Multicentric Evaluation of SeeGene Allplex Real-Time PCR Assays Targeting 28 Bacterial, Microsporidal and Parasitic Nucleic Acid Sequences in Human Stool Samples
Abstract
:1. Introduction
2. Materials and Methods
2.1. Reference Materials for the Test Evaluations
2.1.1. Reference Materials Characterized by in-House Real-Time PCR
2.1.2. Reference Material Characterized by Microscopy
2.1.3. Reference Materials from External Control Schemes for German Laboratories (“Ring Trials”/“Ringversuche”)
2.1.4. Bacterial Suspensions Used for Spiking Experiments
2.1.5. Negative Control Samples for the Test Evaluations
2.2. Procedure of the Test Evaluation
2.3. Ethical Clearance
3. Results
3.1. Assessment with Strongly Positive Samples
3.2. Assessment with Weakly Positive Samples
3.3. Assessments with Negative Samples
3.4. Intra- and Inter-Assay Variation with the Assessed Allplex Assays
3.5. Comparison of the Allplex PCR Ct Values after Automated and Manual Nucleic Acid Extractions
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Leder, K.; Torresi, J.; Brownstein, J.S.; Wilson, M.E.; Keystone, J.S.; Barnett, E.; Schwartz, E.; Schlagenhauf, P.; Wilder-Smith, A.; Castelli, F.; et al. GeoSentinel Surveillance Network. Travel-associated illness trends and clusters, 2000–2010. Emerg. Infect. Dis. 2013, 19, 1049–1073. [Google Scholar] [CrossRef]
- Leder, K.; Torresi, J.; Libman, M.D.; Cramer, J.P.; Castelli, F.; Schlagenhauf, P.; Wilder-Smith, A.; Wilson, M.E.; Keystone, J.S.; Schwartz, E.; et al. GeoSentinel Surveillance Network. GeoSentinel surveillance of illness in returned travelers, 2007–2011. Ann. Intern. Med. 2013, 158, 456–468. [Google Scholar] [CrossRef] [Green Version]
- Schawaller, M.; Wiemer, D.; Hagen, R.M.; Frickmann, H. Infectious diseases in German military personnel after predominantly tropical deployments: A retrospective assessment over 13 years. BMJ Mil. Health 2020. [Google Scholar] [CrossRef]
- Halfter, M.; Müseler, U.; Hagen, R.M.; Frickmann, H. Enteric pathogens in German police officers after predominantly tropical deployments—A retrospective assessment over 5 years. Eur. J. Microbiol. Immunol. (Bp) 2020, 10, 172–177. [Google Scholar] [CrossRef]
- Wiemer, D.; Schwarz, N.G.; Burchard, G.D.; Frickmann, H.; Loderstaedt, U.; Hagen, R.M. Surveillance of enteropathogenic bacteria, protozoa and helminths in travellers returning from the tropics. Eur. J. Microbiol. Immunol. (Bp) 2020, 10, 147–155. [Google Scholar] [CrossRef]
- Wiemer, D.; Loderstaedt, U.; von Wulffen, H.; Priesnitz, S.; Fischer, M.; Tannich, E.; Hagen, R.M. Real-time multiplex PCR for simultaneous detection of Campylobacter jejuni, Salmonella, Shigella and Yersinia species in fecal samples. Int. J. Med. Microbiol. 2011, 301, 577–584. [Google Scholar] [CrossRef]
- Tanida, K.; Hahn, A.; Frickmann, H. Comparison of two commercial and one in-house real-time PCR assays for the diagnosis of bacterial gastroenteritis. Eur. J. Microbiol. Immunol. (Bp) 2020, 10, 210–216. [Google Scholar] [CrossRef]
- Frickmann, H.; Schwarz, N.G.; Wiemer, D.F.; Fischer, M.; Tannich, E.; Scheid, P.L.; Müller, M.; Schotte, U.; Bock, W.; Hagen, R.M. Food and drinking water hygiene and intestinal protozoa in deployed German soldiers. Eur. J. Microbiol. Immunol. (Bp) 2013, 3, 53–60. [Google Scholar] [CrossRef] [Green Version]
- Frickmann, H.; Hoffmann, T.; Köller, T.; Hahn, A.; Podbielski, A.; Landt, O.; Loderstädt, U.; Tannich, E. Comparison of five commercial real-time PCRs for in-vitro diagnosis of Entamoeba histolytica, Giardia duodenalis, Cryptosporidium spp., Cyclospora cayetanensis, and Dientamoeba fragilis in human stool samples. Travel Med. Infect. Dis. 2021, 41, 102042. [Google Scholar] [CrossRef]
- Köller, T.; Hahn, A.; Altangerel, E.; Verweij, J.J.; Landt, O.; Kann, S.; Dekker, D.; May, J.; Loderstädt, U.; Podbielski, A.; et al. Comparison of commercial and in-house real-time PCR platforms for 15 parasites and microsporidia in human stool samples without a gold standard. Acta Trop. 2020, 207, 105516. [Google Scholar] [CrossRef]
- Frickmann, H.; Warnke, P.; Frey, C.; Schmidt, S.; Janke, C.; Erkens, K.; Schotte, U.; Köller, T.; Maaßen, W.; Podbielski, A.; et al. Surveillance of Food- and Smear-Transmitted Pathogens in European Soldiers with Diarrhea on Deployment in the Tropics: Experience from the European Union Training Mission (EUTM) Mali. Biomed. Res. Int. 2015, 2015, 573904. [Google Scholar] [CrossRef] [Green Version]
- Anonymous. Revision of the “Guideline of the German Medical Association on Quality Assurance in Medical Laboratory Examinations—Rili-BAEK.” (unauthorized translation). J. Lab. Med. 2015, 39, 26–69. [Google Scholar]
- Rabenau, H.F.; Kessler, H.H.; Kortenbusch, M.; Steinhorst, A.; Raggam, R.B.; Berger, A. Verification and validation of diagnostic laboratory tests in clinical virology. J. Clin. Virol. 2007, 40, 93–98. [Google Scholar] [CrossRef]
- Rabenau, H.F.; Kortenbuschen, M.; Berger, A.; Steinhorst, A. Validierung von Untersuchungsverfahren im Bereich der Virusdiagnostik. J. Lab. Med. 2007, 31, 41–47. [Google Scholar]
- Paulos, S.; Saugar, J.M.; de Lucio, A.; Fuentes, I.; Mateo, M.; Carmena, D. Comparative performance evaluation of four commercial multiplex real-time PCR assays for the detection of the diarrhoea-causing protozoa Cryptosporidium hominis/parvum, Giardia duodenalis and Entamoeba histolytica. PLoS ONE 2019, 14, e0215068. [Google Scholar] [CrossRef]
- Yoo, J.; Park, J.; Lee, H.K.; Yu, J.K.; Lee, G.D.; Park, K.G.; Oak, H.C.; Park, Y.J. Comparative Evaluation of Seegene Allplex Gastrointestinal, Luminex xTAG Gastrointestinal Pathogen Panel, and BD MAX Enteric Assays for Detection of Gastrointestinal Pathogens in Clinical Stool Specimens. Arch. Pathol. Lab. Med. 2019, 143, 999–1005. [Google Scholar] [CrossRef] [Green Version]
- Zimmermann, S.; Horner, S.; Altwegg, M.; Dalpke, A.H. Workflow optimization for syndromic diarrhea diagnosis using the molecular Seegene Allplex™ GI-Bacteria(I) assay. Eur. J. Clin. Microbiol. Infect. Dis. 2020, 39, 1245–1250. [Google Scholar] [CrossRef]
- Seid, L.; Stokes, W.; Bayih, A.G.; Getie, S.; Abere, A.; Tesfa, H.; Pillai, D.R. Molecular detection of Enteropathogens from diarrheic stool of HIV positive patients in Gondar, Ethiopia. BMC Infect. Dis. 2018, 18, 354. [Google Scholar] [CrossRef] [Green Version]
- Kann, S.; Bruennert, D.; Hansen, J.; Mendoza, G.A.C.; Gonzalez, J.J.C.; Quintero, C.L.A.; Hanke, M.; Hagen, R.M.; Backhaus, J.; Frickmann, H. High Prevalence of Intestinal Pathogens in Indigenous in Colombia. J. Clin. Med. 2020, 9, 2786. [Google Scholar] [CrossRef]
- Krumkamp, R.; Sarpong, N.; Schwarz, N.G.; Adlkofer, J.; Loag, W.; Eibach, D.; Hagen, R.M.; Adu-Sarkodie, Y.; Tannich, E.; May, J. Gastrointestinal infections and diarrheal disease in Ghanaian infants and children: An outpatient case-control study. PLoS Negl. Trop. Dis. 2015, 9, e0003568. [Google Scholar]
- Eibach, D.; Krumkamp, R.; Hahn, A.; Sarpong, N.; Adu-Sarkodie, Y.; Leva, A.; Käsmaier, J.; Panning, M.; May, J.; Tannich, E. Application of a multiplex PCR assay for the detection of gastrointestinal pathogens in a rural African setting. BMC Infect. Dis. 2016, 16, 150. [Google Scholar] [CrossRef] [Green Version]
- Eibach, D.; Krumkamp, R.; Al-Emran, H.M.; Sarpong, N.; Hagen, R.M.; Adu-Sarkodie, Y.; Tannich, E.; May, J. Molecular characterization of Cryptosporidium spp. among children in rural Ghana. PLoS Negl. Trop. Dis. 2015, 9, e0003551. [Google Scholar] [CrossRef] [Green Version]
- Leva, A.; Eibach, D.; Krumkamp, R.; Käsmaier, J.; Rubbenstroth, D.; Adu-Sarkodie, Y.; May, J.; Tannich, E.; Panning, M. Diagnostic performance of the Luminex xTAG gastrointestinal pathogens panel to detect rotavirus in Ghanaian children with and without diarrhoea. Virol. J. 2016, 13, 132. [Google Scholar] [CrossRef] [Green Version]
- Graul, S.; Böttcher, S.; Eibach, D.; Krumkamp, R.; Käsmaier, J.; Adu-Sarkodie, Y.; May, J.; Tannich, E.; Panning, M. High diversity of human parechovirus including novel types in stool samples from Ghanaian children. J. Clin. Virol. 2017, 96, 116–119. [Google Scholar] [CrossRef]
- Vinnemeier, C.D.; Klupp, E.M.; Krumkamp, R.; Rolling, T.; Fischer, N.; Owusu-Dabo, E.; Addo, M.M.; Adu-Sarkodie, Y.; Käsmaier, J.; Aepfelbacher, M.; et al. Tropheryma whipplei in children with diarrhoea in rural Ghana. Clin. Microbiol. Infect. 2016, 22, 65.e1–65.e3. [Google Scholar] [CrossRef]
- Tanida, K.; Hahn, A.; Eberhardt, K.A.; Tannich, E.; Landt, O.; Kann, S.; Feldt, T.; Sarfo, F.S.; Di Cristanziano, V.; Frickmann, H.; et al. Comparative Assessment of In-House Real-Time PCRs Targeting Enteric Disease-Associated Microsporidia in Human Stool Samples. Pathogens 2021, 10, 656. [Google Scholar] [CrossRef]
- Weinreich, F.; Hahn, A.; Eberhardt, K.A.; Feldt, T.; Sarfo, F.S.; Di Cristanziano, V.; Frickmann, H.; Loderstädt, U. Comparison of Three Real-Time PCR Assays Targeting the SSU rRNA Gene, the COWP Gene and the DnaJ-Like Protein Gene for the Diagnosis of Cryptosporidium spp. in Stool Samples. Pathogens 2021, 10, 1131. [Google Scholar] [CrossRef]
- Blohm, M.; Hahn, A.; Hagen, R.M.; Eberhardt, K.A.; Rohde, H.; Leboulle, G.; Feldt, T.; Sarfo, F.S.; Di Cristanziano, V.; Frickmann, H.; et al. Comparison of Two Real-Time PCR Assays Targeting Ribosomal Sequences for the Identification of Cystoisospora belli in Human Stool Samples. Pathogens 2021, 10, 1053. [Google Scholar] [CrossRef]
- Eberhardt, K.A.; Sarfo, F.S.; Dompreh, A.; Kuffour, E.O.; Geldmacher, C.; Soltau, M.; Schachscheider, M.; Drexler, J.F.; Eis-Hübinger, A.M.; Häussinger, D.; et al. Helicobacter pylori coinfection is associated with decreased markers of immune activation in ART-naive HIV-positive and in HIV-negative individuals in Ghana. Clin. Infect. Dis. 2015, 61, 1615–1623. [Google Scholar] [CrossRef] [Green Version]
- Sarfo, F.S.; Eberhardt, K.A.; Dompreh, A.; Kuffour, E.O.; Soltau, M.; Schachscheider, M.; Drexler, J.F.; Eis-Hübinger, A.M.; Häussinger, D.; Oteng-Seifah, E.E.; et al. Helicobacter pylori infection is associated with higher CD4 T cell counts and lower HIV-1 viral loads in ART-naïve HIV-positive patients in Ghana. PLoS ONE 2015, 10, e0143388. [Google Scholar] [CrossRef] [Green Version]
- Frickmann, H.; Hinz, R.; Hagen, R.M. Comparison of an automated nucleic acid extraction system with the column-based procedure. Eur. J. Microbiol. Immunol. (Bp) 2015, 5, 94–102. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hahn, A.; Luetgehetmann, M.; Landt, O.; Schwarz, N.G.; Frickmann, H. Comparison of one commercial and two in-house TaqMan multiplex real-time PCR assays for detection of enteropathogenic, enterotoxigenic and enteroaggregative Escherichia coli. Trop. Med. Int. Health 2017, 22, 1371–1376. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Verweij, J.J.; Mulder, B.; Poell, B.; van Middelkoop, D.; Brienen, E.A.; van Lieshout, L. Real-time PCR for the detection of Dientamoeba fragilis in fecal samples. Mol. Cell. Probes 2007, 21, 400–404. [Google Scholar] [CrossRef] [PubMed]
- Verweij, J.J.; van Lieshout, L. Intestinal parasitic infections in an industrialized country; a new focus on children with better DNA-based diagnostics. Parasitology 2011, 138, 1492–1498. [Google Scholar] [CrossRef] [PubMed]
- van Lieshout, L.; Roestenberg, M. Clinical consequences of new diagnostic tools for intestinal parasites. Clin. Microbiol. Infect. 2015, 21, 520–528. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Verweij, J.J. Validation and maintaining laboratory developed molecular tests compliant with ISO15189 for diagnosis of intestinal parasitic infections. Expert Rev. Mol. Diagn. 2021. [Google Scholar] [CrossRef]
- Schuurs, T.A.; Koelewijn, R.; Brienen, E.A.T.; Kortbeek, T.; Mank, T.G.; Mulder, B.; Stelma, F.F.; van Lieshout, L.; van Hellemond, J.J. Harmonization of PCR-based detection of intestinal pathogens: Experiences from the Dutch external quality assessment scheme on molecular diagnosis of protozoa in stool samples. Clin. Chem. Lab. Med. 2018, 56, 1722–1727. [Google Scholar] [CrossRef] [Green Version]
- Cools, P.; van Lieshout, L.; Koelewijn, R.; Addiss, D.; Ajjampur, S.S.R.; Ayana, M.; Bradbury, R.S.; Cantera, J.L.; Dana, D.; Fischer, K.; et al. First international external quality assessment scheme of nucleic acid amplification tests for the detection of Schistosoma and soil-transmitted helminths, including Strongyloides: A pilot study. PLoS Negl. Trop. Dis. 2020, 14, e0008231. [Google Scholar] [CrossRef]
- Weinreich, F.; Hahn, A.; Eberhardt, K.A.; Feldt, T.; Sarfo, F.S.; Di Cristanziano, V.; Frickmann, H.; Loderstädt, U. Comparison of Three Real-Time PCR Assays for the Detection of Cyclospora cayetanensis in Stool Samples Targeting the 18S rRNA Gene and the hsp70 Gene. Pathogens 2022, 11, 165. [Google Scholar] [CrossRef]
- Hoffmann, T.; Hahn, A.; Verweij, J.J.; Leboulle, G.; Landt, O.; Strube, C.; Kann, S.; Dekker, D.; May, J.; Frickmann, H.; et al. Differing Effects of Standard and Harsh Nucleic Acid Extraction Procedures on Diagnostic Helminth Real-Time PCRs Applied to Human Stool Samples. Pathogens 2021, 10, 188. [Google Scholar] [CrossRef]
- Moundounga, H.K.; Adegnika, A.A.; Nkoma, A.-M.; Ateba-Ngoa, U.; Mbong, M.; Zinsou, J.; Lell, B.; Verweij, J.J. Impact of Short-Time Urine Freezing on the Sensitivity of an Established Schistosoma Real-Time PCR Assay. Am. J. Trop. Med. Hyg. 2014, 90, 1153–1155. [Google Scholar]
- Kaisar, M.M.M.; Brienen, E.A.T.; Djuardi, Y.; Sartono, E.; Yazdanbakhsh, M.; Verweij, J.J.; Supali, T.; Van Lieshout, L. Improved diagnosis of Trichuris trichiura by using a bead-beating procedure on ethanol preserved stool samples prior to DNA isolation and the performance of multiplex real-time PCR for intestinal parasites. Parasitology 2017, 144, 965–974. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ayana, M.; Cools, P.; Mekonnen, Z.; Biruksew, A.; Dana, D.; Rashwan, N.; Prichard, R.; Vlaminck, J.; Verweij, J.J.; Levecke, B. Comparison of four DNA extraction and three preservation protocols for the molecular detection and quantification of soil-transmitted helminths in stool. PLoS Negl. Trop. Dis. 2019, 13, e0007778. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moss, J.A.; Gordy, J.; Snyder, R.A. Effective concentration and detection of cryptosporidium, giardia, and the microsporidia from environmental matrices. J. Pathog. 2014, 2014, 408204. [Google Scholar] [CrossRef] [Green Version]
- Menu, E.; Mary, C.; Toga, I.; Raoult, D.; Ranque, S.; Bittar, F. Evaluation of two DNA extraction methods for the PCR-based detection of eukaryotic enteric pathogens in fecal samples. BMC Res. Notes 2018, 11, 206. [Google Scholar] [CrossRef] [Green Version]
- Manser, M.M.; Saez, A.C.; Chiodini, P.L. Faecal Parasitology: Concentration Methodology Needs to be Better Standardised. PLoS Negl. Trop. Dis. 2016, 10, e0004579. [Google Scholar] [CrossRef] [PubMed]
- Lindsay, B.; Ochieng, J.B.; Ikumapayi, U.N.; Toure, A.; Ahmed, D.; Li, S.; Panchalingam, S.; Levine, M.M.; Kotloff, K.; Rasko, D.A.; et al. Quantitative PCR for detection of Shigella improves ascertainment of Shigella burden in children with moderate-to-severe diarrhea in low-income countries. J. Clin. Microbiol. 2013, 51, 1740–1746. [Google Scholar] [CrossRef] [Green Version]
- Liu, J.; Kabir, F.; Manneh, J.; Lertsethtakarn, P.; Begum, S.; Gratz, J.; Becker, S.M.; Operario, D.J.; Taniuchi, M.; Janaki, L.; et al. Development and assessment of molecular diagnostic tests for 15 enteropathogens causing childhood diarrhoea: A multicentre study. Lancet Infect. Dis. 2014, 14, 716–724. [Google Scholar] [CrossRef]
- Platts-Mills, J.A.; Gratz, J.; Mduma, E.; Svensen, E.; Amour, C.; Liu, J.; Maro, A.; Saidi, Q.; Swai, N.; Kumburu, H.; et al. Association between stool enteropathogen quantity and disease in Tanzanian children using TaqMan array cards: A nested case-control study. Am. J. Trop. Med. Hyg. 2014, 90, 133–138. [Google Scholar] [CrossRef] [Green Version]
- Loderstädt, U.; Hagen, R.M.; Hahn, A.; Frickmann, H. New Developments in PCR-Based Diagnostics for Bacterial Pathogens Causing Gastrointestinal Infections-A Narrative Mini-Review on Challenges in the Tropics. Trop. Med. Infect. Dis. 2021, 6, 96. [Google Scholar] [CrossRef]
- Zautner, A.E.; Groß, U.; Emele, M.F.; Hagen, R.M.; Frickmann, H. More Pathogenicity or Just More Pathogens?—On the Interpretation Problem of Multiple Pathogen Detections with Diagnostic Multiplex Assays. Front. Microbiol. 2017, 8, 1210. [Google Scholar] [CrossRef] [PubMed]
Target Pathogen | Sensitivity, n/n (%) | Cycle Threshold Values of the In-House PCR, Mean (Standard Deviation) | Cycle Thresho ld Values of the Allplex Assay, Mean (Standard Deviation) | Proportion of Native Stool Samples, n/n (%) | Proportion of Manual Nucleic Acid Extractions, n/n (%) | Proportions of Spiked Stool Samples, n/n (%) |
---|---|---|---|---|---|---|
Enteroaggregative Escherichia coli (EAEC) | 10/15 (67%) | 23.0 (±4.7) | 33.3 (±5.0) | 15/15 (100%) | n.a. | n.a. |
Enteropathogenic Escherichia coli (EPEC) | 8/15 (53%) | 23.4 (±4.5) | 35.5 (±3.6) | 15/15 (100%) | n.a. | n.a. |
Escherichia coli O157 | 9/9 (100%) | n.a. | 33.0 ( ± 3.2) | 9/9 (100%) | n.a. | n.a. |
Enterotoxigenic Escherichia coli (ETEC) | 12/15 (80%) | 22.7 (±3.6) | 32.5 (±4.8) | 15/15 (100%) | n.a. | n.a. |
Shiga toxin-producing Escherichia coli (STEC) | 14/15 (93%) | n.a. | 33.1 (±2.8) | 15/15 (100%) | n.a. | n.a. |
Campylobacter spp. | 13/15 (87%) | 24.5 (±3.8) | 37.5 (±2.6) | 15/15 (100%) | n.a. | n.a. |
Clostridioides difficile toxin B | 8/8 (100%) | n.a. | 30.8 (±2.5 | 8/8 (100%) | n.a. | n.a. |
Salmonella spp. | 2/15 (13%) | 26.1 (±3.8) | 39.9 (±0.1) | 15/15 (100%) | n.a. | n.a. |
Shigella spp./enteroinvasive Escherichia coli (EIEC) | 11/15 (73%) | 22.3 (±4.5) | 39.4 (±3.8) | 15/15 (100%) | n.a. | n.a. |
Vibrio spp. * | 6/15 (40%) | n.a. | 25.0 (±1.8) | n.a. | n.a. | 15/15 (100%) |
Yersinia enterocolitica # | 9/9 (100%) | 20.8 (±4.3) | 25.9 (±3.4) | n.a. | 9/9 (100%) | n.a. |
Giardia duodenalis | 11/14 (79%) | 22.5 (±4.6) | 29.7 (±3.4) | 14/14 (100%) | n.a. | n.a. |
Cryptosporidium spp. | 9/15 (60%) | 26.2 (±3.1) | 33.9 (±3.4) | 15/15 (100%) | n.a. | n.a. |
Blastocystis hominis | 15/15 (100%) | n.a. | 28.4 (±2.4) | 15/15 (100%) | n.a. | n.a. |
Cyclospora cayetanensis | 0/15 (0%) | 28.6 (±1.9) | n.e. | 15/15 (100%) | n.a. | n.a. |
Entamoeba histolytica | 2/14 (14%) | 29.4 (±7.2) | 33.0 (±3.4) | 14/14 (100%) | n.a. | n.a. |
Dientamoeba fragilis | 15/15 (100%) | 23.2 (±4.1) | 34.9 (±4.9) | 15/15 (100%) | n.a. | n.a. |
Ancylostoma spp. | 2/2 (100%) | 29.5 (±0.5) | 32.6 (±0.9) | n.a. | 2/2 (100%) | n.a. |
Ascaris spp. | 5/15 (33%) | 29.3 (±1.6) | 40.4 (±1.8) | 15/15 (100%) | n.a. | n.a. |
Enterobius vermicularis | 1/6 (17%) | 27.6 (±2.4) | 33.7 (n.e.) | 5/6 (83%) | 1/6 (17%) | n.a. |
Enterocytozoon spp./ Encephalitozoon spp. | 10/15 (67%) | 24.3 (±5.5) | 30.7 (±4.8) | 15/15 (100%) | n.a. | n.a. |
Hymenolepis spp. | 9/15 (60%) | 25.1 (±3.0) | 31.8 (±5.7) | 11/15 (73%) | 4/15 (27%) | n.a. |
Necator americanus | 3/15 (20%) | 31.2 (±2.2) | 36.5 (±3.0) | 15/15 (100%) | n.a. | n.a. |
Strongyloides spp. | 1/15 (7%) | 28.2 (±3.1) | 37.7 (n.e.) | 15/15 (100%) | n.a. | n.a. |
Taenia spp. | 4/15 (27%) | 30.1 (±2.2) | 38.0 (±1.3) | 15/15 (100%) | n.a. | n.a. |
Trichuris trichiura | 1/15 (7%) | 27.2 (±2.0) | 37.2 (n.e.) | 15/15 (100%) | n.a. | n.a. |
Target Pathogen | Sensitivity, n/n (%) | Cycle Threshold Values of the In-House PCR, Mean (Standard Deviation) | Cycle Threshold Values of the Allplex Assay, Mean (Standard Deviation) | Proportion of Native Stool Samples, n/n (%) | Proportion of Manual Nucleic Acid Extractions, n/n (%) | Proportions of Spiked Stool Samples, n/n (%) |
---|---|---|---|---|---|---|
Enteroaggregative Escherichia coli (EAEC) | 3/15 (20%) | 32.9 (±1.8) | 37.1 (±2.7) | 15/15 (100%) | n.a. | n.a. |
Enteropathogenic Escherichia coli (EPEC) | 2/15 (13%) | 33.1 (±2.0) | 38.1 (±0.9) | 15/15 (100%) | n.a. | n.a. |
Escherichia coli O157 | 5/5 (100%) | n.a. | 34.9 (±0.9) | 12/12 (100%) | n.a. | n.a. |
Enterotoxigenic Escherichia coli (ETEC) | 2/15 (13%) | 34.0 (±1.7) | 37.5 (±0.6) | 15/15 (100%) | n.a. | n.a. |
Shiga toxin-producing Escherichia coli (STEC) | 12/12 (100%) | n.a. | 36.6 (±2.2) | 5/5 (100%) | n.a. | n.a. |
Campylobacter spp. | 7/15 (47%) | 32.7 (±1.6) | 39.5 (±1.8) | 15/15 (100%) | n.a. | n.a. |
Clostridioides difficile toxin B | 10/10 (100%) | n.a. | 33.8 (±2.5) | 10/10 (100%) | n.a. | n.a. |
Salmonella spp. | 0/15 (0%) | 32.8 (±1.3) | n.e. | 15/15 (100%) | n.a. | n.a. |
Shigella spp./enteroinvasive Escherichia coli (EIEC) | 1/15 (7%) | 33.2 (±1.7) | 38.8 (n.e.) | 15/15 (100%) | n.a. | n.a. |
Vibrio spp. * | 7/15 (47%) | n.a. | 29.1 (±2.1) | n.a. | n.a. | 15/15 (100%) |
Yersinia enterocolitica | 3/3 (100%) | 33.7 (±3.5) | 24.4 (±0.5) | n.a. | 3/3 (100%) | n.a. |
Giardia duodenalis | 0/15 (0%) | 32.8 (±1.2) | n.e. | 15/15 (100%) | n.a. | n.a. |
Cryptosporidium spp. | 2/15 (13%) | 34.6 (±1.8) | 41.1 (±0.4) | 15/15 (100%) | n.a. | n.a. |
Cyclospora cayetanensis | 0/15 (0%) | 35.6 (±2.4) | n.e. | 15/15 (100%) | n.a. | n.a. |
Entamoeba histolytica | 0/15 (0%) | 40.0 (±2.0) | n.e. | 15/15 (100%) | n.a. | n.a. |
Dientamoeba fragilis | 6/15 (40%) | 34.2 (±2.9) | 40.4 (±1.3) | 15/15 (100%) | n.a. | n.a. |
Ascaris spp. | 0/15 (0%) | 34.7 (±1.7) | n.e. | 15/15 (100%) | n.a. | n.a. |
Enterobius vermicularis | 0/8 (0%) | 33.6 (±1.9) | n.e. | 4/8 (50%) | 4/8 (50%) | n.a. |
Enterocytozoon spp./Encephalitozoon spp. | 0/15 (0%) | 32.0 (±1.2) | n.e. | 15/15 (100%) | n.a. | n.a. |
Hymenolepis spp. | 8/15 (53%) | 31.99 (±1.19) | 38.0 (±1.7) | 6/15 (40%) | 9/15 (60%) | n.a. |
Necator americanus | 0/15 (0%) | 36.6 (±1.6) | n.e. | 15/15 (100%) | n.a. | n.a. |
Strongyloides spp. | 0/15 (0%) | 36.6 (±1.3) | n.e. | 15/15 (100%) | n.a. | n.a. |
Taenia spp. | 0/15 (0%) | 37.5 (±2.3) | n.e. | 15/15 (100%) | n.a. | n.a. |
Trichuris trichiura | 1/15 (7%) | 32.4 (±1.3) | 41.0 (n.e.) | 15/15 (100%) | n.a. | n.a. |
Target Parameter | Inter-Assay Variation as Variance of the Recorded Ct Values, in Brackets: Mean Ct value ± Standard Deviation (SD) | Intra-Assay Variation as Variance of the Recorded Ct Values, in Brackets: Mean Ct Value ± Standard Deviation (SD) |
---|---|---|
Enteroaggregative Escherichia coli (EAEC) | 0.01 (24.8 ± 0.1) | 0.01 (24.7 ± 0.1) |
Enteropathogenic Escherichia coli (EPEC) | 0.01 (29.0 ± 0.1) | 0.09 (29.1 ± 0.3) |
Escherichia coli O157 | 0.01 (23.9 ± 0.1) | 0.09 (24.1 ± 0.3) |
Enterotoxigenic Escherichia coli (ETEC) | 0.16 (22.7 ± 0.4) | 0.00 (22.2 ± 0.0) |
Hypervirulent Clostridioides difficile | 0.04 (27.1 ± 0.2) | 0.09 (26.7 ± 0.3) |
Shiga toxin-producing Escherichia coli (STEC) | 0.00 (22.9 ± 0.0) | 0.09 (22.9 ± 0.3) |
Aeromonas spp. | 0.04 (26.9 ± 0.2) | 0.04 (27.0 ± 0.2) |
Campylobacter spp. | 0.04 (36.4 ± 0.2) | 0.16 (36.6 ± 0.4) |
Clostridioides difficile toxin B | 0.04 (23.8 ± 0.2) | 0.04 (23.8 ± 0.2) |
Salmonella spp. | 0.16 (41.1 ± 0.4) | 0.16 (41.2 ± 0.4) |
Shigella spp./ enteroinvasive Escherichia coli (EIEC) | 0.04 (33.0 ± 0.2) | 0.04 (33.0 ± 0.2) |
Vibrio spp. | 0.09 (24.2 ± 0.3) | 0.01 (24.6 ± 0.1) |
Yersinia enterocolitica * | 0.09 (26.4 ± 0.3) | 0.64 (25.0 ± 0.8) |
Giardia duodenalis | 0.04 (24.2 ± 0.2) | 0.16 (24.1 ± 0.4) |
Cryptosporidium spp. | 0.01 (26.4 ± 0.1) | 0.01 (26.5 ± 0.1) |
Blastocystis hominis * | 0.09 (25.2 ± 0.3) | 0.01 (25.3 ± 0.1) |
Cyclospora cayetanensis * | 0.64 (36.6 ± 0.8) | 0.09 (37.2 ± 0.3) |
Entamoeba histolytica | 0.01 (35.9 ± 0.1) | 0.16 (36.1 ± 0.4) |
Dientamoeba fragilis * | 0.25 (23.2 ± 0.5) | 0.01 (23.1 ± 0.1) |
Ancylostoma spp. * | 0.09 (32.0 ± 0.3) | 0.09 (32.4 ± 0.3) |
Ascaris spp. * | 0.16 (28.0 ± 0.4) | 0.04 (28.3 ± 0.2) |
Enterobius vermicularis * | 0.01 (32.0 ± 0.1) | 0.16 (32.1 ± 0.4) |
Enterocytozoon spp./ Encephalitozoon spp. | 0.01 (21.5 ± 0.1) | 0.04 (21.6 ± 0.2) |
Hymenolepis spp. * | 0.01 (29.8 ± 0.1) | 0.01 (29.8 ± 0.1) |
Necator americanus * | 0.04 (29.8 ± 0.2) | 0.00 (29.9 ± 0.0) |
Strongyloides spp. | 7.29 (38.5 ± 2.7) | 0.16 (36.3 ± 0.4) |
Taenia spp. * | 0.36 (36.6 ± 0.6) | 0.36 (37.4 ± 0.6) |
Trichuris trichiura * | 0.16 (31.4 ± 0.4) | 0.04 (31.6 ± 0.2) |
PCR Target Species | External Reference: Number and Proportion of Positives (n/n, %) and Ct-Values Measured with the in-House PCR after Manual Nucleic Acid Extraction, Mean (Standard Deviation) | Number and Proportions of Positives (n/n, %) And Ct-Values Measured with the Allplex Assay after Automated Nucleic Acid Extraction, Mean (Standard Deviation) | Number and Proportion of Positives (n/n, %) And Ct-Values Measured with the Allplex Assay after Manual Nucleic Acid Extraction, Mean (Standard Deviation) | Significance Level (P) by Mann Whitney U-Testing of Paired Samples for Differences between Ct-Values Measured with the Allplex Assay after Automated and after Manual Nucleic Acid Extraction for Samples Positive in Both Approaches; In Brackets: Number of Assessed Ct-Value Pairs |
---|---|---|---|---|
Enteroaggregative Escherichia coli (EAEC) | 30/30, 100%; 28.0 ± 6.1 | 13/30, 43,3%; 34.2 ± 4.9 | 19/30, 63.3%, 34.9 ± 4.7 | 0.048 (n = 13) |
Enteropathogenic Escherichia coli (EPEC) | 30/30, 100%; 28.2 ± 6.0 | 10/30, 33.3%; 36.0 ± 3.3 | 13/30, 43.3%; 35.5 ± 3.6 | 0.027 (n = 10) |
Escherichia coli O157 | n.a. | 14/14, 100%, 33.7 ± 2.8 | 10/14, 71.4% 37.2 ± 3.0 | 0.002 (n = 10) |
Enterotoxigenic Escherichia coli (ETEC) | 30/30, 100%; 28.3 ± 6.3 | 14/30, 46.7%; 33.2 ± 4.8 | 16/30, 53,3%; 32.9 ± 4.8 | 0.151 (n = 13) |
Shiga toxin-producing Escherichia coli (STEC) | n.a. | 26/27, 96.3%; 34.7 ± 3.1 | 18/27, 66.7%; 38.0 ± 2.8 | <0.0001 (n = 18) |
Campylobacter spp. | 30/30, 100%; 28.6 ± 5.1 | 20/30, 66.7%; 38.2 ± 2.6 | 20/30, 66.7%; 34.3 ± 3.2 | <0.0001 (n = 19) |
Clostridioides difficile toxin B | n.a. | 18/18, 100%; 32.5 ± 2.9 | 18/18, 100%; 36.2 ± 2.3 | <0.0001 (n = 18) |
Salmonella spp. | 30/30, 100%; 29.4 ± 4.4 | 2/30, 6.7%; 39.9 ± 0.1 | 3/30, 10%; 40.6 ± 1.6 | n.e. (n = 2) |
Shigella spp./enteroinvasive Escherichia coli (EIEC) | 30/30, 100%; 27.8 ± 6.4 | 12/30, 40%; 39.3 ± 3.7 | 18/30, 60%; 39.2 ± 3.2 | 0.520 (n = 11) |
Giardia duodenalis | 29/29, 100%; 27.8 ± 6.1 | 11/29, 37.9%; 29.7 ± 3.4 | 12/29, 41.4%; 28.6 ± 4.2 | 0.042 (n = 11) |
Cryptosporidium spp. | 30/30, 100%; 30.4 ± 4.9 | 11/30, 36.7%; 35.2 ± 4.1 | 14/30, 46.7%; 34.9 ± 4.7 | 0.010 (n = 11) |
Blastocystis hominis | n.a. | 15/15, 100%; 28.4 ± 2.4 | 15/15, 100%; 28.4 ± 2.2 | 0.934 (n = 15) |
Cyclospora cayetanensis | 30/30, 100%; 32.1 ± 4.1 | 0/30, 0%; n.e. | 2/30, 6.7%; 38.8 ± 1.2 | n.e. (n = 0) |
Entamoeba histolytica | 29/29, 100%; 34.9 ± 7.5 | 2/29, 6.9%; 33.0 ± 3.4 | 3, 10.3%; 32.6 ± 6.2 | n.e. (n = 2) |
Dientamoeba fragilis | 30/30, 100%; 28.7 ± 6.5 | 21/30, 70%; 36.5 ± 4.9 | 23/30, 76.7%; 34.1 ± 5.5 | 0.005 (n = 19) |
Ascaris spp. | 30/30, 100%; 32.0 ± 3.2 | 5/30, 16.7%; 40.4 ± 1.8 | 27/30, 90%; 35.4 ± 3.1 | 0.063 (n = 5) |
Enterobius vermicularis | 14/14, 100%; 31.1 ± 3.6 | 0/9, 0%; n.e. | 3/14, 21.4%; 35.3 ± 3.0 | n.e. (n = 0) |
Enterocytozoon spp./ Encephalitozoon spp. | 30/30, 100%; 28.1 ± 5.5 | 10/30, 33.3%; 30.7 ± 4.8 | 11/29, 37.9%; 29.9 ± 5.5 | 0.074 (n = 9) |
Hymenolepis spp. | 30/30, 100%; 28.5 ± 4.1 | 5/17, 29.4%; 35.9 ± 2.8 | 21/30, 70%; 34.5 ± 4.9 | 0.063 (n = 5) |
Necator americanus | 30/30, 100%; 33.9 ± 3.3 | 3/30, 10%; 36.5 ± 3.0 | 21/30, 70%; 37.2 ± 3.6 | 0.250 (n = 3) |
Strongyloides spp. | 30/30, 100%; 32.4 ± 4.8 | 1/30, 3.3%; 37.6 ± 0 | 4/30, 13.3%; 34.9 ± 2.7 | n.e. (n = 1) |
Taenia spp. | 30/30, 100%; 33.8 ± 4.3 | 4/30, 13.3%; 38.0 ± 1.3 | 7/29, 24.1%; 37.2 ± 1.5 | 0.125 (n = 4) |
Trichuris trichiura | 30/30, 100%; 29.8 ± 3.1 | 2/30, 6.7%; 39.1 ± 1.9 | 28/30, 93.3%; 36.3 ± 2.9 | n.e. (n = 2) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Weinreich, F.; Hahn, A.; Eberhardt, K.A.; Kann, S.; Köller, T.; Warnke, P.; Dupke, S.; Dekker, D.; May, J.; Frickmann, H.; et al. Multicentric Evaluation of SeeGene Allplex Real-Time PCR Assays Targeting 28 Bacterial, Microsporidal and Parasitic Nucleic Acid Sequences in Human Stool Samples. Diagnostics 2022, 12, 1007. https://doi.org/10.3390/diagnostics12041007
Weinreich F, Hahn A, Eberhardt KA, Kann S, Köller T, Warnke P, Dupke S, Dekker D, May J, Frickmann H, et al. Multicentric Evaluation of SeeGene Allplex Real-Time PCR Assays Targeting 28 Bacterial, Microsporidal and Parasitic Nucleic Acid Sequences in Human Stool Samples. Diagnostics. 2022; 12(4):1007. https://doi.org/10.3390/diagnostics12041007
Chicago/Turabian StyleWeinreich, Felix, Andreas Hahn, Kirsten Alexandra Eberhardt, Simone Kann, Thomas Köller, Philipp Warnke, Susann Dupke, Denise Dekker, Jürgen May, Hagen Frickmann, and et al. 2022. "Multicentric Evaluation of SeeGene Allplex Real-Time PCR Assays Targeting 28 Bacterial, Microsporidal and Parasitic Nucleic Acid Sequences in Human Stool Samples" Diagnostics 12, no. 4: 1007. https://doi.org/10.3390/diagnostics12041007
APA StyleWeinreich, F., Hahn, A., Eberhardt, K. A., Kann, S., Köller, T., Warnke, P., Dupke, S., Dekker, D., May, J., Frickmann, H., & Loderstädt, U. (2022). Multicentric Evaluation of SeeGene Allplex Real-Time PCR Assays Targeting 28 Bacterial, Microsporidal and Parasitic Nucleic Acid Sequences in Human Stool Samples. Diagnostics, 12(4), 1007. https://doi.org/10.3390/diagnostics12041007