Can We Use Urinary Cytokine/Chemokine Analysis in Discriminating Ulcer-Type Interstitial Cystitis/Bladder Pain Syndrome?
Abstract
:1. Introduction
2. Materials and Methods
2.1. Patients
2.2. Urine Biomarker Investigation
2.3. Cytokine and Chemokine Assay
2.4. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
IC/BPS | interstitial cystitis/bladder pain syndrome |
HIC | Hunner’s ulcer interstitial cystitis |
MBC | maximal bladder capacity under anesthesia |
IL-8 | interleukin 8 |
CXCL10 | C-X-C motif chemokine ligand 10 |
MCP-1 | monocyte chemoattractant protein 1 |
NGF | nerve growth factor |
BDNF | brain-derived neurotrophic factor |
IL-2 | interleukin 2 |
IL-6 | interleukin 6 |
MIP-1β | macrophage inflammatory protein-1β |
RANTES | regulated upon activation, normally T-expressed, and presumably secreted |
TNF-α | tumor necrosis factor-alpha |
PGE2 | prostaglandin E2 |
ICSI | interstitial cystitis symptom index |
ICPI | interstitial cystitis problem index |
VAS | visual analog scale |
PPV | positive predictive value |
NPV | negative predictive value |
References
- Chancellor, M.B.; Yoshimura, N. Treatment of interstitial cystitis. Urology 2004, 63 (Suppl. 1), 85–92. [Google Scholar] [CrossRef] [PubMed]
- Vasudevan, V.; Moldwin, R. Addressing quality of life in the patient with interstitial cystitis/bladder pain syndrome. Asian J. Urol. 2017, 41, 50–54. [Google Scholar] [CrossRef] [PubMed]
- Hanno, P.M.; Sant, G.R. Clinical highlights of the National Institute of Diabetes and Digestive and Kidney Diseases/Interstitial Cystitis Association scientific conference on interstitial cystitis. Urology 2001, 57 (Suppl. 6A), 2–6. [Google Scholar] [CrossRef]
- Homma, Y.; Akiyama, Y.; Tomoe, H.; Furuta, A.; Ueda, T.; Maeda, D.; Lin, A.T.; Kuo, H.C.; Lee, M.H.; Oh, S.J.; et al. Clinical guidelines for interstitial cystitis/bladder pain syndrome. Int. J. Urol. 2020, 27, 578–589. [Google Scholar] [CrossRef] [PubMed]
- Watanabe, D.; Akiyama, Y.; Niimi, A.; Nomiya, A.; Yamada, Y.; Sato, Y.; Nakamura, M.; Kawai, T.; Yamada, D.; Suzuki, M.; et al. Clinical characterization of interstitial cystitis/bladder pain syndrome in women based on the presence or absence of Hunner lesions and glomerulations. Low. Urin. Tract. Symptoms. 2021, 13, 139–143. [Google Scholar] [CrossRef] [PubMed]
- Jhang, J.F.; Hsu, Y.H.; Ho, H.C.; Jiang, Y.H.; Lee, C.L.; Yu, W.R.; Kuo, H.C. Possible association between bladder wall morphological changes on computed tomography and bladder- centered interstitial cystitis/bladder pain syndrome. Biomedicines 2021, 9, 1306. [Google Scholar] [CrossRef]
- Jhang, J.F.; Hsu, Y.H.; Peng, C.W.; Jiang, Y.H.; Ho, H.C.; Kuo, H.C. Epstein-Barr virus as a potential etiology of persistent bladder inflammation in human interstitial cystitis/bladder pain syndrome. J. Urol. 2018, 200, 590–596. [Google Scholar] [CrossRef]
- Yu, W.R.; Jhang, J.F.; Ho, H.C.; Jiang, Y.H.; Lee, C.L.; Hsu, Y.H.; Kuo, H.C. Cystoscopic hydrodistention characteristics provide clinical and long-term prognostic features of interstitial cystitis after treatment. Sci. Rep. 2021, 11, 455. [Google Scholar] [CrossRef]
- Weber, C.; Fraemohs, L.; Dejana, E. The role of junctional adhesion molecules in vascular inflammation. Nat. Rev. Immunol. 2007, 7, 467–477. [Google Scholar] [CrossRef]
- Nazif, O.; Teichman, J.M.; Gebhart, G.F. Neural upregulation in interstitial cystitis. Urology 2007, 69, 24–33. [Google Scholar] [CrossRef]
- Bouchelouche, K.; Nordling, J. Recent developments in the management of interstitial cystitis. Curr. Opin. Urol. 2003, 13, 309–313. [Google Scholar] [CrossRef] [PubMed]
- Sant, G.R.; Kempuraj, D.; Marchand, J.E.; Theoharides, T.C. The mast cell in interstitial cystitis: Role in pathophysiology and pathogenesis. Urology 2007, 69, 34–40. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Liu, W.; O’Donnell, M.; Lutgendorf, S.; Bradley, C.; Schrepf, A.; Liu, L.; Kreder, K.; Luo, Y.; Wang, X.; et al. Evidence for the Role of Mast Cells in Cystitis-Associated Lower Urinary Tract Dysfunction: A Multidisciplinary Approach to the Study of Chronic Pelvic Pain Research Network Animal Model Study. PLoS ONE 2016, 11, e0168772. [Google Scholar] [CrossRef] [PubMed]
- Akiyama, Y.; Homma, Y.; Maeda, D. Pathology and terminology of interstitial cystitis/bladder pain syndrome: A review. Histol. Histopathol. 2019, 34, 25–32. [Google Scholar] [PubMed]
- Jhang, J.F.; Hsu, Y.H.; Jiang, Y.H.; Ho, H.C.; Kuo, H.C. Clinical relevance of bladder histopathological findings and their impact on treatment outcomes among patients with interstitial cystitis/bladder pain syndrome: An investigation of the European Society for the Study of Interstitial Cystitis histopathological classification. J. Urol. 2021, 205, 226–235. [Google Scholar]
- Lai, H.H.; Thu, J.H.L.; Moh, F.V.; Paradis, A.; Vetter, J. Clustering of Patients with Interstitial Cystitis/Bladder Pain Syndrome and Chronic Prostatitis/Chronic Pelvic Pain Syndrome. J. Urol. 2019, 202, 546–551. [Google Scholar] [CrossRef]
- Erickson, D.R.; Kunselman, A.R.; Bentley, C.M.; Peters, K.M.; Rovner, E.S.; Demers, L.M.; Keay, S.K. Changes in urine markers and symptoms after bladder distention for interstitial cystitis. J. Urol. 2007, 77, 556–560. [Google Scholar] [CrossRef] [Green Version]
- Kuo, H.C. Potential urine and serum biomarkers for patients with bladder pain syndrome/interstitial cystitis. Int. J. Urol. 2014, 21 (Suppl. 1), 34–41. [Google Scholar] [CrossRef]
- Liu, H.T.; Tyagi, P.; Chancellor, M.B.; Kuo, H.C. Urinary nerve growth factor level is increased in patients with interstitial cystitis/bladder pain syndrome and decreased in responders to treatment. BJU Int. 2009, 104, 1476–1481. [Google Scholar] [CrossRef]
- Liu, H.T.; Tyagi, P.; Chancellor, M.B.; Kuo, H.C. Urinary nerve growth factor but not prostaglandin E2 increases in patients with interstitial cystitis/bladder pain syndrome and detrusor overactivity. BJU Int. 2010, 106, 1681–1685. [Google Scholar] [CrossRef]
- Rossberger, J.; Fall, M.; Gustafsson, C.K.; Peeker, R. Does mast cell density predict the outcome after transurethral resection of Hunner’s ulcer lesions in patients with type 3C bladder pain syndrome/interstitial cystitis? Scand. J. Urol. Nephrol. 2010, 44, 33–37. [Google Scholar] [CrossRef] [PubMed]
- Erickson, D.R.; Tomzazewski, J.E.; Kunselman, A.R.; Stetter, C.M.; Peters, K.M.; Rovner, E.S.; Demers, L.M.; Wheeler, M.A.; Keay, S.K. Urine maerkers do not predict biopsy findings or presence of bladder ulcers in interstitial cystitis/painful bladder syndrome. J. Urol. 2008, 179, 1850–1856. [Google Scholar] [CrossRef] [Green Version]
- Jiang, Y.H.; Jhang, J.F.; Hsu, Y.H.; Ho, H.C.; Wu, Y.H.; Kuo, H.C. Urine cytokines as biomarkers for diagnosing interstitial cystitis/bladder pain syndrome and mapping its clinical characteristics. Am. J. Physiol. Renal. Physiol. 2020, 318, F1391–F1399. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.D.; Lee, M.H. Increased expression of hypoxia-inducible factor-1alpha and vascular endothelial growth factor associated with glomerulation formation in patients with interstitial cystitis. Urology 2011, 78, 971.e11-5. [Google Scholar] [CrossRef] [PubMed]
- Furuta, A.; Yamamoto, T.; Suzuki, Y.; Gotoh, M.; Egawa, S.; Yoshimura, N. Comparison of inflammatory urine markers in patients with interstitial cystitis and overactive bladder. Int. Urogynecol. J. 2018, 29, 961–966. [Google Scholar] [CrossRef] [PubMed]
- Borish, L.; Steinke, J.W. Cytokines and chemokines. J. Allergy Clin. Immunol. 2003, 111 (Suppl. 2), S460–S475. [Google Scholar] [CrossRef]
- van de Merwe, J.P.; Nordling, J.; Bouchelouche, P.; Bouchelouche, K.; Cervigni, M.; Daha, L.K.; Fall, M.; Hohlbrugger, G.; Irwin, P.; Mortensen, S.; et al. Diagnostic criteria, classification, and nomenclature for painful bladder syndrome/interstitial cystitis: An ESSIC proposal. Eur. Urol. 2008, 53, 60. [Google Scholar] [CrossRef]
- Homma, Y.; Ueda, T.; Tomoe, H.; Lin, A.T.; Kuo, H.-C.; Lee, M.-H.; Oh, S.-J.; Kim, J.C.; Lee, K.-S. Clinical guidelines for interstitial cystitis and hypersensitive bladder updated in 2015. Int. J. Urol. 2016, 23, 542–549. [Google Scholar] [CrossRef]
- Jiang, Y.H.; Jhang, J.F.; Hsu, Y.H.; Ho, H.C.; Wu, Y.H.; Kuo, H.C. Urine biomarkers in ESSIC type 2 interstitial cysti-tis/bladder pain syndrome and overactive bladder with developing a novel diagnostic algorithm. Sci. Rep. 2021, 11, 914. [Google Scholar] [CrossRef]
- Keay, S. Cell signaling in interstitial cystitis/painful bladder syndrome. Cell. Signal. 2008, 20, 2174–2179. [Google Scholar] [CrossRef]
- Erickson, D.R.; Belchis, D.A.; Dabbs, D.J. Inflammatory cell types and clinical features of interstitial cystitis. J. Urol. 1997, 158, 790–793. [Google Scholar] [CrossRef]
- Shie, J.-H.; Kuo, H.-C. Higher levels of cell apoptosis and abnormal E-cadherin expression in the urothelium are associated with inflammation in patients with interstitial cystitis/painful bladder syndrome. Br. J. Urol. 2011, 108, E136–E141. [Google Scholar] [CrossRef] [PubMed]
- Shie, J.-H.; Liu, H.-T.; Kuo, H.-C. Increased Cell Apoptosis of Urothelium Mediated by Inflammation in Interstitial Cystitis/Painful Bladder Syndrome. Urology 2012, 79, 484.e7–484.e13. [Google Scholar] [CrossRef] [PubMed]
- Akiyama, Y.; Hanno, P. Phenotyping of interstitial cystitis/bladder pain syndrome. Int. J. Urol. 2019, 26, 17–19. [Google Scholar] [CrossRef] [Green Version]
- Akiyama, Y.; Luo, Y.; Hanno, P.M.; Maeda, D.; Homma, Y. Interstitial cystitis/bladder pain syndrome: The evolving land-scape, animal models and future perspectives. Int. J. Urol. 2020, 27, 491–503. [Google Scholar] [CrossRef] [Green Version]
- Hanno, P.M.; Burks, D.A.; Clemens, J.Q.; Dmochowski, R.R.; Erickson, D.; Fitzgerald, M.P.; Forrest, J.B.; Gordon, B.; Gray, M.; Mayer, R.D.; et al. AUA Guideline for the Diagnosis and Treatment of Interstitial Cystitis/Bladder Pain Syndrome. J. Urol. 2011, 185, 2162–2170. [Google Scholar] [CrossRef]
- Yeh, H.L.; Jhang, J.F.; Kuo, Y.C.; Kuo, H.C. Long-term outcome and symptom improvement in patients with interstitial cysti-tis/bladder pain syndrome with or without regular follow-up and treatment. Neurourol. Urodyn. 2019, 38, 1985–1993. [Google Scholar] [CrossRef]
- Fall, M.; Nordling, J.; Cervigni, M.; Oliveira, P.D.; Fariello, J.; Hanno, P.; Kåbjörn-Gustafsson, C.; Logadottir, Y.; Meijlink, J.; Mishra, N.; et al. Hunner lesion disease differs in diagnosis, treatment and outcome from bladder pain syndrome: An ESSIC working group report. Scand. J. Urol. 2020, 54, 91–98. [Google Scholar] [CrossRef]
- Tyagi, P.; Killinger, K.; Tyagi, V.; Nirmal, J.; Chancellor, M.; Peters, K.M. Urinary chemokines as noninvasive predictors of ulcerative interstitial cystitis. J. Urol. 2012, 187, 2243–2248. [Google Scholar] [CrossRef] [Green Version]
- Deshmane, S.L.; Kremlev, S.; Amini, S.; Sawaya, B.E. Monocyte Chemoattractant Protein-1 (MCP-1): An Overview. J. Interf. Cytokine Res. 2009, 29, 313–326. [Google Scholar] [CrossRef]
- Spoettl, T.; Hausmann, M.; Herlyn, M.; Gunckel, M.; Dirmeier, A.; Falk, W.; Herfarth, H.; Schoelmerich, J.; Rogler, G. Monocyte chemoattractant protein-1 (MCP-1) inhibits the intestinal-like differentiation of monocytes. Clin. Exp. Immunol. 2006, 145, 190–199. [Google Scholar] [CrossRef] [PubMed]
- Ip, W.K.; Wong, C.K.; Lam, C.W.K. Interleukin (IL)-4 and IL-13 up-regulate monocyte chemoattractant protein-1 expression in human bronchial epithelial cells: Involvement of p38 mitogen-activated protein kinase, extracellular signal-regulated kinase 1/2 and Janus kinase-2 but not c-Jun NH2-terminal kinase 1/2 signalling pathways. Clin. Exp. Immunol. 2006, 145, 162–172. [Google Scholar] [CrossRef] [PubMed]
- Garcia-Zepeda, E.A.; Rothenberg, M.E.; Ownbey, R.T.; Celestin, J.; Leder, P.; Luster, A.D. Human eotaxin is a specific chem-oattractant for eosinophil cells and provides a new mechanism to explain tissue eosinophilia. Nat. Med. 1996, 2, 49–56. [Google Scholar] [CrossRef] [PubMed]
- Amerio, P.; Frezzolini, A.; Feliciani, C.; Verdolini, R.; Teofoli, P.; De Pita, O.; Puddu, P. Eotaxins and CCR3 receptor in inflamma-tory and allergic skin diseases: Therapeutical implications. Curr. Drug Targets Inflamm. Allergy 2003, 2, 81–94. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Adar, T.; Shteingart, S.; Ben Y’Acov, A.; Shitrit, A.B.-G.; Goldin, E. From airway inflammation to inflammatory bowel disease: Eotaxin-1, a key regulator of intestinal inflammation. Clin. Immunol. 2014, 153, 199–208. [Google Scholar] [CrossRef]
- Bystry, R.S.; Aluvihare, V.R.; Welch, K.A.; Kallikourdis, M.; Betz, A.G. B cells and professional APCs recruit regulatory T cells via CCL4. Nat. Immunol. 2001, 2, 1126–1132. [Google Scholar] [CrossRef]
- Tyagi, P.; Barclay, D.; Zamora, R.; Yoshimura, N.; Peters, K.; Vodovotz, Y.; Chancellor, M. Urine cytokines suggest an inflammatory response in the overactive bladder: A pilot study. Int. Urol. Nephrol. 2010, 42, 629–635. [Google Scholar] [CrossRef]
- Marques, R.E.; Guabiraba, R.; Russo, R.C.; Teixeira, M.M. Targeting CCL5 in inflammation. Expert Opin. Ther. Targets 2013, 17, 1439–1460. [Google Scholar] [CrossRef]
- Chen, M.C.; Keshavan, P.; Gregory, G.D.; Klumpp, D.J. RANTES mediates TNF-dependent lamina propria mast cell accu-mulation and barrier dysfunction in neurogenic cystitis. Am. J. Physiol. Renal. Physiol. 2007, 292, F1372–F1379. [Google Scholar] [CrossRef]
- Yang, W.; Searl, T.J.; E Yaggie, R.; Schaeffer, A.J.; Klumpp, D.J. A MAPP Network study: Overexpression of tumor necrosis factor-α in mouse urothelium mimics interstitial cystitis. Am. J. Physiol. Renal. Physiol. 2018, 315, F36–F44. [Google Scholar] [CrossRef]
- Lin, H.Y.; Lu, J.H.; Chuang, S.M.; Chueh, K.S.; Juan, T.J.; Liu, Y.C.; Juan, Y.S. Urinary Biomarkers in Interstitial Cystitis/Bladder Pain Syndrome and Its Impact on Therapeutic Outcome. Diagnostics 2021, 12, 75. [Google Scholar] [CrossRef] [PubMed]
- Akiyama, Y. Biomarkers in Interstitial Cystitis/Bladder Pain Syndrome with and without Hunner Lesion: A Review and Future Perspectives. Diagnostics 2021, 11, 2238. [Google Scholar] [CrossRef] [PubMed]
- Tseng-Rogenski, S.; Liebert, M. Interleukin-8 is essential for normal urothelial cell survival. Am. J. Physiol. Renal. Physiol. 2009, 297, F816–F821. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, A.; Dubey, S.; Varney, M.L.; Dave, B.J.; Singh, R.K. IL-8 Directly Enhanced Endothelial Cell Survival, Proliferation, and Matrix Metalloproteinases Production and Regulated Angiogenesis. J. Immunol. 2003, 170, 3369–3376. [Google Scholar] [CrossRef]
- Dufour, J.H.; Dziejman, M.; Liu, M.T.; Leung, J.H.; Lane, T.E.; Luster, A.D. IFN-gamma-inducible protein 10 (IP-10; CXCL10)-deficient mice reveal a role for IP-10 in effector T cell generation and trafficking. J. Immunol. 2002, 168, 3195–3204. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Niimi, A.; Igawa, Y.; Aizawa, N.; Honma, T.; Nomiya, A.; Akiyama, Y.; Kamei, J.; Fujimura, T.; Fukuhara, H.; Homma, Y. Di-agnostic value of urinary CXCL10 as a biomarker for predicting Hunner type interstitial cystitis. Neurourol. Urodyn. 2018, 37, 1113–1119. [Google Scholar] [CrossRef]
Urine Biomarker @ | IC/BPS (n = 309) | Control (n = 30) | p-Value * | Non-HIC (n = 285) | HIC (n = 24) | p-Value # |
---|---|---|---|---|---|---|
IL-8 | 17.2 ± 25.5 | 12.5 ± 21.0 | 0.328 | 15.9 ± 23.6 | 34.4 ± 39.7 | 0.042 |
CXCL 10 | 11.7 ± 20.2 | 13.8 ± 18.4 | 0.583 | 10.1 ± 17.4 | 35.1 ± 38.2 | 0.011 |
MCP-1 | 298 ± 301 | 147 ± 110 | <0.001 | 299 ± 306 | 289 ± 239 | 0.879 |
BDNF | 0.58 ± 0.16 | 0.55 ± 0.12 | 0.310 | 0.57 ± 0.14 | 0.71 ± 0.30 | 0.034 |
Eotaxin | 7.65 ± 7.55 | 4.98 ± 3.7 | 0.002 | 7.29 ± 7.05 | 12.0 ± 11.5 | 0.064 |
IL-6 | 3.48 ± 8.35 | 1.29 ± 1.35 | 0.160 | 2.92 ± 6.96 | 10.8 ±8.35 | 0.047 |
MIP-1β | 1.24 ± 1.73 | 2.52 ±1.82 | <0.001 | 1.18 ± 1.60 | 1.96 ± 2.80 | 0.198 |
RANTES | 5.69 ± 8.18 | 6.04 ± 5.15 | 0.820 | 5.30 ± 7.90 | 10.2 ± 10.1 | 0.027 |
TNF-α | 1.66 ± 0.38 | 0.82 ± 0.33 | <0.001 | 1.65 ± 0.35 | 1.85 ± 0.64 | 0.145 |
PGE2 | 292 ± 241 | 161 ± 105 | <0.001 | 291 ± 232 | 302 ± 335 | 0.882 |
Urine Biomarkers @ | (A) IC/BPS MBC > 760 mL (n = 125) | (B) IC/BPS MBC ≤ 760 mL (n = 160) | (C) Ulcer IC/BPS (n = 24) | p-Value A vs. B vs. C | p-Value A vs. B |
---|---|---|---|---|---|
IL-8 | 15.2 ± 25.7 | 16.5 ± 21.9 | 34.4 ± 39.7 * | 0.043 | 0.634 |
CXCL 10 | 6.45 ± 11.9 | 13.0 ± 20.3 | 35.1 ± 38.2 * | 0.001 | 0.001 |
MCP-1 | 227 ± 222 * | 356 ± 349 * | 289 ± 239 | <0.001 | <0.001 |
BDNF | 0.58 ± 0.13 | 0.56 ± 0.14 | 0.71 ± 0.3 * | 0.020 | 0.246 |
Eotaxin | 5.93 ± 5.9 | 8.35 ± 7.69 * | 12.0 ± 11.5 | 0.010 | 0.003 |
IL-6 | 2.0 ± 6.06 | 3.64 ± 7.53 * | 10.8 ± 17.4 | 0.022 | 0.043 |
MIP-1β | 0.86 ± 1.23 * | 1.42 ± 1.81 * | 1.96 ± 2.80 | 0.037 | 0.002 |
RANTES | 4.09 ± 8.4 | 6.26 ± 7.36 | 10.2 ± 10.1 * | 0.007 | 0.023 |
TNF-α | 1.64 ± 0.35 * | 1.65 ± 0.35 * | 1.85 ± 0.64 * | 0.182 | 0.651 |
PGE2 | 253 ± 213 * | 322 ± 242 * | 302 ± 335 * | 0.138 | 0.014 |
Urine Biomarkers @ | (A) GR ≤ 1 (n = 155) | (B) GR > 1 (n = 130) | (C) Hunner’s IC (n = 24) | p-Value A vs. B vs. C | p-Value A vs. B |
---|---|---|---|---|---|
IL-8 | 17.7 ± 27.2 | 13.7 ± 18.5 | 34.4 ± 39.7 * | 0.026 | 0.158 |
CXCL 10 | 8.7 ± 16.1 | 11.8 ± 18.7 | 35.1 ± 38.2 * | 0.004 | 0.141 |
MCP-1 | 238 ± 227 * | 370 ± 366 * | 289 ± 239 | 0.001 | <0.001 |
BDNF | 0.57 ± 0.14 | 0.56 ± 0.14 | 0.71 ± 0.3 * | 0.023 | 0.518 |
Eotaxin | 6.87 ± 6.78 | 7.8 ± 7.36 * | 12.0 ± 11.5 | 0.058 | 0.270 |
IL-6 | 2.39 ± 5.71 | 3.55 ± 8.2 * | 10.8 ± 17.4 | 0.028 | 0.162 |
MIP-1β | 1.15 ± 1.67 * | 1.22 ± 1.53 * | 1.96 ± 2.80 | 0.272 | 0.715 |
RANTES | 4.63 ± 8.33 | 6.11 ± 7.3 | 10.2 ± 10.1 * | 0.017 | 0.115 |
TNF-α | 1.64 ± 0.32 * | 1.65 ± 0.38 * | 1.85 ± 0.64 * | 0.189 | 0.780 |
PGE2 | 266 ± 226 * | 323 ± 236 * | 302 ± 335 * | 0.144 | 0.042 |
Urine Cytokine @ | AUC | Cut-Off Value | Total IC Sensitivity | Total IC Specificity | Total IC PPV | Total IC NPV | HIC Sensitivity * | HIC Specificity * | HIC PPV | HIC NPV |
---|---|---|---|---|---|---|---|---|---|---|
IL-8 | 0.587 | 2.100 | 80.6% | 40.0% | 93.3% | 16.7% | 95.8% | 20.7% | 9.2% | 98.3% |
CXCL 10 | 0.590 | 1.595 | 32.7% | 90.0% | 97.1% | 11.5% | 12.5% | 65.6% | 3.0% | 89.9% |
MCP-1 | 0.639 | 283.1 | 35.9% | 93.3% | 98.2% | 12.4% | 41.7% | 64.6% | 9.0% | 92.9% |
BDNF | 0.551 | 0.543 | 57.3% | 66.7% | 94.7% | 13.2% | 87.5% | 45.3% | 11.9% | 97.7% |
Eotaxin | 0.587 | 12.50 | 21.0% | 96.7% | 98.5% | 10.6% | 41.7% | 80.7% | 15.4% | 94.3% |
IL-6 | 0.534 | 0.515 | 38.2% | 83.3% | 95.9% | 11.6% | 16.7% | 60.0% | 3.4% | 89.5% |
MIP-1β | 0.774 | 0.810 | 60.5% | 100% | 100% | 19.7% | 50.0% | 38.6% | 6.4% | 90.2% |
RANTES | 0.636 | 1.495 | 36.9% | 100% | 100% | 13.3% | 25.0% | 62.1% | 5.3% | 90.8% |
TNF-α | 0.920 | 1.050 | 99.0% | 92.6% | 98.4% | 89.3% | 100% | 1.1% | 7.8% | 100% |
PGE2 | 0.679 | 175.4 | 63.6% | 80.0% | 97.0% | 17.6% | 45.8% | 34.9% | 5.6% | 88.4% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jiang, Y.-H.; Jhang, J.-F.; Kuo, H.-C. Can We Use Urinary Cytokine/Chemokine Analysis in Discriminating Ulcer-Type Interstitial Cystitis/Bladder Pain Syndrome? Diagnostics 2022, 12, 1093. https://doi.org/10.3390/diagnostics12051093
Jiang Y-H, Jhang J-F, Kuo H-C. Can We Use Urinary Cytokine/Chemokine Analysis in Discriminating Ulcer-Type Interstitial Cystitis/Bladder Pain Syndrome? Diagnostics. 2022; 12(5):1093. https://doi.org/10.3390/diagnostics12051093
Chicago/Turabian StyleJiang, Yuan-Hong, Jia-Fong Jhang, and Hann-Chorng Kuo. 2022. "Can We Use Urinary Cytokine/Chemokine Analysis in Discriminating Ulcer-Type Interstitial Cystitis/Bladder Pain Syndrome?" Diagnostics 12, no. 5: 1093. https://doi.org/10.3390/diagnostics12051093
APA StyleJiang, Y. -H., Jhang, J. -F., & Kuo, H. -C. (2022). Can We Use Urinary Cytokine/Chemokine Analysis in Discriminating Ulcer-Type Interstitial Cystitis/Bladder Pain Syndrome? Diagnostics, 12(5), 1093. https://doi.org/10.3390/diagnostics12051093