Magnesium—A More Important Role in CKD–MBD than We Thought
Abstract
:1. Introduction
2. Methods
3. The Correlation between Serum Magnesium and Chronic Kidney Disease
- CKD stage 1—FE Mg (%) = 2.24 ± 1.45,
- CKD stage 2—FE Mg (%) = 3.30 ± 3.01,
- CKD stage 3a—FE Mg (%) = 4.67 ± 4.61,
- CKD stage 3b—FE Mg (%) = 7.52 ± 5.23,
- CKD stage 4—FE Mg (%) = 11.70 ± 8.16,
- CKD stage 5 (including dialysis patients)—FE Mg (%) = 22.43 ± 12.79.
- CKD stage 1—Mg (mg/dL) = 2.03 ± 0.24,
- CKD stage 2—Mg (mg/dL) = 2.03 ± 0.29,
- CKD stage 3a—Mg (mg/dL) = 1.99 ± 0.45,
- CKD stage 3b—Mg (mg/dL) = 2.19 ± 0.54,
- CKD stage 4—Mg (mg/dL) = 2.21 ± 0.48,
- CKD stage 5 (including dialysis patients)—Mg (mg/dL) = 2.40 ± 0.59.
4. The Importance of Magnesium in the Body
- An atomic weight of 24,305 Da,
- A melting point of 648.8 °C,
- A boiling point of 1090 °C,
- A hexagonal crystal structure,
- Three stable natural isotopes,
- The property to strongly bind water in its dissolved state.
4.1. Hypomagnesemia
- Metabolic disorders—diabetes mellitus [40],
- Malnutrition,
- Gastrointestinal dysfunctions (malabsorption or loss—neoplasia, cirrhosis, severe diarrhea, etc.),
- Renal impairment (tubulointerstitial nephropathies—congenital or acquired),
- Genetic disorders—familial hypomagnesemia associating nephrocalcinosis due to CLDN16 gene mutation [41],
- Endocrine diseases—hyperaldosteronism (primary and secondary), syndrome of inappropriate antidiuretic hypersecretion, functional hypoparathyroidism [42], hungry bone disease (post parathyroidectomy),
- Cerebrovascular diseases,
- Drug-related—antibiotics (i.e., aminoglycosides), immunosuppressive therapy (i.e., cyclosporine, tacrolimus), chemotherapy (i.e., cisplatin, cetuximab, 5-fluorouracil) [43], antifungal medication (i.e., amphotericin B), proton pump inhibitors (i.e., omeprazole) [44,45], antiviral therapy (i.e., foscarnet), and diuretics. Diuretics, especially loop diuretics (i.e., furosemide, torasemide, bumethanide, etc.), which are responsible for increased urine excretion, contribute the most in the onset of hypomagnesemia, but long-term administration of thiazide diuretics can also have the same effect. Osmotic agents (i.e., mannitol) and potassium-sparing diuretics (i.e., triamterene, amiloride) increase the level of serum magnesium,
- Miscellaneous—severe burns, alcoholism, stress, cardiopulmonary bypass surgery, etc.
4.2. Hypermagnesemia
5. Magnesium Disorders in CKD
- Enhanced ultrafiltrable Mg because of glomerular hyperfiltration, hypoalbuminemia, or osmotic diuresis induced by hyperglycemia,
- Reduced Mg reabsorption in the thick ascending limb of the loop of Henle caused by insulin resistance or deficiency,
- Renal Mg waste at the proximal tubule and thick ascending limb of the loop of Henle caused by excessively vigorous volume expansion and glomerular hyperfiltration,
- Reduced oral intake and gastrointestinal absorption caused by diabetic autonomic neuropathies,
- Recurrent metabolic acidosis, hypophosphatemia, and hypokalemia linked with hypomagnesemia, etc.
6. Hypomagnesemia in CKD Patients—Why Should We Care?
- The inhibition of phosphate-induced Wnt/β-catenin signaling, a pathway that is induced by RUNX2 overexpression,
- The inhibition and improvement of deteriorated miRNAs (microRNA-30b, microRNA-133a, and microRNA-223) that are involved in the regulation of RUNX2, Smad1, and osterix (factors incriminated in the VSMC calcification);
- The activation of CaSR (calcium-sensing receptor), which regulates the ionic calcium influx in the VSMC; it is suggested that Mg could be considered as calcimimetic/gatekeeper that prevents the influx of ionic calcium.
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kidney Disease: Improving Global Outcomes (KDIGO) CKD Work Group. KDIGO 2012 Clinical Practice Guideline for the Evaluation and Management of Chronic Kidney Disease. Kidney Int. Suppl. 2013, 3, 1–150. [Google Scholar]
- Hill, N.R.; Fatoba, S.T.; Oke, J.L.; Hirst, J.A.; O’Callaghan, C.A.; Lasserson, D.S.; Hobbs, F.D. Global Prevalence of Chronic Kidney Disease-A Systematic Review and Meta-Analysis. PLoS ONE 2016, 11, e0158765. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thomas, R.; Kanso, A.; Sedor, J.R. Chronic kidney disease and its complications. Prim. Care 2008, 35, 329–444. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, W.; Du, Z.; Wei, H.; Dong, J. Total cholesterol to high-density lipoprotein cholesterol ratio is independently associated with CKD progression. Int. Urol. Nephrol. 2022, 1–7. [Google Scholar] [CrossRef]
- Murabito, S.; Hallmark, B.F. Complications of Kidney Disease. Nurs. Clin. N. Am. 2018, 53, 579–588. [Google Scholar] [CrossRef]
- Lucas, R.C. On a form of late rickets associated with albuminuria. Lancet 1883, 1, 993–994. [Google Scholar] [CrossRef] [Green Version]
- Moe, S.; Drüeke, T.; Cunningham, J.; Goodman, W.; Martin, K.; Olgaard, K.; Ott, S.; Sprague, S.; Lameire, N.; Eknoyan, G. Kidney Disease: Improving Global Outcomes (KDIGO). Definition, evaluation, and classification of renal osteodystrophy: A position statement from Kidney Disease: Improving Global Outcomes (KDIGO). Kidney Int. 2006, 69, 1945–1953. [Google Scholar] [CrossRef] [Green Version]
- Waziri, B.; Duarte, R.; Naicker, S. Chronic Kidney Disease-Mineral and Bone Disorder (CKD-MBD): Current Perspectives. Int. J. Nephrol. Renovasc. Dis. 2019, 12, 263–276. [Google Scholar] [CrossRef] [Green Version]
- Kestenbaum, B.; Belozeroff, V. Mineral metabolism disturbances in patients with chronic kidney disease. Eur. J. Clin. Investig. 2007, 37, 607–622. [Google Scholar] [CrossRef] [PubMed]
- Yuen, N.K.; Ananthakrishnan, S.; Campbell, M.J. Hyperparathyroidism of Renal Disease. Perm. J. 2016, 20, 15–127. [Google Scholar] [CrossRef] [Green Version]
- Elias, R.M.; Dalboni, M.A.; Coelho, A.C.E.; Moysés, R.M.A. CKD-MBD: From the Pathogenesis to the Identification and Development of Potential Novel Therapeutic Targets. Curr. Osteoporos. Rep. 2018, 16, 693–702. [Google Scholar] [CrossRef] [PubMed]
- Vogt, I.; Haffner, D.; Leifheit-Nestler, M. FGF23 and Phosphate-Cardiovascular Toxins in CKD. Toxins 2019, 11, 647. [Google Scholar] [CrossRef] [Green Version]
- Kuro, O.M. A phosphate-centric paradigm for pathophysiology and therapy of chronic kidney disease. Kidney Int. Suppl. 2013, 3, 420–426. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De Mier, M.V.; Rodelo-Haad, C.; Díaz-Tocados, J.M.; Muñoz-Castañeda, J.R.; Rodríguez, M. Magnesium: An old player revisited in the context of CKD-MBD. Clin. Chim. Acta 2020, 501, 53–59. [Google Scholar] [CrossRef] [PubMed]
- Nakagawa, Y.; Komaba, H.; Fukagawa, M. Magnesium as a Janus-faced inhibitor of calcification. Kidney Int. 2020, 97, 448–450. [Google Scholar] [CrossRef] [PubMed]
- Hsiao, P.J.; Liao, C.Y.; Kao, Y.H.; Chan, J.S.; Lin, Y.F.; Chuu, C.P.; Chen, J.S. Comparison of fractional excretion of electrolytes in patients at different stages of chronic kidney disease: A cross-sectional study. Medicine 2020, 99, e18709. [Google Scholar] [CrossRef] [PubMed]
- Carneiro Dias, R.S.; José de Araújo Brito, D.; Dos Santos, E.; Cadilhe de Oliveira Costa, R.; Martins Melo Fontenele, A.; Viana Hortegal Furtado, E.; Santos Lages, J.; Miranda Dos Santos, A.; Freitas Santos, E.J.; de Lima Carneiro, É.C.R.; et al. Correlation Between Parathyroid Hormone Levels with Urinary Magnesium Excretion in Patients with Non-Dialysis Dependent Chronic Kidney Disease. Int. J. Nephrol. Renovasc. Dis. 2020, 13, 341–348. [Google Scholar] [CrossRef]
- Garnier, A.S.; Duveau, A.; Planchais, M.; Subra, J.F.; Sayegh, J.; Augusto, J.F. Serum Magnesium after Kidney Transplantation: A Systematic Review. Nutrients 2018, 10, 729. [Google Scholar] [CrossRef] [Green Version]
- Cascella, M.; Vaqar, S. Hypermagnesemia. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2021. [Google Scholar]
- Gragossian, A.; Bashir, K.; Friede, R. Hypomagnesemia. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2021. [Google Scholar]
- Jahnen-Dechent, W.; Ketteler, M. Magnesium basics. Clin. Kidney J. 2012, 5, i3–i14. [Google Scholar] [CrossRef] [Green Version]
- Cunningham, J.; Rodríguez, M.; Messa, P. Magnesium in chronic kidney disease Stages 3 and 4 and in dialysis patients. Clin. Kidney J. 2012, 5, i39–i51. [Google Scholar] [CrossRef]
- Watanabe, M.; Nakamura, K.; Kato, M.; Okada, T.; Iesaki, T. Chronic magnesium deficiency causes reversible mitochondrial permeability transition pore opening and impairs hypoxia tolerance in the rat heart. J. Pharmacol. Sci. 2022, 148, 238–247. [Google Scholar] [CrossRef] [PubMed]
- Shayganfard, M. Are Essential Trace Elements Effective in Modulation of Mental Disorders? Update and Perspectives. Biol. Trace Elem. Res. 2022, 200, 1032–1059. [Google Scholar] [CrossRef] [PubMed]
- Navarro-González, J.F.; Mora-Fernández, C.; García-Pérez, J. Clinical implications of disordered magnesium homeostasis in chronic renal failure and dialysis. Semin. Dial. 2009, 22, 37–44. [Google Scholar] [CrossRef] [PubMed]
- Elin, R.J. Assessment of magnesium status for diagnosis and therapy. Magnes. Res. 2010, 23, S194–S198. [Google Scholar] [CrossRef] [PubMed]
- De Baaij, J.H.; Hoenderop, J.G.; Bindels, R.J. Regulation of magnesium balance: Lessons learned from human genetic disease. Clin. Kidney J. 2012, 5, i15–i24. [Google Scholar] [CrossRef]
- Akizawa, Y.; Koizumi, S.; Itokawa, Y.; Ojima, T.; Nakamura, Y.; Tamura, T.; Kusaka, Y. Daily magnesium intake and serum magnesium concentration among Japanese people. J. Epidemiol. 2008, 18, 151–159. [Google Scholar] [CrossRef] [Green Version]
- Quamme, G.A. Recent developments in intestinal magnesium absorption. Curr. Opin. Gastroenterol. 2008, 24, 230–235. [Google Scholar] [CrossRef]
- Sharma, R.; Heidari, A.; Johnson, R.H.; Advani, S.; Petersen, G. Serum magnesium levels in hospitalized patients with SARS-CoV-2. J. Investig. Med. 2022, 70, 409–414. [Google Scholar] [CrossRef]
- Curry, J.N.; Yu, A.S.L. Magnesium Handling in the Kidney. Adv. Chronic Kidney Dis. 2018, 25, 236–243. [Google Scholar] [CrossRef]
- Oliveira, B.; Cunningham, J.; Walsh, S.B. Magnesium Balance in Chronic and End-Stage Kidney Disease. Adv. Chronic Kidney Dis. 2018, 25, 291–295. [Google Scholar] [CrossRef]
- Dimke, H.; Hoenderop, J.G.; Bindels, R.J. Molecular basis of epithelial Ca2+ and Mg2+ transport: Insights from the TRP channel family. J. Physiol. 2011, 589, 1535–1542. [Google Scholar] [CrossRef]
- Marneros, A.G. Magnesium and Calcium Homeostasis Depend on KCTD1 Function in the Distal Nephron. Cell Rep. 2021, 34, 108616. [Google Scholar] [CrossRef] [PubMed]
- Alexander, R.T.; Hoenderop, J.G.; Bindels, R.J. Molecular determinants of magnesium homeostasis: Insights from human disease. J. Am. Soc. Nephrol. 2008, 19, 1451–1458. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ferrè, S.; Hoenderop, J.G.; Bindels, R.J. Sensing mechanisms involved in Ca2+ and Mg2+ homeostasis. Kidney Int. 2012, 82, 1157–1166. [Google Scholar] [CrossRef] [PubMed]
- Lutsey, P.L.; Chen, L.Y.; Eaton, A.; Jaeb, M.; Rudser, K.D.; Neaton, J.D.; Alonso, A. A Pilot Randomized Trial of Oral Magnesium Supplementation on Supraventricular Arrhythmias. Nutrients 2018, 10, 884. [Google Scholar] [CrossRef] [Green Version]
- Feng, J.; Wang, H.; Jing, Z.; Wang, Y.; Cheng, Y.; Wang, W.; Sun, W. Role of Magnesium in Type 2 Diabetes Mellitus. Biol. Trace Elem. Res. 2020, 196, 74–85. [Google Scholar] [CrossRef]
- Shivakumar, K.; Rajalakshmi, A.R.; Jha, K.N.; Nagarajan, S.; Srinivasan, A.R.; Lokesh Maran, A. Serum magnesium in diabetic retinopathy: The association needs investigation. Ther. Adv. Ophthalmol. 2021, 13, 25158414211056385. [Google Scholar] [CrossRef]
- Shiyovich, A.; Gilutz, H.; Plakht, Y. Serum electrolyte/metabolite abnormalities among patients with acute myocardial infarction: Comparison between patients with and without diabetes mellitus. Postgrad. Med. 2021, 133, 395–403. [Google Scholar] [CrossRef]
- Eltan, M.; Yavas Abali, Z.; Turkyilmaz, A.; Gokce, I.; Abali, S.; Alavanda, C.; Arman, A.; Kirkgoz, T.; Guran, T.; Hatun, S.; et al. Familial Hypomagnesemia with Hypercalciuria and Nephrocalcinosis Due to CLDN16 Gene Mutations: Novel Findings in Two Cases with Diverse Clinical Features. Calcif. Tissue Int. 2022, 110, 441–450. [Google Scholar] [CrossRef]
- Jacob, J.; Raghothama, S.; Subramanyam, K.; Johny, D. Hypomagnesaemia causing functional hypoparathyroidism in rheumatic mitral stenosis leading to sudden cardiac arrest in a young woman. BMJ Case Rep. 2021, 14, e244176. [Google Scholar] [CrossRef]
- Sahashi, Y.; Nawa, T. Incessant Atrial Tachycardia Following Combination Chemotherapy with Cetuximab, Cisplatin and 5-Fluorouracil for Hypopharyngeal Cancer. Cardiovasc. Toxicol. 2021, 21, 494–497. [Google Scholar] [CrossRef]
- Desbuissons, G.; Mercadal, L. Use of proton pump inhibitors in dialysis patients: A double-edged sword? J. Nephrol. 2021, 34, 661–672. [Google Scholar] [CrossRef] [PubMed]
- Rooney, M.R.; Bell, E.J.; Alonso, A.; Pankow, J.S.; Demmer, R.T.; Rudser, K.D.; Chen, L.Y.; Lutsey, P.L. Proton Pump Inhibitor Use, Hypomagnesemia and Risk of Cardiovascular Diseases: The Atherosclerosis Risk in Communities (ARIC) Study. J. Clin. Gastroenterol. 2021, 55, 677–683. [Google Scholar] [CrossRef]
- Zhang, M.M.; Ji, M.J.; Wang, X.M.; Wang, S.Q.; Sun, J.; Ma, C.M. Hospital-acquired dysmagnesemia and mortality in critically ill patients: Data from MIMIC-III database. Magnes. Res. 2021, 34, 64–73. [Google Scholar] [CrossRef] [PubMed]
- Yoshida, M.; Izawa, J.; Wakatake, H.; Saito, H.; Kawabata, C.; Matsushima, S.; Suzuki, A.; Nagatomi, A.; Yoshida, T.; Masui, Y.; et al. Mortality associated with new risk classification of developing refeeding syndrome in critically ill patients: A cohort study. Clin. Nutr. 2021, 40, 1207–1213. [Google Scholar] [CrossRef] [PubMed]
- Micke, O.; Vormann, J.; Kraus, A.; Kisters, K. Serum magnesium: Time for a standardized and evidence-based reference range. Magnes. Res. 2021, 34, 84–89. [Google Scholar] [CrossRef]
- Martins, I.J. Magnesium deficiency and induction of NAFLD and type 3 diabetes in Australasia. Australas. Med. J. 2017, 10, 235–237. [Google Scholar] [CrossRef]
- Zahra, H.; Berriche, O.; Mizouri, R.; Boukhayatia, F.; Khiari, M.; Gamoudi, A.; Lahmar, I.; Ben Amor, N.; Mahjoub, F.; Zayet, S.; et al. Plasmatic Magnesium Deficiency in 101 Outpatients Living with Type 2 Diabetes Mellitus. Clin. Pract. 2021, 11, 95. [Google Scholar] [CrossRef]
- Tan, C.W.; Ho, L.P.; Kalimuddin, S.; Cherng, B.P.Z.; The, Y.E.; Thien, S.Y.; Wong, H.M.; Tern, P.J.W.; Chandran, M.; Chay, J.W.M.; et al. Cohort study to evaluate the effect of vitamin D, magnesium, and vitamin B12 in combination on progression to severe outcomes in older patients with coronavirus (COVID-19). Nutrition 2020, 79, 111017. [Google Scholar] [CrossRef]
- Cooper, I.D.; Crofts, C.A.P.; DiNicolantonio, J.J.; Malhotra, A.; Elliott, B.; Kyriakidou, Y.; Brookler, K.H. Relationships between hyperinsulinaemia, magnesium, vitamin D, thrombosis and COVID-19: Rationale for clinical management. Open Heart 2020, 7, e001356. [Google Scholar] [CrossRef]
- Martineau, A.R.; Jolliffe, D.A.; Hooper, R.L.; Greenberg, L.; Aloia, J.F.; Bergman, P.; Dubnov-Raz, G.; Esposito, S.; Ganmaa, D.; Ginde, A.A.; et al. Vitamin D supplementation to prevent acute respiratory tract infections: Systematic review and meta-analysis of individual participant data. BMJ 2017, 356, i6583. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dai, Q.; Zhu, X.; Manson, J.E.; Song, Y.; Li, X.; Franke, A.A.; Costello, R.B.; Rosanoff, A.; Nian, H.; Fan, L.; et al. Magnesium status and supplementation influence vitamin D status and metabolism: Results from a randomized trial. Am. J. Clin. Nutr. 2018, 108, 1249–1258. [Google Scholar] [CrossRef] [PubMed]
- Wallace, T.C. Combating COVID-19 and Building Immune Resilience: A Potential Role for Magnesium Nutrition? J. Am. Coll. Nutr. 2020, 39, 685–693. [Google Scholar] [CrossRef] [PubMed]
- Voultsos, P.; Bazmpani, M.A.; Papanastasiou, C.A.; Papadopoulos, C.E.; Efthimiadis, G.; Karvounis, H.; Kalogeropoulos, A.P.; Karamitsos, T.D. Magnesium disorders and prognosis in heart failure: A systematic review. Cardiol. Rev. 2021. [Google Scholar] [CrossRef]
- Hizuka, K.; Kato, T.; Shiko, Y.; Kawasaki, Y.; Koyama, K. Ionized Hypomagnesemia Is Associated With Increased Incidence of Postoperative Atrial Fibrillation After Esophageal Resection: A Retrospective Study. Cureus 2021, 13, e17105. [Google Scholar] [CrossRef]
- Liu, M.; Liu, H.; Feng, F.; Xie, A.; Kang, G.J.; Zhao, Y.; Hou, C.R.; Zhou, X.; Dudley, S.C., Jr. Magnesium Deficiency Causes a Reversible, Metabolic, Diastolic Cardiomyopathy. J. Am. Heart Assoc. 2021, 10, e020205. [Google Scholar] [CrossRef]
- Schlingmann, K.P.; Jouret, F.; Shen, K.; Nigam, A.; Arjona, F.J.; Dafinger, C.; Houillier, P.; Jones, D.P.; Kleinerüschkamp, F.; Oh, J.; et al. mTOR-Activating Mutations in RRAGD Are Causative for Kidney Tubulopathy and Cardiomyopathy. J. Am. Soc. Nephrol. 2021, 32, 2885–2899. [Google Scholar] [CrossRef]
- Tiver, K.D.; Dharmaprani, D.; Quah, J.X.; Lahiri, A.; Waddell-Smith, K.E.; Ganesan, A.N. Vomiting, electrolyte disturbance, and medications; the perfect storm for acquired long QT syndrome and cardiac arrest: A case report. J. Med. Case Rep. 2022, 16, 9. [Google Scholar] [CrossRef]
- Shechter, M.; Eilat-Adar, S. Dietary recommendations of magnesium for cardiovascular prevention and treatment. A position paper of the Israel Heart Society and the Israel Dietetic Association. Magnes. Res. 2021, 34, 35–42. [Google Scholar] [CrossRef]
- Mori, H.; Suzuki, H.; Hirai, Y.; Okuzawa, A.; Kayashima, A.; Kubosawa, Y.; Kinoshita, S.; Fujimoto, A.; Nakazato, Y.; Nishizawa, T.; et al. Clinical features of hypermagnesemia in patients with functional constipation taking daily magnesium oxide. J. Clin. Biochem. Nutr. 2019, 65, 76–81. [Google Scholar] [CrossRef] [Green Version]
- Thongprayoon, C.; Hansrivijit, P.; Petnak, T.; Mao, M.A.; Bathini, T.; Duriseti, P.; Vallabhajosyula, S.; Qureshi, F.; Erickson, S.B.; Cheungpasitporn, W. Impact of serum magnesium levels at hospital discharge and one-year mortality. Postgrad. Med. 2021. [Google Scholar] [CrossRef] [PubMed]
- Krupesh, V.R.; Varayathu, H.; Sarathy, V.; Rao, G.P.; Shrestha, Y.; Naik, R. Hypermagnesemia in critically ill patients with cancer: A case report. Mol. Clin. Oncol. 2021, 14, 123. [Google Scholar] [CrossRef] [PubMed]
- Oka, T.; Hamano, T.; Sakaguchi, Y.; Yamaguchi, S.; Kubota, K.; Senda, M.; Yonemoto, S.; Shimada, K.; Matsumoto, A.; Hashimoto, N.; et al. Proteinuria-associated renal magnesium wasting leads to hypomagnesemia: A common electrolyte abnormality in chronic kidney disease. Nephrol. Dial. Transpl. 2019, 34, 1154–1162. [Google Scholar] [CrossRef] [PubMed]
- Sakaguchi, Y. The emerging role of magnesium in CKD. Clin. Exp. Nephrol. 2022. [Google Scholar] [CrossRef] [PubMed]
- Uwitonze, A.M.; Razzaque, M.S. Role of Magnesium in Vitamin D Activation and Function. J. Am. Osteopath. Assoc. 2018, 118, 181–189. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Andress, D.L. Vitamin D in chronic kidney disease: A systemic role for selective vitamin D receptor activation. Kidney Int. 2006, 69, 33–43. [Google Scholar] [CrossRef] [Green Version]
- Dusso, A.; González, E.A.; Martin, K.J. Vitamin D in chronic kidney disease. Best Pract. Res. Clin. Endocrinol. Metab. 2011, 25, 647–655. [Google Scholar] [CrossRef]
- Agarwal, R. Vitamin D, proteinuria, diabetic nephropathy, and progression of CKD. Clin. J. Am. Soc. Nephrol. 2009, 4, 1523–1528. [Google Scholar] [CrossRef] [Green Version]
- Pham, P.C.; Pham, P.M.; Pham, S.V.; Miller, J.M.; Pham, P.T. Hypomagnesemia in patients with type 2 diabetes. Clin. J. Am. Soc. Nephrol. 2007, 2, 366–373. [Google Scholar] [CrossRef] [Green Version]
- Ebrahimi Mousavi, S.; Ghoreishy, S.M.; Hemmati, A.; Mohammadi, H. Association between magnesium concentrations and prediabetes: A systematic review and meta-analysis. Sci. Rep. 2021, 11, 24388. [Google Scholar] [CrossRef]
- Dasgupta, A.; Sarma, D.; Saikia, U.K. Hypomagnesemia in type 2 diabetes mellitus. Indian J. Endocrinol. Metab. 2012, 16, 1000–1003. [Google Scholar] [CrossRef] [PubMed]
- Pham, P.C.; Pham, P.M.; Pham, P.A.; Pham, S.V.; Pham, H.V.; Miller, J.M.; Yanagawa, N.; Pham, P.T. Lower serum magnesium levels are associated with more rapid decline of renal function in patients with diabetes mellitus type 2. Clin. Nephrol. 2005, 63, 429–436. [Google Scholar] [CrossRef] [PubMed]
- Lopez-Ridaura, R.; Willett, W.C.; Rimm, E.B.; Liu, S.; Stampfer, M.J.; Manson, J.E.; Hu, F.B. Magnesium intake and risk of type 2 diabetes in men and women. Diabetes Care 2004, 27, 134–140. [Google Scholar] [CrossRef] [Green Version]
- Whang, R.; Ryder, K.W. Frequency of hypomagnesemia and hypermagnesemia. Requested vs routine. JAMA 1990, 263, 3063–3064. [Google Scholar] [CrossRef] [PubMed]
- Ferrè, S.; Neyra, J.A.; Moe, O.W. Calcium, phosphate, and magnesium metabolism in chronic kidney disease. In Chronic Renal Disease; Academic Press: Cambridge, MA, USA, 2020; pp. 661–679. [Google Scholar]
- Leenders, N.H.J.; Vervloet, M.G. Magnesium: A Magic Bullet for Cardiovascular Disease in Chronic Kidney Disease? Nutrients 2019, 11, 455. [Google Scholar] [CrossRef] [Green Version]
- Veronese, N.; Stubbs, B.; Solmi, M.; Noale, M.; Vaona, A.; Demurtas, J.; Maggi, S. Dietary magnesium intake and fracture risk: Data from a large prospective study. Br. J. Nutr. 2017, 117, 1570–1576. [Google Scholar] [CrossRef] [Green Version]
- Kunutsor, S.K.; Whitehouse, M.R.; Blom, A.W.; Laukkanen, J.A. Low serum magnesium levels are associated with increased risk of fractures: A long-term prospective cohort study. Eur. J. Epidemiol. 2017, 32, 593–603. [Google Scholar] [CrossRef] [Green Version]
- Sakaguchi, Y.; Hamano, T.; Wada, A.; Hoshino, J.; Masakane, I. Magnesium and risk of hip fracture among patients undergoing hemodialysis. J. Am. Soc. Nephrol. 2018, 29, 991–999. [Google Scholar] [CrossRef]
- Ter Braake, A.D.; Shanahan, C.M.; de Baaij, J.H.F. Magnesium Counteracts Vascular Calcification: Passive Interference or Active Modulation? Arterioscler. Thromb. Vasc. Biol. 2017, 37, 1431–1445. [Google Scholar] [CrossRef] [Green Version]
- Moor, M.B.; Ramakrishnan, S.K.; Legrand, F.; Bachtler, M.; Koesters, R.; Hynes, N.E.; Pasch, A.; Bonny, O. Elevated serum magnesium lowers calcification propensity in Memo1-deficient mice. PLoS ONE 2020, 15, e0236361. [Google Scholar] [CrossRef]
- Rodelo-Haad, C.; Pendón-Ruiz de Mier, M.V.; Díaz-Tocados, J.M.; Martin-Malo, A.; Santamaria, R.; Muñoz-Castañeda, J.R.; Rodríguez, M. The Role of Disturbed Mg Homeostasis in Chronic Kidney Disease Comorbidities. Front. Cell. Dev. Biol. 2020, 8, 543099. [Google Scholar] [CrossRef] [PubMed]
- GBD Chronic Kidney Disease Collaboration. Global, regional, and national burden of chronic kidney disease, 1990-2017: A systematic analysis for the Global Burden of Disease Study 2017. Lancet 2020, 395, 709–733. [Google Scholar] [CrossRef] [Green Version]
- Funes, D.R.; Blanco, D.G.; Hong, L.; Lo Menzo, E.; Szomstein, S.; Rosenthal, R.J. Prevalence of chronic kidney disease and end-stage renal disease in a bariatric versus nonbariatric population: A retrospective analysis of the U.S. National Inpatient Sample database. Surg. Obes. Relat. Dis. 2022, 18, 281–287. [Google Scholar] [CrossRef]
- Van de Wal-Visscher, E.R.; Kooman, J.P.; van der Sande, F.M. Magnesium in Chronic Kidney Disease: Should We Care? Blood Purif. 2018, 45, 173–178. [Google Scholar] [CrossRef] [PubMed]
- Go, A.S.; Chertow, G.M.; Fan, D.; McCulloch, C.E.; Hsu, C.Y. Chronic kidney disease and the risks of death, cardiovascular events, and hospitalization. N. Engl. J. Med. 2004, 351, 1296–1305. [Google Scholar] [CrossRef] [PubMed]
- Weir, M.R. Microalbuminuria and cardiovascular disease. Clin. J. Am. Soc. Nephrol. 2007, 2, 581–590. [Google Scholar] [CrossRef]
- Stehouwer, C.D.; Smulders, Y.M. Microalbuminuria and risk for cardiovascular disease: Analysis of potential mechanisms. J. Am. Soc. Nephrol. 2006, 17, 2106–2111. [Google Scholar] [CrossRef] [Green Version]
- Covic, A.; Kanbay, M.; Voroneanu, L.; Turgut, F.; Serban, D.N.; Serban, I.L.; Goldsmith, D.J. Vascular calcification in chronic kidney disease. Clin. Sci. 2010, 119, 111–121. [Google Scholar] [CrossRef]
- Voelkl, J.; Cejka, D.; Alesutan, I. An overview of the mechanisms in vascular calcification during chronic kidney disease. Curr. Opin. Nephrol. Hypertens. 2019, 28, 289–296. [Google Scholar] [CrossRef]
- Schlieper, G.; Schurgers, L.; Brandenburg, V.; Reutelingsperger, C.; Floege, J. Vascular calcification in chronic kidney disease: An update. Nephrol. Dial. Transpl. 2016, 31, 31–39. [Google Scholar] [CrossRef] [Green Version]
- Ferreira, A.C.; Cotovio, P.; Aires, I.; Mendes, M.; Navarro, D.; Silva, C.; Caeiro, F.; Salvador, R.; Correia, B.; Cabral, G.; et al. The Role of Bone Volume, FGF23 and Sclerostin in Calcifications and Mortality; a Cohort Study in CKD Stage 5 Patients. Calcif. Tissue Int. 2022, 110, 215–224. [Google Scholar] [CrossRef] [PubMed]
- Zeper, L.W.; de Baaij, J.H.F. Magnesium and calciprotein particles in vascular calcification: The good cop and the bad cop. Curr. Opin. Nephrol. Hypertens. 2019, 28, 368–374. [Google Scholar] [CrossRef] [PubMed]
- Ter Braake, A.D.; Smit, A.E.; Bos, C.; van Herwaarden, A.E.; Alkema, W.; van Essen, H.W.; Bravenboer, N.; Vervloet, M.G.; Hoenderop, J.G.J.; de Baaij, J.H.F. Magnesium prevents vascular calcification in Klotho deficiency. Kidney Int. 2020, 97, 487–501. [Google Scholar] [CrossRef] [PubMed]
- Ter Braake, A.D.; Tinnemans, P.T.; Shanahan, C.M.; Hoenderop, J.G.J.; de Baaij, J.H.F. Magnesium prevents vascular calcification in vitro by inhibition of hydroxyapatite crystal formation. Sci. Rep. 2018, 8, 2069. [Google Scholar] [CrossRef]
- Montes de Oca, A.; Guerrero, F.; Martinez-Moreno, J.M.; Madueño, J.A.; Herencia, C.; Peralta, A.; Almaden, Y.; Lopez, I.; Aguilera-Tejero, E.; Gundlach, K.; et al. Magnesium inhibits Wnt/β-catenin activity and reverses the osteogenic transformation of vascular smooth muscle cells. PLoS ONE 2014, 9, e89525. [Google Scholar] [CrossRef] [PubMed]
- Alesutan, I.; Tuffaha, R.; Auer, T.; Feger, M.; Pieske, B.; Lang, F.; Voelkl, J. Inhibition of osteo/chondrogenic transformation of vascular smooth muscle cells by MgCl2 via calcium-sensing receptor. J. Hypertens. 2017, 35, 523–532. [Google Scholar] [CrossRef] [PubMed]
- Evrard, S.; Delanaye, P.; Kamel, S.; Cristol, J.P.; Cavalier, E.; SFBC/SN joined working group on vascular calcifications. Vascular calcification: From pathophysiology to biomarkers. Clin. Chim. Acta 2015, 438, 401–414. [Google Scholar] [CrossRef] [PubMed]
- De Schutter, T.M.; Behets, G.J.; Geryl, H.; Peter, M.E.; Steppan, S.; Gundlach, K.; Passlick-Deetjen, J.; D’Haese, P.C.; Neven, E. Effect of a magnesium-based phosphate binder on medial calcification in a rat model of uremia. Kidney Int. 2013, 83, 1109–1117. [Google Scholar] [CrossRef] [Green Version]
- Zelt, J.G.; McCabe, K.M.; Svajger, B.; Barron, H.; Laverty, K.; Holden, R.M.; Adams, M.A. Magnesium Modifies the Impact of Calcitriol Treatment on Vascular Calcification in Experimental Chronic Kidney Disease. J. Pharmacol. Exp. Ther. 2015, 355, 451–462. [Google Scholar] [CrossRef] [Green Version]
- Silva, A.P.; Gundlach, K.; Büchel, J.; Jerónimo, T.; Fragoso, A.; Silva, C.; Guilherme, P.; Santos, N.; Faísca, M.; Neves, P. Low Magnesium Levels and FGF-23 Dysregulation Predict Mitral Valve Calcification as well as Intima Media Thickness in Predialysis Diabetic Patients. Int. J. Endocrinol. 2015, 2015, 308190. [Google Scholar] [CrossRef] [Green Version]
- O’Leary, D.H.; Polak, J.F.; Kronmal, R.A.; Manolio, T.A.; Burke, G.L.; Wolfson, S.K., Jr. Carotid-artery intima and media thickness as a risk factor for myocardial infarction and stroke in older adults. Cardiovascular Health Study Collaborative Research Group. N. Engl. J. Med. 1999, 340, 14–22. [Google Scholar] [CrossRef] [PubMed]
- Cobble, M.; Bale, B. Carotid intima-media thickness: Knowledge and application to everyday practice. Postgrad. Med. 2010, 122, 10–18. [Google Scholar] [CrossRef] [PubMed]
- Hashimoto, T.; Hara, A.; Ohkubo, T.; Kikuya, M.; Shintani, Y.; Metoki, H.; Inoue, R.; Asayama, K.; Kanno, A.; Nakashita, M.; et al. Serum magnesium, ambulatory blood pressure, and carotid artery alteration: The Ohasama study. Am. J. Hypertens. 2010, 23, 1292–1298. [Google Scholar] [CrossRef] [PubMed]
- Tzanakis, I.P.; Stamataki, E.E.; Papadaki, A.N.; Giannakis, N.; Damianakis, N.E.; Oreopoulos, D.G. Magnesium retards the progress of the arterial calcifications in hemodialysis patients: A pilot study. Int. Urol. Nephrol. 2014, 46, 2199–2205. [Google Scholar] [CrossRef] [PubMed]
- Turgut, F.; Kanbay, M.; Metin, M.R.; Uz, E.; Akcay, A.; Covic, A. Magnesium supplementation helps to improve carotid intima media thickness in patients on hemodialysis. Int. Urol. Nephrol. 2008, 40, 1075–1082. [Google Scholar] [CrossRef] [PubMed]
- Guo, G.; Zhou, J.; Xu, T.; Sheng, Z.; Huang, A.; Sun, L.; Yao, L. Effect of Magnesium Supplementation on Chronic Kidney Disease-Mineral and Bone Disorder in Hemodialysis Patients: A Meta-Analysis of Randomized Controlled Trials. J. Ren. Nutr. 2022, 32, 102–111. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Wang, R. Associations between the serum magnesium and all-cause or cardiovascular mortality in chronic kidney disease and end-stage renal disease patients: A meta-analysis. Medicine 2021, 100, e27486. [Google Scholar] [CrossRef]
- Zhang, F.; Wu, X.; Wen, Y.; Zhan, X.; Peng, F.F.; Wang, X.; Qian, Z.; Feng, X. Hypomagnesemia Is a Risk Factor for Cardiovascular Disease- and Noncardiovascular Disease-Related Mortality in Peritoneal Dialysis Patients. Blood Purif. 2022, 51, 23–30. [Google Scholar] [CrossRef]
- Wu, L.; Cai, K.; Luo, Q.; Wang, L.; Hong, Y. Baseline Serum Magnesium Level and Its Variability in Maintenance Hemodialysis Patients: Associations with Mortality. Kidney Blood Press. Res. 2019, 44, 222–232. [Google Scholar] [CrossRef]
- Ferrè, S.; Li, X.; Adams-Huet, B.; Maalouf, N.M.; Sakhaee, K.; Toto, R.D.; Moe, O.W.; Neyra, J.A. Association of serum magnesium with all-cause mortality in patients with and without chronic kidney disease in the Dallas Heart Study. Nephrol. Dial. Transplant 2018, 33, 1389–1396. [Google Scholar] [CrossRef]
- Galán Carrillo, I.; Vega, A.; Goicoechea, M.; Shabaka, A.; Gatius, S.; Abad, S.; López-Gómez, J.M. Impact of Serum Magnesium Levels on Kidney and Cardiovascular Prognosis and Mortality in CKD Patients. J. Ren. Nutr. 2021, 31, 494–502. [Google Scholar] [CrossRef] [PubMed]
- López-Baltanás, R.; Encarnación Rodríguez-Ortiz, M.; Canalejo, A.; Díaz-Tocados, J.M.; Herencia, C.; Leiva-Cepas, F.; Torres-Peña, J.D.; Ortíz-Morales, A.; Muñoz-Castañeda, J.R.; Rodríguez, M.; et al. Magnesium supplementation reduces inflammation in rats with induced chronic kidney disease. Eur. J. Clin. Investig. 2021, 51, e13561. [Google Scholar] [CrossRef] [PubMed]
- Xiong, J.; He, T.; Wang, M.; Nie, L.; Zhang, Y.; Wang, Y.; Huang, Y.; Feng, B.; Zhang, J.; Zhao, J. Serum magnesium, mortality, and cardiovascular disease in chronic kidney disease and end-stage renal disease patients: A systematic review and meta-analysis. J. Nephrol. 2019, 32, 791–802. [Google Scholar] [CrossRef] [PubMed]
- Jandaghi, E.; Yarmohammadi, M.; Ghorbani, R.; Jalali, T.; Salehani, A.K.; Khani, P.M. Comparison of Sevelamer and Calcium Carbonate in Prevention of Hypomagnesemia in Hemodialysis Patients. Int. J. Prev. Med. 2021, 12, 104. [Google Scholar] [CrossRef]
- Shi, Z.; Abou-Samra, A.B. Association of low serum magnesium with diabetes and hypertension: Findings from Qatar Biobank study. Diabetes Res. Clin. Pract. 2019, 158, 107903. [Google Scholar] [CrossRef] [PubMed]
- Chrysant, S.G.; Chrysant, G.S. Association of hypomagnesemia with cardiovascular diseases and hypertension. Int. J. Cardiol. Hypertens. 2019, 1, 100005. [Google Scholar] [CrossRef]
- Sakaguchi, Y.; Hamano, T.; Isaka, Y. Magnesium and Progression of Chronic Kidney Disease: Benefits Beyond Cardiovascular Protection? Adv. Chronic Kidney Dis. 2018, 25, 274–280. [Google Scholar] [CrossRef]
- Hénaut, L.; Massy, Z.A. Magnesium as a Calcification Inhibitor. Adv. Chronic Kidney Dis. 2018, 25, 281–290. [Google Scholar] [CrossRef]
- Azem, R.; Daou, R.; Bassil, E.; Anvari, E.M.; Taliercio, J.J.; Arrigain, S.; Schold, J.D.; Vachharajani, T.; Nally, J.; Na Khoul, G.N. Serum magnesium, mortality and disease progression in chronic kidney disease. BMC Nephrol. 2020, 21, 49. [Google Scholar] [CrossRef] [Green Version]
- Kula, A.J.; Bansal, N. Magnesium and Cardiovascular Disease in CKD: The Mysteries of a Humble Divalent Cation. Kidney Med. 2021, 3, 162–164. [Google Scholar] [CrossRef] [PubMed]
- Pvsn, K.K.; Tomo, S.; Purohit, P.; Sankanagoudar, S.; Charan, J.; Purohit, A.; Nag, V.; Bhatia, P.; Singh, K.; Dutt, N.; et al. Comparative Analysis of Serum Zinc, Copper and Magnesium Level and Their Relations in Association with Severity and Mortality in SARS-CoV-2 Patients. Biol. Trace Elem. Res. 2022, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Lötscher, J.; Martí I Líndez, A.A.; Kirchhammer, N.; Cribioli, E.; Giordano, G.; Trefny, M.P.; Lenz, M.; Rothschild, S.I.; Strati, P.; Künzli, M.; et al. Magnesium sensing via LFA-1 regulates CD8+ T cell effector function. Cell 2022, 185, 585–602. [Google Scholar] [CrossRef] [PubMed]
- Mazzaferro, S.; de Martini, N.; Cannata-Andía, J.; Cozzolino, M.; Messa, P.; Rotondi, S.; Tartaglione, L.; Pasquali, M.; On BehalOf The Era-Edta Ckd-Mbd Working Group. Focus on the Possible Role of Dietary Sodium, Potassium, Phosphate, Magnesium, and Calcium on CKD Progression. J. Clin. Med. 2021, 10, 958. [Google Scholar] [CrossRef]
- Ter Braake, A.D.; Vervloet, M.G.; de Baaij, J.H.F.; Hoenderop, J.G.J. Magnesium to prevent kidney disease-associated vascular calcification: Crystal clear? Nephrol. Dial. Transpl. 2020, 37, 421–429. [Google Scholar] [CrossRef] [PubMed]
- Negrea, L.; DeLozier, S.J.; Janes, J.L.; Rahman, M.; Dobre, M. Serum Magnesium and Cardiovascular Outcomes and Mortality in CKD: The Chronic Renal Insufficiency Cohort (CRIC). Kidney Med. 2021, 3, 183–192. [Google Scholar] [CrossRef]
Traditional Factors |
---|
Hypertension |
Diabetes mellitus |
Dyslipidemia |
Smoking |
Specific Factors |
Secondary hyperparathyroidism |
Anemia |
Malnutrition |
Anemia |
New Risk Factors |
Hyperphosphatemia |
Hypomagnesemia |
Increased FGF-23 level |
Decreased α-Klotho |
Pathophysiological Effects |
---|
Accelerated atherosclerosis |
Proinflammatory effect |
Increased thromboxane synthesis |
Increased synthesis of cytokines, nitric oxide |
Aldosterone overproduction |
Sympathetic nervous system overactivity |
Diseases |
Hypertension |
Cardiovascular diseases |
Renal impairment |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Peride, I.; Tiglis, M.; Neagu, T.P.; Niculae, A.; Checherita, I.A. Magnesium—A More Important Role in CKD–MBD than We Thought. Diagnostics 2022, 12, 880. https://doi.org/10.3390/diagnostics12040880
Peride I, Tiglis M, Neagu TP, Niculae A, Checherita IA. Magnesium—A More Important Role in CKD–MBD than We Thought. Diagnostics. 2022; 12(4):880. https://doi.org/10.3390/diagnostics12040880
Chicago/Turabian StylePeride, Ileana, Mirela Tiglis, Tiberiu Paul Neagu, Andrei Niculae, and Ionel Alexandru Checherita. 2022. "Magnesium—A More Important Role in CKD–MBD than We Thought" Diagnostics 12, no. 4: 880. https://doi.org/10.3390/diagnostics12040880
APA StylePeride, I., Tiglis, M., Neagu, T. P., Niculae, A., & Checherita, I. A. (2022). Magnesium—A More Important Role in CKD–MBD than We Thought. Diagnostics, 12(4), 880. https://doi.org/10.3390/diagnostics12040880