease and Stroke: Global Burden of Stroke. Available online: http://www.who.int/cardiovascular_diseases/resources/atlas/en (accessed on 28 May 2019).
- Ornello, R.; Degan, D.; Tiseo, C.; Di Carmine, C.; Perciballi, L.; Pistoia, F.; Carolei, A.; Sacco, S. Distribution and Temporal Trends From 1993 to 2015 of Ischemic Stroke Subtypes: A Systematic Review and Meta-Analysis. Stroke 2018, 49, 814–819. [Google Scholar] [CrossRef] [PubMed]
- Barrett, K.M.; Brott, T.G. Stroke Caused by Extracranial Disease. Circ. Res. 2017, 120, 496–501. [Google Scholar] [CrossRef] [PubMed]
- Kaszczewski, P.; Elwertowski, M.; Leszczynski, J.; Ostrowski, T.; Galazka, Z. Volumetric Carotid Flow Characteristics in Doppler Ultrasonography in Healthy Population Over 65 Years Old. J. Clin. Med. 2020, 9, 1375. [Google Scholar] [CrossRef]
- Aboyans, V.; Ricco, J.B.; Bartelink, M.L.; Björck, M.; Brodmann, M.; Cohnert, T.; Collet, J.P.; Czerny, M.; De Carlo, M.; Debus, S. Editor’s Choice-2017 ESC Guidelines on the Diagnosis and Treatment of Peripheral Arterial Diseases, in collaboration with the European Society for Vascular Surgery (ESVS). Eur. J. Vasc. Endovasc. Surg. 2018, 55, 305–368. [Google Scholar] [CrossRef] [Green Version]
- Mechtouff, L.; Rascle, L.; Crespy, V.; Canet-Soulas, E.; Nighoghossian, N.; Millon, A. A narrative review of the pathophysiology of ischemic stroke in carotid plaques: A distinction versus a compromise between hemodynamic and embolic mechanism. Ann. Transl. Med. 2021, 9, 1208. [Google Scholar] [CrossRef]
- Hossmann, K.-A.; Heiss, W.-D. History of the Letzte Wiese/Last Meadow Concept of Brain Ischemia. Stroke 2016, 47, e46–e50. [Google Scholar] [CrossRef] [Green Version]
- Romero, J.R.; Pikula, A.; Nguyen, T.N.; Nien, Y.L.; Norbash, A.; Babikian, V.L. Cerebral Collateral Circulation in Carotid Artery Disease. Curr. Cardiol. Rev. 2009, 5, 279–288. [Google Scholar] [CrossRef] [Green Version]
- Kaszczewski, P.; Elwertowski, M.; Leszczyński, J.; Ostrowski, T.; Gałązka, Z. CAR 5. Carotid flow volume measurement in Doppler ultrasound as a new look at the diagnosis of internal carotid artery stenosis. J. Vasc. Surg. 2019, 70, e162. [Google Scholar] [CrossRef]
- Kaszczewski, P.; Elwertowski, M.; Leszczyński, J.; Ostrowski, T.; Gałązka, Z. Volumetric Flow Assessment in Doppler Ultra-sonography in Risk Stratification of Patients with In-ternal Carotid Stenosis and Occlusion. J. Clin. Med. 2022, 11, 531. [Google Scholar] [CrossRef]
- Alexandre, A.M.; Visconti, E.; Schiarelli, C.; Frassanito, P.; Pedicelli, A. Bilateral Internal Carotid Artery Segmental Agenesis: Em-bryology, Common Collateral Pathways, Clinical Presentation, and Clinical Importance of a Rare Condition. World Neurosurg. 2016, 95, e9–e620. [Google Scholar] [CrossRef]
- Leszczyński, J.; Kaszczewski, P.; Elwertowski, M.; Stępkowski, K.; Maciąg, R.; Elwertowska, A.; Gałązka, Z. Volumetric Flow Changes in Extracranial Arteries in a Symptomatic Patient with Significant Bilateral Carotid Artery Stenosis: A Case Study and Literature Review. Am. J. Case Rep. 2020, 21, e927202. [Google Scholar] [CrossRef] [PubMed]
- Elwertowski, M.; Leszczyński, J.; Kaszczewski, P.; Lamparski, K.; Ho, S.S.Y.; Gałązka, Z. The importance of blood flow volume in the brain-supplying arteries for the clinical management-the impact of collateral circulation. J. Ultrason. 2018, 18, 112–119. [Google Scholar] [CrossRef]
- Bryan, D.S.; Carson, J.; Hall, H.; He, Q.; Qato, K.; Lozanski, L.; McCormick, S.; Skelly, C.L. Natural History of Carotid Artery Occlusion. Ann. Vasc. Surg. 2013, 27, 186–193. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Flaherty, M.L.; Flemming, K.D.; McClelland, R.; Jorgensen, N.W.; Brown, R.D., Jr. Population-based study of symptomatic internal carotid artery occlusion: Incidence and long-term follow-up. Stroke 2004, 35, e349–e352. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fritz, V.U.; Voll, C.L.; Levien, L.J. Internal carotid artery occlusion: Clinical and therapeutic implications. Stroke 1985, 16, 940–944. [Google Scholar] [CrossRef] [Green Version]
- Maatz, W.; Köhler, J.; Botsios, S.; John, V.; Walterbusch, G. Risk of Stroke for Carotid Endarterectomy Patients with Contralateral Carotid Occlusion. Ann. Vasc. Surg. 2008, 22, 45–51. [Google Scholar] [CrossRef]
- Touzé, E.; Trinquart, L.; Chatellier, G.; Mas, J.-L. Systematic Review of the Perioperative Risks of Stroke or Death after Carotid Angioplasty and Stenting. Stroke 2009, 40, e683–e693. [Google Scholar] [CrossRef] [Green Version]
- AbuRahma, A.F.; Stone, P.A.; Abu-Halimah, S.; Welch, C.A. Natural history of carotid artery occlusion contralateral to carotid endarterec-tomy. J. Vasc. Surg. 2006, 44, 62–66. [Google Scholar] [CrossRef] [Green Version]
- Kulik, T.; Kusano, Y.; Aronhime, S.; Sandler, A.L.; Winn, H.R. Regulation of cerebral vasculature in normal and ischemic brain. Neuropharmacology 2008, 55, 281–288. [Google Scholar] [CrossRef] [Green Version]
- Alexander, J.J.; Moawad, J.; Super, D. Outcome Analysis of Carotid Artery Occlusion. Vasc. Endovasc. Surg. 2007, 41, 409–416. [Google Scholar] [CrossRef] [PubMed]
- Powers, W.J.; Derdeyn, C.P.; Fritsch, S.M.; Carpenter, D.A.; Yundt, K.D.; Videen, T.O.; Grubb, R.L. Benign prognosis of never-symptomatic carotid occlusion. Neurology 2000, 54, 878–882. [Google Scholar] [CrossRef] [PubMed]
- Fang, H.; Song, B.; Cheng, B.; Wong, K.S.; Xu, Y.M.; Ho, S.S.Y.; Chen, X.Y. Compensatory patterns of collateral flow in stroke patients with unilateral and bilateral carotid stenosis. BMC Neurol. 2016, 16, 39. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sundaram, S.; Kannoth, S.; Thomas, B.; Sarma, P.; Sylaja, P. Collateral Assessment by CT Angiography as a Predictor of Outcome in Symptomatic Cervical Internal Carotid Artery Occlusion. Am. J. Neuroradiol. 2017, 38, 52–57. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, Y.; Zhu, L.; Hou, B.; Wang, T.; Xu, D.; Tan, C.; Zhang, H.; Li, C.; Wang, J. Study on the correlation between the circle of Willis structure and collateral circulation in bilateral carotid artery occlusion. Neurol. Sci. 2021, 42, 5335–5342. [Google Scholar] [CrossRef]
- Zarrinkoob, L.; Wåhlin, A.; Ambarki, K.; Birgander, R.; Eklund, A.; Malm, J. Blood Flow Lateralization and Collateral Compensatory Mechanisms in Patients With Carotid Artery Stenosis. Stroke 2019, 50, 1081–1088. [Google Scholar] [CrossRef]
- Nicolau, C.; Gilabert, R.; García, Á.; Blasco, J.; Chamorro, Á.; Brú, C. Effect of internal carotid artery occlusion on vertebral artery blood flow: A duplex ul-trasonographic evaluation. J. Ultrasound Med. 2001, 20, 105–111. [Google Scholar] [CrossRef] [Green Version]
- Van Laar, P.J.; van der Grond, J.; Bremmer, J.P.; Klijn, C.J.; Hendrikse, J. Assessment of the contribution of the external carotid artery to brain perfusion in patients with internal carotid artery occlusion. Stroke 2008, 39, 3003–3008. [Google Scholar] [CrossRef] [Green Version]
- Fields, W.S.; Brustrnan, M.E.; Wribel, J. Collateral circulation of the brain. Monogr. Surg. Sci. 1965, 2, 183–259. [Google Scholar]
- Zarins, C.K.; DelBeccaro, E.J.; Johns, L.; Turcotte, J.K.; Dohrmann, G.J. Increased cerebral blood flow after external carotid artery revascularization. Surgery 1981, 89, 730–734. [Google Scholar]
- Sterpetti, A.V.; Schultz, R.D.; Feldhaus, R.J. External carotid endarterectomy: Indications, technique, and late results. J. Vasc. Surg. 1988, 7, 31–39. [Google Scholar] [CrossRef] [Green Version]
- Geibprasert, S.; Pongpech, S.; Armstrong, D.; Krings, T. Dangerous Extracranial–Intracranial Anastomoses and Supply to the Cranial Nerves: Vessels the Neurointerventionalist Needs to Know. Am. J. Neuroradiol. 2009, 30, 1459–1468. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, R.M. Morphology of cerebral arteries. Pharmacol. Ther. 1995, 66, 149–173. [Google Scholar] [CrossRef]
- Vrselja, Z.; Brkić, H.; Mrdenovic, S.; Radic, R.; Curic, G. Function of Circle of Willis. J. Cereb. Blood Flow Metab. 2014, 34, 578–584. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Iqbal, S. A Comprehensive Study of the Anatomical Variations of the Circle of Willis in Adult Human Brains. J. Clin. Diagn. Res. 2013, 7, 2423–2427. [Google Scholar] [CrossRef] [PubMed]
- De Silva, K.R.D.; Silva, R.; Gunasekera, W.S.L.; Jeyesekera, R.W. Prevalence of typical circle of Willis and the variation in the anterior communicating artery: A study of a Sri Lankan population. Ann. Indian Acad. Neurol. 2009, 12, 157–161. [Google Scholar] [CrossRef]
- Fawcett, E.; Blachford, J.V. The Circle of Willis: An Examination of 700 Specimens. J. Anat. Physiol. 1905, 40, 63–70. [Google Scholar]
- Chuang, Y.M.; Liu, C.Y.; Pan, P.J.; Lin, C.P. Posterior communicating artery hypoplasia as a risk factor for acute ischemic stroke in the absence of carotid artery occlusion. J. Clin. Neurosci. 2008, 15, 1376–1381. [Google Scholar] [CrossRef]
- Shahan, C.P.; Gray, R.I.; Croce, M.A.; Fabian, T.C. Impact of circle of Willis anatomy in traumatic blunt cerebrovascular injury-related stroke. Trauma Surg. Acute Care Open 2017, 2, e000086. [Google Scholar] [CrossRef] [Green Version]
- Van Seeters, T.; Biessels, G.J.; Kappelle, L.J.; van der Graaf, Y.; Velthuis, B.K. Determinants of leptomeningeal collateral flow in stroke patients with a middle cerebral artery occlusion. Neuroradiology 2016, 58, 969–977. [Google Scholar] [CrossRef] [Green Version]
- Van Seeters, T.; Hendrikse, J.; Biessels, G.J.; Velthuis, B.K.; Mali, W.P.; Kappelle, L.J.; van der Graaf, Y. Completeness of the circle of Willis and risk of ischemic stroke in patients without cerebrovascular disease. Neuroradiology 2015, 57, 1247–1251. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Eldrea, H.; Arben, R.; Gabran, S. Anatomical variations of circle of Willis in adult human brains: A case control study in Albania. Manag. Health 2014, 18, 33–35. [Google Scholar]
- Badacz, R.; Przewłocki, T.; Karch, I.; Pieniążek, P.; Rosławiecka, A.; Mleczko, S.; Brzychczy, A.; Trystuła, M.; Zmudka, K.; Kabłak-Ziembicka, A. Low prevalence of collateral cerebral circulation in the circle of Willis in patients with severe carotid artery stenosis and recent ischemic stroke. Adv. Interv. Cardiol. 2015, 4, 312–317. [Google Scholar] [CrossRef] [Green Version]
- Oumer, M.; Alemayehu, M.; Muche, A. Association between circle of Willis and ischemic stroke: A systematic review and meta-analysis. BMC Neurosci. 2021, 22, 3. [Google Scholar] [CrossRef]
- Jongen, L.; van der Worp, H.; Waaijer, A.; van der Graaf, Y.; Mali, W. Interrelation between the Degree of Carotid Stenosis, Collateral Circulation and Cerebral Perfusion. Cerebrovasc. Dis. 2010, 30, 277–284. [Google Scholar] [CrossRef]
- Myrcha, P.; Lewczuk, A.; Jakuciński, M.; Kozak, M.; Siemieniuk, D.; Różański, D.; Koziorowski, D.; Woźniak, W. The Anatomy of the Circle of Willis Is Not a Strong Enough Predictive Factor for the Prognosis of Cross-Clamping Intolerance during Carotid Endarterectomy. J. Clin. Med. 2020, 9, 3913. [Google Scholar] [CrossRef] [PubMed]
- Henderson, R.D.; Eliasziw, M.; Fox, A.J.; Rothwell, P.M.; Barnett, H.J.M. Angiographically Defined Collateral Circulation and Risk of Stroke in Patients with Severe Carotid Artery Stenosis. Stroke 2000, 31, 128–132. [Google Scholar] [CrossRef] [Green Version]
Female | Male | Total | |
---|---|---|---|
Number of patients | 15 | 31 | 46 |
Mean age ± std. dev. | 68.5 ± 3.8 years old | 71.5 ± 6.7 years old | 70.5 ± 6 years old |
Number of isolated LICA occlusions | 2 | 16 | 18 |
Number of isolated RICA occlusions | 10 | 14 | 24 |
Bilateral ICA occlusion | 3 | 1 | 4 |
Age: 65–69 | 10 | 12 | 22 |
Age: 70–74 | 4 | 11 | 15 |
Age: 75–79 | 1 | 1 | 2 |
Age: 80+ | 0 | 7 | 7 |
Age Group | 65–69 | 70–74 | 75–80 | >80 |
---|---|---|---|---|
CBF Proposed reference value [mL/min] | 898.5 ± 119.1 | 838.5 ± 148.9 | 805.1 ± 99.3 | 685.7 ± 112.3 |
RICA [mL/min] | 271.1 ± 63.6 | 236.0 ± 66.1 | 234.8 ± 62.3 | 202.3 ± 38.4 |
RECA [mL/min] | 106.1 ± 35.0 | 103.7 ± 33.2 | 94.0 ± 24.14 | 83.1 ± 36.3 |
RVA [mL/min] | 58.7 ± 29.1 | 60.2 ± 26.7 | 62.3 ± 28.4 | 55.7 ± 24.1 |
LICA [mL/min] | 276.4 ± 57.5 | 239.8 ± 42.4 | 245.5 ± 32.3 | 204.4 ± 47.0 |
LECA [mL/min] | 101.4 ± 30.9 | 104.7 ± 32.5 | 89.0 ± 21.9 | 79.0 ± 33.7 |
LVA [mL/min] | 84.9 ± 33.0 | 80.4 ± 29.8 | 70.0 ± 21.5 | 58.8 ± 13.0 |
Age/Flow Compensation | Significant Compensation | Flow Volume within Reference Value | Decreased Flow Volume |
---|---|---|---|
Whole study group | 13/46 (28.3%) | 20/46 (43.4%) | 13/46 (28.3%) |
65–69 | 3/22 (13.6%) | 9/22 (41%) | 10/22 (45.4%) |
70–74 | 5/15 (33.3%) | 9/15 (60%) | 1/15 (6.6%) |
75–79 | 0/2 (0%) | 0/2 (0%) | 2/2 (100%) |
>80 | 5/7 (71.4%) | 2/7 (28.5%) | 0/7 (0%) |
Age Group | Artery | Compensation | Reference | p-Value < 0.005 | Flow Difference | Relative Flow Increase |
---|---|---|---|---|---|---|
65–69 | ICA | 408.9 ± 64.4 mL/min | 273.8 ± 60.5 mL/min | yes | 135.1 mL/min | 149.3% |
ECA | 224.6 ± 69.9 mL/min | 103.6 ± 32.9 mL/min | yes | 121 mL/min | 216.9% | |
VA | 200.3 ± 81.5 mL/min | 71.8 ± 32.3 mL/min | yes | 128.5 mL/min | 279% | |
70–74 | ICA | 404.9 ± 67.1 mL/min | 237.9 ± 54.3 mL/min | yes | 165 mL/min | 170.2% |
ECA | 212.2 ± 71.5 mL/min | 104.2 ± 32.7 mL/min | yes | 108 mL/min | 203.6% | |
VA | 173.4 ± 45.4 mL/min | 70.3 ± 28.8 mL/min | yes | 103.1 mL/min | 246.7% | |
75–79 | ICA | excluded | excluded | excluded | excluded | |
ECA | excluded | excluded | excluded | excluded | ||
VA | excluded | excluded | excluded | excluded | ||
≥80 | ICA | 406 ± 165 mL/min | 203.2 ± 42.7 mL/min | yes | 202.8 mL/min | 199.8% |
ECA | 180.25 ± 59.6 mL/min | 81 ± 35 mL/min | yes | 99.5 mL/min | 222.5% | |
VA | 221.7 ± 81 mL/min | 57.3 ± 18.5 mL/min | yes | 164.4 mL/min | 386.9% |
Age Group | Number of Patients | Occlusion | Contralateral ICA | Contralateral ECA | Contralateral VA | Ipsilateral ECA | Ipsilateral VA |
---|---|---|---|---|---|---|---|
65–69 | 9 | RICA | 5/9, 56% | 4/9, 44% | 6/9, 67% | 4/9, 44% | 3/9, 33% |
10 | LICA | 5/10, 50% | 3/10, 30% | 2/10, 20% | 4/10, 40% | 8/10, 80% | |
70–74 | 8 | RICA | 7/8, 88% | 3/8, 38% | 4/8, 50% | 5/8, 63% | 8/8, 100% |
6 | LICA | 2/6, 33% | 1/6, 17% | 2/6, 33% | 4/6, 67% | 5/6, 83% | |
75–79 | excluded | excluded | excluded | excluded | excluded | excluded | excluded |
≥80 | 7 | RICA | 4/7, 57% | 4/7, 57% | 5/7, 71% | 5/7, 71% | 2/7, 29% |
- | LICA | - | - | - | - | - |
Age Group | Number of Patients | Bilateral Occlusion | LECA | LVA | RECA | RVA |
---|---|---|---|---|---|---|
65–69 | 3 | ICA | 1/3, 33% | 3/3, 100% | 3/3, 100% | 3/3, 100% |
70–74 | 1 | ICA | 1/1, 100% | 1/1, 100% | 1/1, 100% | 1/1, 100% |
75–79 | excluded | excluded | excluded | excluded | excluded | excluded |
≥80 | - | - | - | - | - | - |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kaszczewski, P.; Elwertowski, M.; Leszczyński, J.; Ostrowski, T.; Kaszczewska, J.; Gałązka, Z. Intracranial Flow Volume Estimation in Patients with Internal Carotid Artery Occlusion. Diagnostics 2022, 12, 766. https://doi.org/10.3390/diagnostics12030766
Kaszczewski P, Elwertowski M, Leszczyński J, Ostrowski T, Kaszczewska J, Gałązka Z. Intracranial Flow Volume Estimation in Patients with Internal Carotid Artery Occlusion. Diagnostics. 2022; 12(3):766. https://doi.org/10.3390/diagnostics12030766
Chicago/Turabian StyleKaszczewski, Piotr, Michał Elwertowski, Jerzy Leszczyński, Tomasz Ostrowski, Joanna Kaszczewska, and Zbigniew Gałązka. 2022. "Intracranial Flow Volume Estimation in Patients with Internal Carotid Artery Occlusion" Diagnostics 12, no. 3: 766. https://doi.org/10.3390/diagnostics12030766
APA StyleKaszczewski, P., Elwertowski, M., Leszczyński, J., Ostrowski, T., Kaszczewska, J., & Gałązka, Z. (2022). Intracranial Flow Volume Estimation in Patients with Internal Carotid Artery Occlusion. Diagnostics, 12(3), 766. https://doi.org/10.3390/diagnostics12030766