Deep Convolutional Recurrent Model for Automatic Scoring Sleep Stages Based on Single-Lead ECG Signal
Abstract
:1. Introduction
2. Materials and Methods
2.1. Subjects and PSG Study
2.2. ECG Dataset
2.3. DCR Model
2.4. Implementation
2.5. Evaluation Index
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Rechtschaffen, A.; Kales, A. A Manual of Standardized Terminology, Techniques and Scoring System for Sleep Stages of Human Subjects; NIH: Washington, DC, USA, 1968.
- Peigneux, P.; Laureys, S.; Delbeuck, X.; Maquet, P. Sleeping brain, learning brain, The role of sleep for memory systems. Neuroreport 2001, 12, A111–A124. [Google Scholar] [CrossRef] [PubMed]
- Stepanski, E.; Lamphere, J.; Badia, P.; Zorick, F.; Roth, T. Sleep fragmentation and daytime sleepiness. Sleep 1984, 7, 18–26. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jennum, P.; Jensen, R. Sleep and headache. Sleep Med. Rev. 2002, 6, 471–479. [Google Scholar] [CrossRef]
- Hoevenaar–Blom, M.P.; Spijkerman, A.M.; Kromhout, D.; Van den Berg, J.F.; Verschuren, W.M. Sleep duration and sleep quality in relation to 12–year cardiovascular disease incidence: The MORGEN study. Sleep 2011, 34, 1487–1492. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Curcio, G.; Ferrara, M.; De Gennaro, L. Sleep loss, learning capacity and academic performance. Sleep Med. Rev. 2006, 10, 323–337. [Google Scholar] [CrossRef] [PubMed]
- Gamaldo, C.E.; Shaikh, A.K.; McArthur, J.C. The sleep–immunity relationship. Neurol. Clin. 2012, 30, 1313–1343. [Google Scholar] [CrossRef] [PubMed]
- Kushida, C.A.; Chang, A.; Gadkary, C.; Guilleminault, C.; Carrillo, O.; Dement, W.C. Comparison of actigraphic, polysomnographic, and subjective assessment of sleep parameters in sleep-disordered patients. Sleep Med. 2001, 2, 389–396. [Google Scholar] [CrossRef]
- Alickovic, E.; Subasi, A. Ensemble SVM method for automatic sleep stage classification. IEEE Trans. Instrum. Meas. 2018, 67, 1258–1265. [Google Scholar] [CrossRef] [Green Version]
- Hassan, A.R.; Subasi, A. A decision support system for automated identification of sleep stages from single–channel EEG signals. Knowlegde-Based Syst. 2018, 127, 115–124. [Google Scholar] [CrossRef]
- Ghasemzadeh, P.; Kalbkhani, H.; Sartipi, S.; Shayesteh, M.G. Classification of sleep stages based on LSTAR model. Appl. Soft. Comput. 2019, 75, 523–536. [Google Scholar] [CrossRef]
- Michielli, N.; Acharya, U.R.; Molinari, F. Cascaded LSTM recurrent neural network for automated sleep stage classification using single-channel EEG signals. Comput. Biol. Med. 2019, 106, 71–81. [Google Scholar] [CrossRef] [PubMed]
- Adnane, M.; Jiang, Z.; Yan, Z. Sleep–wake stages classification and sleep efficiency estimation using single-lead electrocardiogram. Expert Syst. Appl. 2012, 39, 1401–1413. [Google Scholar] [CrossRef]
- Xiao, M.; Yan, H.; Song, J.; Yang, Y.; Yang, X. Sleep stages classification based on heart rate variability and random forest. Signal Process. Control 2012, 8, 624–633. [Google Scholar] [CrossRef]
- Singh, J.; Sharma, R.K.; Gupta, A.K. A method of REM-NREM sleep distinction using ECG signal for unobtrusive personal monitoring. Comput. Biol. Med. 2016, 78, 138–143. [Google Scholar] [CrossRef]
- Yücelbaş, S.; Yücelbaş, C.; Tezel, G.; Özşen, S.; Yosunkaya, S. Automatic sleep staging based on SVD, VMD, HHT and morphological features of single-lead ECG signal. Expert Syst. Appl. 2018, 102, 193–206. [Google Scholar] [CrossRef]
- Wei, R.; Zhang, X.; Wang, J.; Dang, X. The research of sleep staging based on single-lead electrocardiogram and deep neural network. Biomed. Eng. Lett. 2018, 8, 87–93. [Google Scholar] [CrossRef]
- Li, Q.; Li, Q.; Liu, C.; Shashikumar, S.P.; Nemati, S.; Clifford, G.D. Deep learning in the cross-time frequency domain for sleep staging from a single-lead electrocardiogram. Physiol. Meas. 2018, 39, 124005. [Google Scholar] [CrossRef]
- Radha, M.; Fonseca, P.; Ross, M.; Cerny, A.; Anderer, P.; Aarts, R.M. LSTM knowledge transfer for HRV-based sleep staging. arXiv 2018, arXiv:1809.06221. Available online: https://arxiv.org/abs/1809.06221 (accessed on 26 October 2018).
- Berry, R.B.; Brooks, R.; Gamaldo, C.E.; Harding, S.M.; Marcus, C.; Vaughn, B. AASM Manual for the Scoring of Sleep and Associated Events: Rules, Terminology and Technical Specifications; AASM: Darien, IL, USA, 2012. [Google Scholar]
- Kryger, M.H.; Roth, T.; Dement, W.C. Principles and Practice of Sleep Medicine, 5th ed.; Saunders: Collingwood, ON, Canada, 2011; pp. 16–25. [Google Scholar]
- Chung, J.; Gulcehre, C.; Cho, K.; Bengio, Y. Empirical evaluation of gated recurrent neural networks on sequence modeling. arXiv 2014, arXiv:1412.3555. Available online: https://arxiv.org/abs/1412.3555 (accessed on 25 November 2015).
- Ioffe, S.; Szegedy, C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In Proceedings of the 32nd International Conference on Machine Learning, Lille, France, 6–11 July 2015; pp. 448–456. [Google Scholar]
- Srivastava, N.; Hinton, G.; Krizhevsky, A.; Sutskever, I.; Salakhutdinov, R. Dropout: A simple way to prevent neural networks from overfitting. Mach. Learn. Res. 2014, 15, 1929–1958. [Google Scholar]
- Nair, V.; Hinton, G.E. Rectified linear units improve restricted boltzmann machines. In Proceedings of the 27th International Conference on Machine Learning, Haifa, Israel, 21–24 June 2010; pp. 807–814. [Google Scholar]
- Chollet, F. Keras. 2015. Available online: https://keras.io/ (accessed on 7 June 2016).
- Ebrahimi, F.; Setarehdan, S.K.; Nazeran, H. Automatic sleep staging by simultaneous analysis of ECG and respiratory signals in long epochs. Biomed. Signal. Process. Control 2015, 18, 69–79. [Google Scholar] [CrossRef]
- Zhang, X.; Kou, W.; Eric, I.; Chang, C.; Gao, H.; Fan, Y.; Xu, Y. Sleep stage classification based on multi-level feature learning and recurrent neural networks via wearable device. Comput. Biol. Med. 2018, 103, 71–81. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Dataset | Measures | Control | OSA | Total |
---|---|---|---|---|
All subjects | N (M:F) | 52 (25:27) | 60 (46:14) | 112 (71:41) |
Age (years) | 48.0 ± 5.8 | 58.4 ± 11.2 | 53.5 ± 10.5 | |
BMI (kg/m2) | 22.6 ± 1.8 | 25.6 ± 3.1 | 24.2 ± 3.0 | |
AHI (per hour) | 2.3 ± 2.3 | 17.5 ± 6.8 | 10.4 ± 9.3 | |
TST (hour) | 6.5 ± 0.8 | 5.9 ± 0.9 | 6.2 ± 0.9 | |
SE (%) | 90.1 ± 11.0 | 80.7 ± 11.8 | 85.1 ± 12.3 | |
Training set | N (M:F) | 42 (18:24) | 47 (37:10) | 89 (55:34) |
Age (years) | 48.0 ± 6.0 | 57.9 ± 11.7 | 53.1 ± 10.5 | |
BMI (kg/m2) | 22.6 ± 1.7 | 25.7 ± 3.2 | 24.2 ± 3.0 | |
AHI (per hour) | 2.3 ± 2.4 | 18.0 ± 7.0 | 10.6 ± 9.5 | |
TST (hour) | 6.5 ± 0.9 | 5.9 ± 1.0 | 6.2 ± 1.0 | |
SE (%) | 89.7 ± 12.1 | 80.5 ± 12.5 | 84.8 ± 13.1 | |
Test set | N (M:F) | 10 (7:3) | 13 (9:4) | 23 (16:7) |
Age (years) | 48.2 ± 7.5 | 60.5 ± 9.2 | 55.1 ± 10.4 | |
BMI (kg/m2) | 22.9 ± 2.4 | 25.2 ± 3.2 | 24.2 ± 3.0 | |
AHI (per hour) | 2.3 ± 2.1 | 15.9 ± 5.6 | 10.0 ± 8.5 | |
TST (hour) | 6.5 ± 0.4 | 6.0 ± 0.7 | 6.2 ± 0.7 | |
SE (%) | 91.9 ± 3.8 | 81.4 ± 8.8 | 86.0 ± 8.7 |
Layers | Filters (Kernel Size) | Output Shape | Parameters |
---|---|---|---|
Batchnorm_1 | = | 3000 × 1 | 4 |
Conv1d_1 | 60 (50 × 1) | 2951 × 60 | 3060 |
Maxpool1d_1 | 2 × 1 | 1475 × 60 | |
Dropout_1 | p = 0.25 | ||
Conv1d_1 | 30 (30 × 1) | 1446 × 30 | 54,030 |
Maxpool1d_1 | 2 × 1 | 723 × 30 | |
Dropout_1 | p = 0.25 | ||
Conv1d_1 | 10 (20 × 1) | 704 × 10 | 6010 |
Maxpool1d_1 | 2 × 1 | 352 × 10 | |
Dropout_1 | p = 0.25 | ||
GRU_1 | 20 | 352 × 20 | 1920 |
Dropout_4 | p = 0.25 | ||
GRU_2 | 10 | 352 × 10 | 960 |
Dropout_5 | p = 0.25 | ||
Fullyconn_1 | 3 5 | 10 × 3 10 × 5 | 33 55 |
3 CNN, 2 GRU | Totally 130 filters and 66,015 parameters |
Dataset | Sleep Stages | Precision | Recall | F1-Score | Accuracy |
---|---|---|---|---|---|
Training set | Wake | 0.78 | 0.58 | 0.66 | 0.87 |
REM | 0.95 | 0.89 | 0.92 | ||
NREM | 0.62 | 0.84 | 0.72 | ||
Test set | Wake | 0.86 | 0.68 | 0.76 | 0.86 |
REM | 0.92 | 0.87 | 0.89 | ||
NREM | 0.56 | 0.82 | 0.71 |
Dataset | Sleep Stages | Precision | Recall | F1-Score | Accuracy |
---|---|---|---|---|---|
Training set | Wake | 0.63 | 0.66 | 0.65 | 0.77 |
REM | 0.77 | 0.93 | 0.84 | ||
N1 | 0.51 | 0.16 | 0.24 | ||
N2 | 0.83 | 0.76 | 0.79 | ||
N3 | 0.79 | 0.73 | 0.76 | ||
Test set | Wake | 0.59 | 0.64 | 0.62 | 0.74 |
REM | 0.75 | 0.91 | 0.82 | ||
N1 | 0.39 | 0.14 | 0.20 | ||
N2 | 0.79 | 0.71 | 0.74 | ||
N3 | 0.75 | 0.66 | 0.70 |
Author | Signal | Method | Classes | Accuracy |
---|---|---|---|---|
Adnane et al. [13] | HRV | SVM | 2 | 79.9 |
Xiao et al. [14] | HRV | RF | 3 | 72.5 |
Ebrahimi et al. [27] | HRV, Resp. | SVM | 4 | 89.3 |
Singh et al. [15] | RR interval | SVM | 2 | 72.8 |
Yücelbaş et al. [16] | ECG | RF | 3 | 78.0 |
Wei et al. [17] | ECG | DNN | 3 | 77.8 |
Li et al. [18] | ECG→CRC | CNN | 3 | 73.0 |
Radha et al. [19] | HRV, | LSTM | 5 | 72.9 |
Zhang et al. [28] | HR, Actigraphy | RNN | 3 | 66.6 |
This study | ECG | DCR | 5 | 74.2 |
3 | 86.4 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Urtnasan, E.; Park, J.-U.; Joo, E.Y.; Lee, K.-J. Deep Convolutional Recurrent Model for Automatic Scoring Sleep Stages Based on Single-Lead ECG Signal. Diagnostics 2022, 12, 1235. https://doi.org/10.3390/diagnostics12051235
Urtnasan E, Park J-U, Joo EY, Lee K-J. Deep Convolutional Recurrent Model for Automatic Scoring Sleep Stages Based on Single-Lead ECG Signal. Diagnostics. 2022; 12(5):1235. https://doi.org/10.3390/diagnostics12051235
Chicago/Turabian StyleUrtnasan, Erdenebayar, Jong-Uk Park, Eun Yeon Joo, and Kyoung-Joung Lee. 2022. "Deep Convolutional Recurrent Model for Automatic Scoring Sleep Stages Based on Single-Lead ECG Signal" Diagnostics 12, no. 5: 1235. https://doi.org/10.3390/diagnostics12051235
APA StyleUrtnasan, E., Park, J. -U., Joo, E. Y., & Lee, K. -J. (2022). Deep Convolutional Recurrent Model for Automatic Scoring Sleep Stages Based on Single-Lead ECG Signal. Diagnostics, 12(5), 1235. https://doi.org/10.3390/diagnostics12051235