Soluble Angiotensin-Converting Enzyme 2 as a Prognostic Biomarker for Disease Progression in Patients Infected with SARS-CoV-2
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Ethical Statement
2.2. Patients
2.3. Sample Handling
2.4. Assays
2.5. Data Analysis
3. Results
3.1. Patients
3.2. Univariate Analysis of Patients Infected with SARS-CoV-2 versus ‘SARS-CoV-2 Unexposed’ Patients
3.3. Univariate and Bivariate Analysis of Patients Infected with SARS-CoV-2 Who Were Admitted to Hospital versus Patients Infected with SARS-CoV-2 Who Were Discharged
3.4. Univariate Analysis of Patients Infected with SARS-CoV-2 Who Were Admitted to the ICU or Died versus Patients Infected with SARS-CoV-2 Who Were Admitted to the Ward or Discharged
3.5. Patients Who Were RT-PCR-Confirmed Negative for SARS-CoV-2 Infection Following a Previous Positive RT-PCR Result
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ghebreyesus, T.A. WHO Director-General’s Opening Remarks at the Media Briefing on COVID-19. 2020. Available online: https://www.who.int/director-general/speeches/detail/who-director-general-s-opening-remarks-at-the-media-briefing-on-covid-19 (accessed on 11 March 2020).
- Caricchio, R.; Gallucci, M.; Dass, C.; Zhang, X.; Gallucci, S.; Fleece, D.; Bromberg, M.; Criner, G.J. Preliminary predictive criteria for COVID-19 cytokine storm. Ann. Rheum. Dis. 2021, 80, 88–95. [Google Scholar] [CrossRef] [PubMed]
- Wynants, L.; Van Calster, B.; Collins, G.S.; Riley, R.D.; Heinze, G.; Schuit, E.; Bonten, M.M.J.; Dahly, D.L.; Damen, J.A.; Debray, T.P.A.; et al. Prediction models for diagnosis and prognosis of COVID-19: Systematic review and critical appraisal. BMJ 2020, 369, m1328. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, L.; Guo, H. Biomarkers of COVID-19 and technologies to combat SARS-CoV-2. Adv. Biomark. Sci. Technol. 2020, 2, 1–23. [Google Scholar] [CrossRef] [PubMed]
- Hodges, G.; Pallisgaard, J.; Olsen, A.-M.S.; Mcgettigan, P.; Andersen, M.; Krogager, M.; Kragholm, K.; Køber, L.; Gislason, G.H.; Torp-Pedersen, C.; et al. Association between biomarkers and COVID-19 severity and mortality: A nationwide Danish cohort study. BMJ Open 2020, 10, e041295. [Google Scholar] [CrossRef] [PubMed]
- Leow, M.K.S. Clarifying the controversial risk-benefit profile of soluble ACE2 in COVID-19. Crit. Care 2020, 24, 396. [Google Scholar] [CrossRef] [PubMed]
- Malik, P.; Patel, U.; Mehta, D.; Patel, N.; Kelkar, R.; Akrmah, M.; Gabrilove, J.L.; Sacks, H. Biomarkers and outcomes of COVID-19 hospitalisations: Systematic review and meta-analysis. BMJ Evid.-Based Med. 2021, 26, 107–108. [Google Scholar] [CrossRef]
- Öztürk, R.; Taşova, Y.; Ayaz, A. COVID-19: Pathogenesis, genetic polymorphism, clinical features and laboratory findings. Turk. J. Med. Sci. 2020, 50, 638–657. [Google Scholar] [CrossRef] [PubMed]
- Sadeghi-Haddad-Zavareh, M.; Bayani, M.; Shokri, M.; Ebrahimpour, S.; Babazadeh, A.; Mehraeen, R.; Moudi, E.; Rostami, A.; Barary, M.; Hosseini, A.; et al. C-Reactive Protein as a Prognostic Indicator in COVID-19 Patients. Interdiscip. Perspect. Infect. Dis. 2021, 2021, 5557582. [Google Scholar] [CrossRef]
- Cruz, A.S.; Mendes-Frias, A.; Oliveira, A.I.; Dias, L.; Matos, A.R.; Carvalho, A.; Capela, C.; Pedrosa, J.; Gil Castro, A.; Silvestre, R. Interleukin-6 Is a Biomarker for the Development of Fatal Severe Acute Respiratory Syndrome Coronavirus 2 Pneumonia. Front. Immunol. 2021, 12, 613422. [Google Scholar] [CrossRef]
- Dupont, V.; Kanagaratnam, L.; Goury, A.; Poitevin, G.; Bard, M.; Julien, G.; Bonnivard, M.; Champenois, V.; Noel, V.; Mourvillier, B.; et al. Excess Soluble fms-like Tyrosine Kinase 1 Correlates with Endothelial Dysfunction and Organ Failure in Critically Ill Coronavirus Disease 2019 Patients. Clin. Infect. Dis. 2021, 72, 1834–1837. [Google Scholar] [CrossRef]
- Myhre, P.L.; Prebensen, C.; Strand, H.; Røysland, R.; Jonassen, C.M.; Rangberg, A.; Sørensen, V.; Søvik, S.; Røsjø, H.; Svensson, M.; et al. Growth Differentiation Factor 15 Provides Prognostic Information Superior to Established Cardiovascular and Inflammatory Biomarkers in Unselected Patients Hospitalized with COVID-19. Circulation 2020, 142, 2128–2137. [Google Scholar] [CrossRef] [PubMed]
- Wischhusen, J.; Melero, I.; Fridman, W.H. Growth/Differentiation Factor-15 (GDF-15): From Biomarker to Novel Targetable Immune Checkpoint. Front. Immunol. 2020, 11, 951. [Google Scholar] [CrossRef] [PubMed]
- Singh, H.; Choudhari, R.; Nema, V.; Khan, A.A. ACE2 and TMPRSS2 polymorphisms in various diseases with special reference to its impact on COVID-19 disease. Microb. Pathog. 2021, 150, 104621. [Google Scholar] [CrossRef] [PubMed]
- Turner, A.J. ACE2 Cell Biology, Regulation, and Physiological Functions. In The Protective Arm of the Renin Angiotensin System (RAS); Unger, T., Steckelings, U.M., dos Santos, R.A.S., Eds.; Academic Press: Leeds, UK, 2015; pp. 185–189. [Google Scholar]
- Chen, L.; Hao, G. The role of angiotensin-converting enzyme 2 in coronaviruses/influenza viruses and cardiovascular disease. Cardiovasc. Res. 2020, 116, 1932–1936. [Google Scholar] [CrossRef]
- Anguiano, L.; Riera, M.; Pascual, J.; Soler, M.J. Circulating ACE2 in Cardiovascular and Kidney Diseases. Curr. Med. Chem. 2017, 24, 3231–3241. [Google Scholar] [CrossRef]
- Teuwen, L.-A.; Geldhof, V.; Pasut, A.; Carmeliet, P. COVID-19: The vasculature unleashed. Nat. Rev. Immunol. 2020, 20, 389–391. [Google Scholar] [CrossRef]
- Ni, W.; Yang, X.; Yang, D.; Bao, J.; Li, R.; Xiao, Y.; Hou, C.; Wang, H.; Liu, J.; Yang, D.; et al. Role of angiotensin-converting enzyme 2 (ACE2) in COVID-19. Crit. Care 2020, 24, 422. [Google Scholar] [CrossRef]
- Lambert, D.W.; Yarski, M.; Warner, F.J.; Thornhill, P.; Parkin, E.T.; Smith, A.I.; Hooper, N.M.; Turner, A.J. Tumor necrosis factor-alpha convertase (ADAM17) mediates regulated ectodomain shedding of the severe-acute respiratory syndrome-coronavirus (SARS-CoV) receptor, angiotensin-converting enzyme-2 (ACE2). J. Biol. Chem. 2005, 280, 30113–30119. [Google Scholar] [CrossRef] [Green Version]
- Swärd, P.; Edsfeldt, A.; Reepalu, A.; Jehpsson, L.; Rosengren, B.E.; Karlsson, M.K. Age and sex differences in soluble ACE2 may give insights for COVID-19. Crit. Care 2020, 24, 221. [Google Scholar] [CrossRef]
- Bischl, B.; Lang, M.; Kotthoff, L.; Schiffner, J.; Richter, J.; Studerus, E.; Casalicchio, G.; Jones, Z.M. mlr: Machine learning in R. J. Mach. Learn. Res. 2016, 17, 5938–5942. [Google Scholar]
- Sabaka, P.; Koščálová, A.; Straka, I.; Hodosy, J.; Lipták, R.; Kmotorková, B.; Kachlíková, M.; Kušnírová, A. Role of interleukin 6 as a predictive factor for a severe course of COVID-19: Retrospective data analysis of patients from a long-term care facility during COVID-19 outbreak. BMC Infect. Dis. 2021, 21, 308. [Google Scholar] [CrossRef] [PubMed]
- Zoufaly, A.; Poglitsch, M.; Aberle, J.H.; Hoepler, W.; Seitz, T.; Traugott, M.; Grieb, A.; Pawelka, E.; Laferl, H.; Wenisch, C.; et al. Human recombinant soluble ACE2 in severe COVID-19. Lancet Respir. Med. 2020, 8, 1154–1158. [Google Scholar] [CrossRef]
- Krishnamurthy, S.; Lockey, R.F.; Kolliputi, N. Soluble ACE2 as a potential therapy for COVID-19. Am. J. Physiol. Cell. Physiol. 2021, 320, C279–C281. [Google Scholar] [CrossRef] [PubMed]
- Kragstrup, T.W.; Singh, H.S.; Grundberg, I.; Nielsen, A.L.-L.; Rivellese, F.; Mehta, A.; Goldberg, M.B.; Filbin, M.R.; Qvist, P.; Bibby, B.M. Plasma ACE2 predicts outcome of COVID-19 in hospitalized patients. PLoS ONE 2021, 16, e0252799. [Google Scholar] [CrossRef]
- Van Lier, D.; Kox, M.; Santos, K.; van der Hoeven, H.; Pillay, J.; Pickkers, P. Increased blood angiotensin converting enzyme 2 activity in critically ill COVID-19 patients. ERJ Open Res. 2021, 7, 00848–02020. [Google Scholar] [CrossRef]
- Lundström, A.; Ziegler, L.; Havervall, S.; Rudberg, A.; von Meijenfeldt, F.; Lisman, T.; Mackman, N.; Sandén, P.; Thålin, C. Soluble angiotensin-converting enzyme 2 is transiently elevated in COVID-19 and correlates with specific inflammatory and endothelial markers. J. Med. Virol. 2021, 93, 5908–5916. [Google Scholar] [CrossRef]
- Wang, K.; Gheblawi, M.; Nikhanj, A.; Munan, M.; MacIntyre, E.; O’Neil, C.; Poglitsch, M.; Colombo, D.; Del Nonno, F.; Kassiri, Z.; et al. Dysregulation of ACE (Angiotensin-Converting Enzyme)-2 and Renin-Angiotensin Peptides in SARS-CoV-2 Mediated Mortality and End-Organ Injuries. Hypertension 2022, 79, 365–378. [Google Scholar] [CrossRef]
- Mueller, A.L.; McNamara, M.S.; Sinclair, D.A. Why does COVID-19 disproportionately affect older people? Aging 2020, 12, 9959–9981. [Google Scholar] [CrossRef]
- Burrell, L.M.; Johnston, C.I.; Tikellis, C.; Cooper, M.E. ACE2, a new regulator of the renin–angiotensin system. Trends Endocrinol. Metab. 2004, 15, 166–169. [Google Scholar] [CrossRef]
- Mariappan, V.; Manoharan, P.S.; Pajanivel, R.; Shanmugam, L.; Rao, S.; Pillai, A.B. Potential biomarkers for the early prediction of SARS-COV-2 disease outcome. Microb. Pathog. 2021, 158, 105057. [Google Scholar] [CrossRef]
- Lin, S.; Mao, W.; Zou, Q.; Lu, S.; Zheng, S. Associations between hematological parameters and disease severity in patients with SARS-CoV-2 infection. J. Clin. Lab. Anal. 2021, 35, e23604. [Google Scholar] [CrossRef] [PubMed]
- Marshall, J.C.; Murthy, S.; Diaz, J.; Adhikari, N.K.; Angus, D.C.; Arabi, Y.M.; Baillie, K.; Bauer, M.; Berry, S.; Blackwood, B.; et al. A minimal common outcome measure set for COVID-19 clinical research. Lancet Infect. Dis. 2020, 20, e192–e197. [Google Scholar] [CrossRef]
Group | Sample Cohort | Number of Samples | Sample Cohort Characteristics (Symptoms, Clinical Evaluation, and Management) |
---|---|---|---|
1 | Emergency care and home discharge * | 112 | Patients who presented to the ED with symptoms suggestive of SARS-CoV-2 infection, which was confirmed by SARS-CoV-2 positive RT-PCR, but who did not require hospital admission as they had mild symptoms or were asymptomatic. In general, these patients underwent home isolation and some required oxygen support in the ED. |
2 | Ward admission for moderate illness | 219 | Patients who presented to the ED with symptoms suggestive of SARS-CoV-2 infection, which was confirmed by SARS-CoV-2 positive RT-PCR, and who were subsequently hospitalized. These patients had radiological findings compatible with SARS-CoV-2 pneumonia and required non-invasive ventilator support (e.g., Ventimask, nasal cannulas). |
3 | Admission to the ICU | 192 | Hospitalized patients who were admitted to the ICU due to worsening of SARS-CoV-2 pneumonia. Most of these patients required invasive ventilator support in the form of orotracheal intubation and oxygenation through an extracorporeal membrane. |
4 | Death associated with SARS-CoV-2 | 68 | Hospitalized patients who died due to SARS-CoV-2 infection. All patients included in this group had a death certificate that listed SARS-CoV-2 pneumonia as the primary cause of death. All of these patients required ventilator support; in some cases, non-invasive ventilator support was provided due to withdrawal of care. |
1–4 | RT-PCR-confirmed positive for SARS-CoV-2 infection at time of blood draw | 591 | |
5 | Emergency care and home discharge | 58 | Patients who presented to the ED with symptoms suggestive of SARS-CoV-2 infection, which was confirmed by SARS-CoV-2 positive RT-PCR, but who did not require hospital admission as they had mild symptoms or were asymptomatic. In general, these patients underwent home isolation. Blood draws were performed 1 month after the patient finished a 15-day quarantine, or 1 month after the patient no longer displayed symptoms of SARS-CoV-2 infection. |
6 | Admission to the ICU | 113 | Hospitalized patients from Group 3 who were admitted to the ICU due to worsening of SARS-CoV-2 pneumonia. Most of these patients required invasive ventilator support in the form of orotracheal intubation and oxygenation through an extracorporeal membrane. Patients in this group were considered SARS-CoV-2 convalescent. Blood draws were performed at the end of the patient’s hospital admission after they were RT-PCR-confirmed negative for SARS-CoV-2 infection. |
5–6 | RT-PCR-confirmed negative for SARS-CoV-2 infection at time of blood draw after previous RT-PCR-confirmed positive result | 171 | |
7 | ‘SARS-CoV-2 unexposed’ patients | 201 | Patients who presented to a primary care setting for routine checks of their chronic pathology or health basic study. All SARS-CoV-2 negative patients were RT-PCR-confirmed negative for SARS-CoV-2 infection or had no medical history of SARS-CoV-2 infection. |
Total | 963 |
Variable | Group | p-Value * | ||||||
---|---|---|---|---|---|---|---|---|
RT-PCR-Confirmed Positive for SARS-CoV-2 | RT-PCR-Confirmed Negative for SARS-CoV-2 | |||||||
1 Emergency Care and Discharge | 2 Ward Admission | 3 ICU Admission | 4 Death | 5 Emergency Care and Discharge | 6 ICU Admission | 7 ‘SARS-CoV-2 Unexposed’ Patients | ||
Age (years), mean (SD) | 59.1 (20.9) | 60.7 (15.4) | 55.4 (11.7) | 71.6 (11.1) | 48.2 (17.3) | 55.2 (11.8) | 61.4 (15.8) | <0.001 |
Male, n (%) | 50 (44.6) | 114 (52.1) | 116 (60.4) | 35 (51.5) | 28 (48.3) | 69 (61.1) | 87 (43.3) | 0.006 |
Chronic kidney disease, n (%) † | 23 (20.5) | 34 (15.6) | 25 (13.1) | 22 (32.4) | 2 (3.6) | 12 (10.6) | 10 (5.0) | <0.001 |
Arterial pressure (mmHg), mean (SD) | 96.4 (14.2) | 93.7 (12.9) | 91.7 (13.4) | 90.3 (14.9) | 84.6 (11.6) | 92.7 (12.0) | ND | 0.426 |
Blood pressure >140/90 mmHg, n (%) | 53 (47.3) | 115 (52.5) | 73 (38.0) | 52 (76.5) | 14 (24.1) | 44 (38.9) | 81 (40.3) | <0.001 |
Type 2 diabetes mellitus, n (%) | 22 (19.6) | 55 (25.1) | 42 (21.9) | 23 (33.8) | 9 (15.5) | 22 (19.5) | 73 (36.3) | 0.001 |
Dyslipidemia, n (%) ‡ | 48 (42.9) | 108 (49.3) | 64 (33.3) | 33 (48.5) | 16 (27.6) | 37 (32.7) | 79 (39.3) | 0.003 |
Body mass index >30 kg/m2, n (%) | 28 (25.0) | 79 (36.1) | 64 (33.3) | 18 (26.5) | 5 (8.6) | 38 (33.6) | 37 (18.4) | <0.001 |
Aspartate aminotransferase (IU/L), median (IQR) | 26.0 (21.0, 36.0) | 38.0 (29.0, 52.0) | 49.5 (31.0, 70.5) | 40.0 (28.0, 63.5) | 22.0 (19.0, 27.0) | 28.0 (22.0, 41.0) | 21.0 (18.0, 24.0) | <0.001 |
Alanine aminotransferase (IU/L), median (IQR) | 20.0 (13.0, 30.0) | 27.0 (19.0, 50.0) | 40.5 (23.0, 65.5) | 24.0 (16.0, 36.0) | 19.0 (13.0, 28.0) | 45.0 (25.0, 60.0) | 18.0 (13.0, 24.0) | <0.001 |
Prothrombin time (INR), median (IQR) | 1.0 (1.0, 1.1) | 1.1 (1.0, 1.1) | 1.1 (1.0, 1.2) | 1.1 (1.0, 1.2) | 1.0 (0.9, 1.1) | 1.1 (1.0, 1.2) | 0.9 (0.9, 1.0) | <0.001 |
D-dimer (ng/mL), median (IQR) | 297.0 (155.0, 536.0) | 265.0 (171.0, 432.0) | 391.0 (225.0, 760.0) | 543.0 (216.0, 1653.0) | 109.0 (50.0, 151.0) | 719.0 (307.0, 1567.0) | ND § | <0.001 |
Biomarker | Number of Samples | Biomarker Level (log2), Median (IQR) | Median Difference | p-Value | AUC (95% CI) | ||||
---|---|---|---|---|---|---|---|---|---|
SARS-CoV-2 | ‘SARS-CoV-2 Unexposed’ Patients | Total | SARS- CoV-2 | ‘SARS-CoV-2 Unexposed’ Patients | Total | ||||
CRP | 517 | 20 | 537 | 3.26 (1.85, 4.14) | −2.08 (−3.84, −1.51) | 3.19 (1.55, 4.13) | 5.341 | <0.001 | 0.964 (0.948, 0.980) |
GDF-15 | 500 | 201 | 701 | 11.39 (10.78, 12.25) | 9.90 (9.24, 10.70) | 11.07 (10.17, 11.94) | 1.492 | <0.001 | 0.830 (0.797, 0.863) |
IL-6 | 567 | 201 | 768 | 5.56 (4.51, 6.64) | 1.21 (0.58, 2.06) | 4.90 (2.10, 6.22) | 4.355 | <0.001 | 0.949 (0.933, 0.964) |
sACE2 | 591 | 201 | 792 | −4.06 (−5.06, −2.00) | −2.84 (−5.06, −0.40) | −3.64 (−5.06, −1.69) | −1.222 | <0.001 | 0.585 (0.539, 0.632) |
sFlt-1 | 500 | 201 | 701 | 6.88 (6.56, 7.18) | 6.45 (6.31, 6.58) | 6.69 (6.44, 7.05) | 0.431 | <0.001 | 0.797 (0.764, 0.829) |
Biomarker | Number of Samples | Biomarker Level (log2), Median (IQR) | Median Difference | p-Value | AUC (95% CI) | ||||
---|---|---|---|---|---|---|---|---|---|
Admitted | Discharged | Total | Admitted | Discharged | Total | ||||
CRP | 444 | 73 | 517 | 3.46 (2.21, 4.23) | 1.33 (−1.15, 3.03) | 3.26 (1.85, 4.14) | 2.131 | <0.001 | 0.775 (0.718, 0.832) |
GDF-15 | 410 | 90 | 500 | 11.45 (10.90, 12.30) | 10.97 (9.76, 12.02) | 11.39 (10.78, 12.25) | 0.485 | <0.001 | 0.625 (0.551, 0.699) |
IL-6 | 471 | 96 | 567 | 5.85 (4.93, 6.78) | 3.79 (2.24, 5.12) | 5.56 (4.51, 6.64) | 2.059 | <0.001 | 0.800 (0.750, 0.851) |
sACE2 | 479 | 112 | 591 | −4.64 (−5.06, −2.32) | −2.64 (−4.73, −0.91) | −4.06 (−5.06, −2.00) | −2.000 | <0.001 | 0.648 (0.592, 0.704) |
sFlt-1 | 410 | 90 | 500 | 6.96 (6.66, 7.24) | 6.50 (6.23, 6.78) | 6.88 (6.56, 7.18) | 0.454 | <0.001 | 0.751 (0.689, 0.813) |
Biomarker | Number of Samples | Biomarker Level (log2), Median (IQR) | Median Difference | p-Value | AUC (95% CI) | ||||
---|---|---|---|---|---|---|---|---|---|
ICU or Died | Ward or Discharged | Total | ICU or Died | Ward or Discharged | Total | ||||
CRP | 249 | 268 | 517 | 3.74 (2.70, 4.42) | 2.77 (1.32, 3.71) | 3.26 (1.85, 4.14) | 0.969 | <0.001 | 0.670 (0.623, 0.716) |
GDF-15 | 207 | 293 | 500 | 11.74 (11.09, 12.46) | 11.15 (10.54, 11.94) | 11.39 (10.78, 12.25) | 0.593 | <0.001 | 0.650 (0.602, 0.698) |
IL-6 | 258 | 309 | 567 | 6.19 (5.21, 7.10) | 5.12 (3.85, 6.05) | 5.56 (4.51, 6.64) | 1.073 | <0.001 | 0.715 (0.673, 0.757) |
sACE2 | 260 | 331 | 591 | −4.64 (−5.06, −2.40) | −3.64 (−5.06, −1.71) | −4.06 (−5.06, −2.00) | −1.000 | 0.015 | 0.556 (0.511, 0.600) |
sFlt-1 | 207 | 293 | 500 | 7.02 (6.71, 7.38) | 6.77 (6.49, 7.05) | 6.88 (6.56, 7.18) | 0.252 | <0.001 | 0.672 (0.624, 0.720) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Díaz-Troyano, N.; Gabriel-Medina, P.; Weber, S.; Klammer, M.; Barquín-DelPino, R.; Castillo-Ribelles, L.; Esteban, A.; Hernández-González, M.; Ferrer-Costa, R.; Pumarola, T.; et al. Soluble Angiotensin-Converting Enzyme 2 as a Prognostic Biomarker for Disease Progression in Patients Infected with SARS-CoV-2. Diagnostics 2022, 12, 886. https://doi.org/10.3390/diagnostics12040886
Díaz-Troyano N, Gabriel-Medina P, Weber S, Klammer M, Barquín-DelPino R, Castillo-Ribelles L, Esteban A, Hernández-González M, Ferrer-Costa R, Pumarola T, et al. Soluble Angiotensin-Converting Enzyme 2 as a Prognostic Biomarker for Disease Progression in Patients Infected with SARS-CoV-2. Diagnostics. 2022; 12(4):886. https://doi.org/10.3390/diagnostics12040886
Chicago/Turabian StyleDíaz-Troyano, Noelia, Pablo Gabriel-Medina, Stephen Weber, Martin Klammer, Raquel Barquín-DelPino, Laura Castillo-Ribelles, Angels Esteban, Manuel Hernández-González, Roser Ferrer-Costa, Tomas Pumarola, and et al. 2022. "Soluble Angiotensin-Converting Enzyme 2 as a Prognostic Biomarker for Disease Progression in Patients Infected with SARS-CoV-2" Diagnostics 12, no. 4: 886. https://doi.org/10.3390/diagnostics12040886
APA StyleDíaz-Troyano, N., Gabriel-Medina, P., Weber, S., Klammer, M., Barquín-DelPino, R., Castillo-Ribelles, L., Esteban, A., Hernández-González, M., Ferrer-Costa, R., Pumarola, T., & Rodríguez-Frías, F. (2022). Soluble Angiotensin-Converting Enzyme 2 as a Prognostic Biomarker for Disease Progression in Patients Infected with SARS-CoV-2. Diagnostics, 12(4), 886. https://doi.org/10.3390/diagnostics12040886