Validation of GeneFinder COVID-19 Ag Plus Rapid Test and Its Potential Utility to Slowing Infection Waves: A Single-Center Laboratory Evaluation Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Patients and SARS-CoV-2 Testing
2.2. GeneFinder COVID-19 Ag Plus Rapid Test Assay
2.3. Sequencing SARS-CoV-2
2.4. Ethics
2.5. Statistical Analyses
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Vandenberg, O.; Martiny, D.; Rochas, O.; van Belkum, A.; Kozlakidis, Z. Considerations for diagnostic COVID-19 tests. Nature reviews. Microbiology 2021, 19, 171–183. [Google Scholar] [CrossRef] [PubMed]
- Epatite Acuta a Eziologia Sconosciuta in Età Pediatrica. Available online: https://www.epicentro.iss.it/coronavirus/bollettino/Bollettino-sorveglianza-integrata-COVID-19_6-marzo-2022.pdf (accessed on 15 December 2021).
- De Assis, R.R.; Jain, A.; Nakajima, R.; Jasinskas, A.; Felgner, J.; Obiero, J.M.; Norris, P.J.; Stone, M.; Simmons, G.; Bagri, A.; et al. Analysis of SARS-CoV-2 antibodies in COVID-19 convalescent blood using a coronavirus antigen microarray. Nat. Commun. 2021, 12, 6. [Google Scholar] [CrossRef] [PubMed]
- Lynch, J.P., 3rd; Kajon, A.E. Adenovirus: Epidemiology, Global Spread of Novel Serotypes, and Advances in Treatment and Prevention. Semin. Respir. Crit. Care Med. 2016, 37, 586–602. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, D.X.; Liang, J.Q.; Fung, T.S. Human Coronavirus-229E, -OC43, -NL63, and -HKU1 (Coronaviridae). In Encyclopedia of Virology; Elsevier: Amsterdam, The Netherlands, 2021; pp. 428–440. [Google Scholar] [CrossRef]
- Barrera-Badillo, G.; Olivares-Flores, B.; Ruiz-López, A.; Fierro-Valdez, M.Á.; Gutiérrez-Vargas, R.I.; López-Martínez, I. Human Metapneumovirus: Etiological Agent of Severe Acute Respiratory Infections in Hospitalized and Deceased Patients with a Negative Diagnosis of Influenza. Pathogens 2020, 9, 85. [Google Scholar] [CrossRef] [Green Version]
- Brotons, P.; Jordan, I.; Bassat, Q.; Henares, D.; Fernandez de Sevilla, M.; Ajanovic, S.; Redin, A.; Fumado, V.; Baro, B.; Claverol, J.; et al. The Positive Rhinovirus/Enterovirus Detection and SARS-CoV-2 Persistence beyond the Acute Infection Phase: An Intra-Household Surveillance Study. Viruses 2021, 13, 1598. [Google Scholar] [CrossRef]
- Leber, A.L.; Everhart, K.; Daly, J.A.; Hopper, A.; Harrington, A.; Schreckenberger, P.; McKinley, K.; Jones, M.; Holmberg, K.; Kensinger, B. Multicenter Evaluation of BioFireFilmArray Respiratory Panel 2 for Detection of Viruses and Bacteria in Nasopharyngeal Swab Samples. J. Clin. Microbiol. 2018, 56, e01945-17. [Google Scholar] [CrossRef] [Green Version]
- Lin, C.Y.; Hwang, D.; Chiu, N.C.; Weng, L.C.; Liu, H.F.; Mu, J.J.; Liu, C.P.; Chi, H. Increased Detection of Viruses in Children with Respiratory Tract Infection Using PCR. Int. J. Environ. Res. Public Health 2020, 17, 564. [Google Scholar] [CrossRef] [Green Version]
- Creer, D.D.; Dilworth, J.P.; Gillespie, S.H.; Johnston, A.R.; Johnston, S.L.; Ling, C.; Patel, S.; Sanderson, G.; Wallace, P.G.; McHugh, T.D. Aetiological role of viral and bacterial infections in acute adult lower respiratory tract infection (LRTI) in primary care. Thorax 2006, 61, 75–79. [Google Scholar] [CrossRef] [Green Version]
- Overview of Testing for SARS-CoV-2 (COVID-19). Available online: https://www.cdc.gov/coronavirus/2019-ncov/hcp/testing-overview.html (accessed on 18 September 2021).
- Peronace, C.; Tallerico, R.; Colosimo, M.; De Fazio, M.; Pasceri, F.; Talotta, I.; Panduri, G.; Pintomalli, L.; Oteri, R.; Calantoni, V.; et al. BA.1 Omicron Variant of SARS-CoV-2: First Case Reported in Calabria Region, Italy. COVID 2022, 2, 211–215. [Google Scholar] [CrossRef]
- Larremore, D.B.; Wilder, B.; Lester, E.; Shehata, S.; Burke, J.M.; Hay, J.A.; Tambe, M.; Mina, M.J.; Parker, R. Test sensitivity is secondary to frequency and turnaround time for COVID-19 screening. Sci. Adv. 2021, 7, eabd5393. [Google Scholar] [CrossRef]
- Mina, M.J.; Parker, R.; Larremore, D.B. Rethinking COVID-19 Test Sensitivity—A Strategy for Containment. N. Engl. J. Med. 2020, 383, e120. [Google Scholar] [CrossRef] [PubMed]
- Smith, R.L.; Gibson, L.L.; Martinez, P.P.; Ke, R.; Mirza, A.; Conte, M.; Gallagher, N.; Conte, A.; Wang, L.; Fredrickson, R.; et al. Longitudinal Assessment of Diagnostic Test Performance Over the Course of Acute SARS-CoV-2 Infection. J. Infect. Dis. 2021, 224, 976–982. [Google Scholar] [CrossRef] [PubMed]
- Albert, E.; Torres, I.; Bueno, F.; Huntley, D.; Molla, E.; Fernández-Fuentes, M.Á.; Martínez, M.; Poujois, S.; Forqué, L.; Valdivia, A.; et al. Field evaluation of a rapid antigen test (Panbio™ COVID-19 Ag Rapid Test Device) for COVID-19 diagnosis in primary healthcare centres. Clin. Microbiol. Infect. 2021, 27, e7–e472. [Google Scholar] [CrossRef] [PubMed]
- Kipritci, Z.; Keskin, A.Ü.; Çıragil, P.; Topkaya, A.E. Evaluation of a Visually-Read Rapid Antigen Test Kit (SGA V-Chek) for Detection of SARS-CoV-2 Virus. Mikrobiyol. Bul. 2021, 55, 461–464. [Google Scholar] [CrossRef]
- Chimayo, C.; Kaewnaphan, B.; Tanlieng, N.; Athipanyasilp, N.; Sirijatuphat, R.; Chayakulkeeree, M.; Angkasekwinai, N.; Sutthent, R.; Puangpunngam, N.; Tharmviboonsri, T.; et al. Rapid SARS-CoV-2 antigen detection assay in comparison with real-time RT-PCR Assay for laboratory diagnosis of COVID-19 in Thailand. Virol. J. 2020, 17, 177. [Google Scholar] [CrossRef] [PubMed]
- Dinnes, J.; Deeks, J.J.; Berhane, S.; Taylor, M.; Adriano, A.; Davenport, C.; Dittrich, S.; Emperator, D.; Takwoingi, Y.; Cunningham, J.; et al. Cochrane COVID-19 Diagnostic Test Accuracy GroupRapid, point-of-care antigen and molecular-based tests for diagnosis of SARS-CoV-2 infection. Cochrane Database Syst. Rev. 2021, 3, CD013705. [Google Scholar] [CrossRef]
- Chen, C.; Amelia, A.; Ashdown, G.W.; Mueller, I.; Coussens, A.K.; Eriksson, E.M. Risk surveillance and mitigation: Autoantibodies as triggers and inhibitors of severe reactions to SARS-CoV-2 infection. Mol. Med. 2021, 27, 160. [Google Scholar] [CrossRef]
- Torres, I.; Poujois, S.; Albert, E.; Colomina, J.; Navarro, D. Evaluation of a rapid antigen test (Panbio™ COVID-19 Ag rapid test device) for SARS-CoV-2 detection in asymptomatic close contacts of COVID-19 patients. Clin. Microbiol. Infect. 2021, 27, e1–e636. [Google Scholar] [CrossRef]
- Mak, G.C.; Lau, S.S.; Wong, K.K.; Chow, N.L.; Lau, C.S.; Lam, E.T.; Chan, R.C.; Tsang, D.N. Analytical sensitivity and clinical sensitivity of the three rapid antigen detection kits for detection of SARS-CoV-2 virus. J. Clin. Virol. 2020, 133, 104684. [Google Scholar] [CrossRef]
- Pekosz, A.; Cooper, C.; Parvu, V.; Li, M.; Andrews, J.; Manabe, Y.C.; Kodsi, S.; Leitch, J.; Gary, D.S.; Roger-Dalbert, C.; et al. Antigen-based testing but not real-time PCR correlates with SARS-CoV-2 virus culture. medRxiv 2020, preprint. [Google Scholar] [CrossRef]
- Linares, M.; Perez-Tanoira, R.; Romanyk, J.; Perez-García, F.; Gomez-Herruz, P.; Arroyo, T.; Cuadros, J. Panbio antigen rapid test is reliable to diagnose SARS-CoV-2 infection in the first 7 days after the onset of symptoms. medRxiv, 2020; preprint. [Google Scholar] [CrossRef] [PubMed]
- Young, S.; Taylor, S.N.; Cammarata, C.L.; Varnado, K.G.; Roger-Dalbert, C.; Montano, A.; Griego-Fullbright, C.; Burgard, C.; Fernandez, C.; Eckert, K.; et al. Clinical evaluation of BD Veritor SARS-CoV-2 point-of-care test performance compared to PCR-based testing and versus the Sofia 2 SARS Antigen point-of-care test. J. Clin. Microbiol. 2020, 59, e02338-20. [Google Scholar] [CrossRef] [PubMed]
- Antigen-Detection in the Diagnosis of SARS-CoV-2 Infection: Interim Guidance, 6 October 2021. Available online: https://apps.who.int/iris/handle/10665/345948 (accessed on 15 December 2021).
- Rabaan, A.A.; Tirupathi, R.; Sule, A.A.; Aldali, J.; Mutair, A.A.; Alhumaid, S.; Muzaheed, G.N.; Koritala, T.; Adhikari, R.; Bilal, M.; et al. Viral Dynamics and Real-Time RT-PCR Ct Values Correlation with Disease Severity in COVID-19. Diagnostics 2021, 11, 1091. [Google Scholar] [CrossRef] [PubMed]
- Options for the Use of Rapid Antigen Detection Tests for COVID-19 in the EU/EEA—First Update. Available online: https://www.ecdc.europa.eu/sites/default/files/documents/Options-for-the-use-of-rapid-antigen-tests-for-COVID-19-first-update.pdf (accessed on 18 September 2021).
- COVID-19 Rapid Antigen Self-Tests That Are Approved in Australia. Available online: https://www.tga.gov.au/covid-19-rapid-antigen-self-tests-are-approved-australia (accessed on 18 September 2021).
- Brümmer, L.E.; Katzenschlager, S.; Gaeddert, M.; Erdmann, C.; Schmitz, S.; Bota, M.; Grilli, M.; Larmann, J.; Weigand, M.A.; Pollock, N.R.; et al. Accuracy of novel antigen rapid diagnostics for SARS-CoV-2: A living systematic review and meta-analysis. PLoS Med. 2021, 18, e1003735. [Google Scholar] [CrossRef]
- Toptan, T.; Eckermann, L.; Pfeiffer, A.E.; Hoehl, S.; Ciesek, S.; Drosten, C.; Corman, V.M. Evaluation of a SARS-CoV-2 rapid antigen test: Potential to help reduce community spread? J. Clin. Virol. 2021, 135, 104713. [Google Scholar] [CrossRef]
- Partnership to Accelerate COVID-19 Testing: Scaling up Rapid Antigen Self-Testing. Available online: https://africacdc.org/news-item/partnership-to-accelerate-covid-19-testing-scaling-up-rapid-antigen-self-testing/ (accessed on 18 September 2021).
- New COVID-19 Rapid Tests a Game Changer for Africa. Available online: https://www.afro.who.int/news/new-covid-19-rapid-tests-game-changer-africa (accessed on 18 September 2021).
Test | RAT+ | RAT− | Total |
---|---|---|---|
NAAT+ | 145 | 6 * | 151 |
NAAT− | 1 ** | 451 | 452 |
Total | 146 | 457 | 603 |
Sensitivity | Specificity | Overall Percent Agreement | PPV | NPV | Cohen’s Kappa | |
---|---|---|---|---|---|---|
96.03% | 99.78% | 98.84% | 99.32% | 98.69% | 96.87 (SE: 0.01) | |
Confidence Interval (CI 95%) | 91.55–98.53% | 98.77–99.99% | 97.62–99.53% | 95.43–99.90% | 97.17–99.40% | 0.9457–0.9918 |
N Gene Cycle Threshold Value | SH (n = 23) Sensitivity | NH (n = 101) Sensitivity | ANH (n = 14) Sensitivity |
---|---|---|---|
<25 | 100% | 100% | 100% |
25–30 | 100% | 100% | 100% |
>30 | 100% | 100% | - |
VOC | Clade | Lineage | N-Protein Mutations |
---|---|---|---|
Delta | 21k | B.1.617.2 | D63G; G215C; D377Y |
Delta | 21k | AY.4 | D63G; R203M; G215C; D377Y |
Delta | 21J | AY.39 | A35; D63G; R203M; G215C; D377Y |
Delta | 21K | AY.42 | D63G; R203M; G215C; D377Y |
Delta | 21J | AY.122 | A35; D63G; L139F; R203M; G215C; D377Y |
Delta | 21J | AY.46.6 | D63G; R203M; G215C; D377Y |
Delta | 21A | AY.53 | D63G; R203M; S327; D377Y; D399Y |
Delta | 21I | AY.61 | D63G; T135I; R203M; D377Y |
Delta | 21I | AY.9.2 | D63G; R203M; D377Y |
Omicron | 21k | B.1.1.529 | P13L; GERS30G_del; R203K; G204R |
Omicron | 21k | BA.1 | P13L; GERS30G_del; R203K; G204R |
Omicron | 21k | BA.1.1 | P13L; GERS30G_del; R203K; G204R |
Omicron | 21L | BA.2 | P13L; GERS30G_del; R203K; G204R; S413R |
Omicron | 21L | BA.2 | P13L; GERS30G_del; R203K; G204R; S413R |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Peronace, C.; Tallerico, R.; Colosimo, M.; Sacco, V.; Talarico, R.; De Fazio, M.; Pasceri, F.; Talotta, I.; Panduri, G.; Kim, J.-H.; et al. Validation of GeneFinder COVID-19 Ag Plus Rapid Test and Its Potential Utility to Slowing Infection Waves: A Single-Center Laboratory Evaluation Study. Diagnostics 2022, 12, 1126. https://doi.org/10.3390/diagnostics12051126
Peronace C, Tallerico R, Colosimo M, Sacco V, Talarico R, De Fazio M, Pasceri F, Talotta I, Panduri G, Kim J-H, et al. Validation of GeneFinder COVID-19 Ag Plus Rapid Test and Its Potential Utility to Slowing Infection Waves: A Single-Center Laboratory Evaluation Study. Diagnostics. 2022; 12(5):1126. https://doi.org/10.3390/diagnostics12051126
Chicago/Turabian StylePeronace, Cinzia, Rossana Tallerico, Manuela Colosimo, Vanessa Sacco, Roberta Talarico, Marco De Fazio, Federica Pasceri, Ilenia Talotta, Giuseppina Panduri, Jung-Hee Kim, and et al. 2022. "Validation of GeneFinder COVID-19 Ag Plus Rapid Test and Its Potential Utility to Slowing Infection Waves: A Single-Center Laboratory Evaluation Study" Diagnostics 12, no. 5: 1126. https://doi.org/10.3390/diagnostics12051126
APA StylePeronace, C., Tallerico, R., Colosimo, M., Sacco, V., Talarico, R., De Fazio, M., Pasceri, F., Talotta, I., Panduri, G., Kim, J. -H., Cione, E., & Minchella, P. (2022). Validation of GeneFinder COVID-19 Ag Plus Rapid Test and Its Potential Utility to Slowing Infection Waves: A Single-Center Laboratory Evaluation Study. Diagnostics, 12(5), 1126. https://doi.org/10.3390/diagnostics12051126