Kaposi Sarcoma, a Trifecta of Pathogenic Mechanisms
Abstract
:1. Introduction
2. Replicative Cycle of HHV8
2.1. Latency Phase
2.2. Reactivation and Lytic Phase
3. Histogenesis
4. Clinical Presentation
- Classic KS
- Endemic KS
- Epidemic KS
- Iatrogenic (post-transplant) KS
5. Histopathology
6. Current Treatments and Experimental
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sternbach, G.; Varon, J. Moritz Kaposi: Idiopathic pigmented sarcoma of the skin. J. Emerg. Med. 1995, 13, 671–674. [Google Scholar] [CrossRef]
- Taff, M.L.; Siegal, F.P.; Geller, S.A. Outbreak of an acquired immunodeficiency syndrome associated with opportunistic infections and Kaposi’s sarcoma in male homosexuals: An epidemic with forensic implications. Am. J. Forensic Med. Pathol. 1982, 3, 259–264. [Google Scholar] [CrossRef]
- Mui, U.N.; Haley, C.T.; Tyring, S.K. Viral Oncology: Molecular Biology and Pathogenesis. J. Clin. Med. 2017, 6, 111. [Google Scholar] [CrossRef] [Green Version]
- Fatahzadeh, M. Kaposi sarcoma: Review and medical management update. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. 2011, 113, 2–16. [Google Scholar] [CrossRef] [PubMed]
- Curtiss, P.; Strazzulla, L.; Friedman-Kien, A.E. An Update on Kaposi’s Sarcoma: Epidemiology, Pathogenesis and Treatment. Dermatol. Ther. 2016, 6, 465–470. [Google Scholar] [CrossRef] [Green Version]
- Yoo, S.; Moon, S.; Chin, S.-O.; Lee, S.-A.; Hyun, C.; Koh, G. A case of exogenous corticosteroid-induced Kaposi’s sarcoma that developed after a cure of endogenous hypercortisolism. Int. J. Clin. Pharm. 2015, 37, 988–991. [Google Scholar] [CrossRef] [PubMed]
- Jalbert, E.; DiGiovanni, R.; Worth, R. Stage-IV Kaposi’s Sarcoma during Abatacept Therapy: A Case Report. Rheumatol. Curr. Res. 2015, 5. [Google Scholar] [CrossRef]
- Rădulescu, L.; Mârţu, C.; Martu, D.; Damean, G.; Cozma, S. Cancer of the nasal cavity and paranasal sinuses—Our experience. Rom. J. Oral Rehabil. 2015, 7, 71–75. [Google Scholar]
- ARC. IARC Monograph on the Evaluation of Carcinogenic Risks to Humans. Biol. Agents 2012, 100, 255–296. [Google Scholar]
- Cordes, A.K.; Schulz, T.F. Kaposi’s Sarcoma-associated herpesvirus. In Encyclopedia of Virology, 4th ed.; Bamford, D.H., Zuckerman, M., Eds.; Elsevier: Amsterdam, The Netherlands, 2021; Volume 2, pp. 598–607. [Google Scholar]
- De Paoli, P.; Carbone, A. Kaposi’s Sarcoma Herpesvirus: Twenty years after its discovery. Eur. Rev. Med. Pharmacol. Sci. 2016, 20, 1288–1294. [Google Scholar]
- Chang, Y.; Cesarman, E.; Pessin, M.S.; Lee, F.; Culpepper, J.; Knowlesand, D.M.; Moore, P.S. Identification of Herpesvirus-Like DNA Sequences in AIDS-Associated Kaposi’s Sarcoma. Science 1994, 266, 1865–1869. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bechtel, J.T.; Liang, Y.; Hvidding, J.; Ganem, D. Host Range of Kaposi’s Sarcoma-Associated Herpesvirus in Cultured Cells. J. Virol. 2003, 77, 6474–6481. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tso, F.Y.; Sawyer, A.; Kwon, E.H.; Mudenda, V.; Langford, D.; Zhou, Y.; West, J.; Wood, C. Kaposi’s sarcoma-associated herpesvirus infection of neurons in HIV positive patients. J. Infect. Dis. 2016, 215, 1898–1907. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kumar, B.; Chandran, B. KSHV Entry and Trafficking in Target Cells—Hijacking of Cell Signal Pathways, Actin and Membrane Dynamics. Viruses 2016, 8, 305. [Google Scholar] [CrossRef]
- Hahn, A.S.; Kaufmann, J.K.; Wies, E.; Naschberger, E.; Panteleev-Ivlev, J.; Schmidt, K.; Holzer, A.; Schmidt, M.; Chen, J.; Koenig, S.; et al. The ephrin receptor tyrosine kinase A2 is a cellular receptor for Kaposi’s sarcoma–associated herpesvirus. Nat. Med. 2012, 18, 961–966. [Google Scholar] [CrossRef] [Green Version]
- Cai, X.; Lu, S.; Zhang, Z.; Gonzalez, C.M.; Damania, B.; Cullen, B.R. Kaposi’s sarcoma-associated herpesvirus expresses an array of viral microRNAs in latently infected cells. Proc. Natl. Acad. Sci. USA 2005, 102, 5570–5575. [Google Scholar] [CrossRef] [Green Version]
- Sarid, R.; Flore, O.; Bohenzky, R.A.; Chang, Y.; Moore, P.S. Transcription Mapping of the Kaposi’s Sarcoma-Associated Herpesvirus (Human Herpesvirus 8) Genome in a Body Cavity-Based Lymphoma Cell Line (BC-1). J. Virol. 1998, 72, 1005–1012. [Google Scholar] [CrossRef] [Green Version]
- Cesarman, E.; Damania, B.; Krown, S.E.; Martin, J.; Bower, M.; Whitby, D. Kaposi sarcoma. Nat. Rev. Dis. Prim. 2019, 5, 9. [Google Scholar] [CrossRef]
- Samols, M.A.; Hu, J.; Skalsky, R.L.; Renne, R. Cloning and Identification of a MicroRNA Cluster within the Latency-Associated Region of Kaposi’s Sarcoma-Associated Herpesvirus. J. Virol. 2005, 79, 9301–9305. [Google Scholar] [CrossRef] [Green Version]
- Pfeffer, S.; Sewer, A.; Lagos-Quintana, M.; Sheridan, R.; Sander, C.; Grässer, F.A.; van Dyk, L.; Ho, C.K.; Shuman, S.; Chien, M.; et al. Identification of microRNAs of the herpesvirus family. Nat. Methods 2005, 2, 269–276. [Google Scholar] [CrossRef]
- Hansen, A.; Henderson, S.; Lagos, D.; Nikitenko, L.; Coulter, E.; Roberts, S.; Gratrix, F.; Plaisance, K.; Renne, R.; Bower, M.; et al. KSHV-encoded miRNAs target MAF to induce endothelial cell reprogramming. Genes Dev. 2010, 24, 195–205. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hu, M.; Wang, C.; Li, W.; Lu, W.; Bai, Z.; Qin, D.; Yan, Q.; Zhu, J.; Krueger, B.J.; Renne, R.; et al. A KSHV microRNA Directly Targets G Protein-Coupled Receptor Kinase 2 to Promote the Migration and Invasion of Endothelial Cells by Inducing CXCR2 and Activating AKT Signaling. PLoS Pathog. 2015, 11, e1005171. [Google Scholar] [CrossRef] [Green Version]
- Samols, M.A.; Skalsky, R.L.; Maldonado, A.M.; Riva, A.; Lopez, M.C.; Baker, H.; Renne, R. Identification of Cellular Genes Targeted by KSHV-Encoded MicroRNAs. PLoS Pathog. 2007, 3, e65. [Google Scholar] [CrossRef] [PubMed]
- Knight, J.S.; Ii, M.A.C.; Robertson, E.S. The Latency-associated Nuclear Antigen of Kaposi’s Sarcoma-associated Herpesvirus Transactivates the Telomerase Reverse Transcriptase Promoter. J. Biol. Chem. 2001, 276, 22971–22978. [Google Scholar] [CrossRef] [Green Version]
- Verma, S.C.; Borah, S.; Robertson, E.S. Latency-Associated Nuclear Antigen of Kaposi’s Sarcoma-Associated Herpesvirus Up-Regulates Transcription of Human Telomerase Reverse Transcriptase Promoter through Interaction with Transcription Factor Sp1. J. Virol. 2004, 78, 10348–10359. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sarid, R.; Wiezorek, J.S.; Moore, P.S.; Chang, Y. Characterization and Cell Cycle Regulation of the Major Kaposi’s Sarcoma-Associated Herpesvirus (Human Herpesvirus 8) Latent Genes and Their Promoter. J. Virol. 1999, 73, 1438–1446. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dittmer, D.; Lagunoff, M.; Renne, R.; Staskus, K.; Haase, A.; Ganem, D. A Cluster of Latently Expressed Genes in Kaposi’s Sarcoma-Associated Herpesvirus. J. Virol. 1998, 72, 8309–8315. [Google Scholar] [CrossRef] [Green Version]
- Rivas, C.; Thlick, A.-E.; Parravicini, C.; Moore, P.; Chang, Y. Kaposi’s Sarcoma-Associated Herpesvirus LANA2 Is a B-Cell-Specific Latent Viral Protein That Inhibits p53. J. Virol. 2001, 75, 429–438. [Google Scholar] [CrossRef] [Green Version]
- Lubyova, B.; Pitha, P.M. Characterization of a Novel Human Herpesvirus 8-Encoded Protein, vIRF-3, That Shows Homology to Viral and Cellular Interferon Regulatory Factors. J. Virol. 2000, 74, 8194–8201. [Google Scholar] [CrossRef] [Green Version]
- Munoz-Fontela, C.; Marcos-Villar, L.; Gallego, P.; Arroyo, J.; Da Costa, M.; Pomeranz, K.M.; Lam, E.; Rivas, C. Latent Protein LANA2 from Kaposi’s Sarcoma-Associated Herpesvirus Interacts with 14-3-3 Proteins and Inhibits FOXO3a Transcription Factor. J. Virol. 2007, 81, 1511–1516. [Google Scholar] [CrossRef] [Green Version]
- Ueda, K. KSHV genome replication and maintenance in latency. Adv. Exp. Med. Biol. 2018, 1045, 299–320. [Google Scholar] [CrossRef]
- Nachmani, D.; Stern-Ginossar, N.; Sarid, R.; Mandelboim, O. Diverse Herpesvirus MicroRNAs Target the Stress-Induced Immune Ligand MICB to Escape Recognition by Natural Killer Cells. Cell Host Microbe 2009, 5, 376–385. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Martin, D.F.; Kuppermann, B.D.; Wolitz, R.A.; Palestine, A.G.; Li, H.; Robinson, C.A. Oral Ganciclovir for Patients with Cytomegalovirus Retinitis Treated with a Ganciclovir Implant. N. Engl. J. Med. 1999, 340, 1063–1070. [Google Scholar] [CrossRef] [PubMed]
- Miller, G.; Heston, L.; Grogan, E.; Gradoville, L.; Rigsby, M.; Sun, R.; Shedd, D.; Kushnaryov, V.M.; Grossberg, S.; Chang, Y. Selective switch between latency and lytic replication of Kaposi’s sarcoma herpesvirus and Epstein-Barr virus in dually infected body cavity lymphoma cells. J. Virol. 1997, 71, 314–324. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chang, J.; Renne, R.; Dittmer, D.; Ganem, D. Inflammatory Cytokines and the Reactivation of Kaposi’s Sarcoma-Associated Herpesvirus Lytic Replication. Virology 2000, 266, 17–25. [Google Scholar] [CrossRef] [Green Version]
- Liang, Y.; Chang, J.; Lynch, S.J.; Lukac, D.M.; Ganem, D. The lytic switch protein of KSHV activates gene expression via functional interaction with RBP-Jκ (CSL), the target of the Notch signaling pathway. Genes Dev. 2002, 16, 1977–1989. [Google Scholar] [CrossRef] [Green Version]
- Gwack, Y.; Baek, H.J.; Nakamura, H.; Lee, S.H.; Meisterernst, M.; Roeder, R.G.; Jung, J.U. Principal Role of TRAP/Mediator and SWI/SNF Complexes in Kaposi’s Sarcoma-Associated Herpesvirus RTA-Mediated Lytic Reactivation. Mol. Cell. Biol. 2003, 23, 2055–2067. [Google Scholar] [CrossRef] [Green Version]
- Wilson, S.; Tsao, E.H.; Webb, B.L.J.; Ye, H.; Dalton-Griffin, L.; Tsantoulas, C.; Gale, C.V.; Du, M.-Q.; Whitehouse, A.; Kellam, P. X Box Binding Protein XBP-1s Transactivates the Kaposi’s Sarcoma-Associated Herpesvirus (KSHV) ORF50 Promoter, Linking Plasma Cell Differentiation to KSHV Reactivation from Latency. J. Virol. 2007, 81, 13578–13586. [Google Scholar] [CrossRef] [Green Version]
- Yu, F.; Harada, J.N.; Brown, H.J.; Deng, H.; Song, M.J.; Wu, T.-T.; Kato-Stankiewicz, J.; Nelson, C.G.; Vieira, J.; Tamanoi, F.; et al. Systematic Identification of Cellular Signals Reactivating Kaposi Sarcoma–Associated Herpesvirus. PLoS Pathog. 2007, 3, e44. [Google Scholar] [CrossRef] [Green Version]
- Harrison, S.M.; Whitehouse, A. Kaposi’s sarcoma-associated herpesvirus (KSHV) Rta and cellular HMGB1 proteins synergistically transactivate the KSHVORF50promoter. FEBS Lett. 2008, 582, 3080–3084. [Google Scholar] [CrossRef] [Green Version]
- Xie, J.; Ajibade, A.O.; Ye, F.; Kuhne, K.; Gao, S.-J. Reactivation of Kaposi’s sarcoma-associated herpesvirus from latency requires MEK/ERK, JNK and p38 multiple mitogen-activated protein kinase pathways. Virology 2008, 371, 139–154. [Google Scholar] [CrossRef] [Green Version]
- Aneja, K.K.; Yuan, Y. Reactivation and Lytic Replication of Kaposi’s Sarcoma-Associated Herpesvirus: An Update. Front. Microbiol. 2017, 8, 613. [Google Scholar] [CrossRef] [PubMed]
- Cole, S.W.; Kemeny, M.E.; Fahey, J.L.; Zack, J.A.; Naliboff, B.D. Psychological risk factors for HIV pathogenesis: Mediation by the autonomic nervous system. Biol. Psychiatry 2003, 54, 1444–1456. [Google Scholar] [CrossRef]
- Davis, D.A.; Rinderknecht, A.S.; Zoeteweij, J.P.; Aoki, Y.; Read-Connole, E.L.; Tosato, G.; Blauvelt, A.; Yarchoan, R. Hypoxia induces lytic replication of Kaposi sarcoma–associated herpesvirus. Blood 2001, 97, 3244–3250. [Google Scholar] [CrossRef] [Green Version]
- Ye, F.; Zhou, F.; Bedolla, R.G.; Jones, T.; Lei, X.; Kang, T.; Guadalupe, M.; Gao, S.-J. Reactive Oxygen Species Hydrogen Peroxide Mediates Kaposi’s Sarcoma-Associated Herpesvirus Reactivation from Latency. PLoS Pathog. 2011, 7, e1002054. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Herrera-Ortíz, A.; Meng, W.; Gao, S. Nitric oxide is induced and required for efficient Kaposi’s sarcoma-associated herpesvirus lytic replication. J. Med. Virol. 2021, 93, 6323–6332. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Dai, L.; Barrett, L.; James, J.; Plaisance-Bonstaff, K.; Post, S.R.; Qin, Z. SARS-CoV-2 proteins and anti-COVID-19 drugs induce lytic reactivation of an oncogenic virus. Commun. Biol. 2021, 4, 682. [Google Scholar] [CrossRef]
- Qin, Z.; Dai, L.; Slomiany, M.G.; Toole, B.P.; Parsons, C. Direct Activation of Emmprin and Associated Pathogenesis by an Oncogenic Herpesvirus. Cancer Res. 2010, 70, 3884–3889. [Google Scholar] [CrossRef] [Green Version]
- Dai, L.; Trillo-Tinoco, J.; Chen, Y.; Bonstaff, K.; Del Valle, L.; Parsons, C.; Ochoa, A.C.; Zabaleta, J.; Toole, B.P.; Qin, Z. CD147 and downstream ADAMTSs promote the tumorigenicity of Kaposi’s sarcoma-associated herpesvirus infected endothelial cells. Oncotarget 2015, 7, 3806–3818. [Google Scholar] [CrossRef] [Green Version]
- Wang, K.; Chen, W.; Zhang, Z.; Deng, Y.; Lian, J.-Q.; Du, P.; Wei, D.; Zhang, Y.; Sun, X.-X.; Gong, L.; et al. CD147-spike protein is a novel route for SARS-CoV-2 infection to host cells. Signal Transduct. Target. Ther. 2020, 5, 283. [Google Scholar] [CrossRef]
- Varthakavi, V.; Browning, P.J.; Spearman, P. Human Immunodeficiency Virus Replication in a Primary Effusion Lymphoma Cell Line Stimulates Lytic-Phase Replication of Kaposi’s Sarcoma-Associated Herpesvirus. J. Virol. 1999, 73, 10329–10338. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zeng, Y.; Zhang, X.; Huang, Z.; Cheng, L.; Yao, S.; Qin, D.; Chen, X.; Tang, Q.; Lv, Z.; Zhang, L.; et al. Intracellular Tat of Human Immunodeficiency Virus Type 1 Activates Lytic Cycle Replication of Kaposi’s Sarcoma-Associated Herpesvirus: Role of JAK/STAT Signaling. J. Virol. 2007, 81, 2401–2417. [Google Scholar] [CrossRef] [Green Version]
- Qin, D.; Zeng, Y.; Qian, C.; Huang, Z.; Lv, Z.; Cheng, L.; Yao, S.; Tang, Q.; Chen, X.; Lu, C. Induction of lytic cycle replication of Kaposi’s sarcoma-associated herpesvirus by herpes simplex virus type 1: Involvement of IL-10 and IL-4. Cell. Microbiol. 2007, 10, 713–728. [Google Scholar] [CrossRef]
- Lu, C.; Zeng, Y.; Huang, Z.; Huang, L.; Qian, C.; Tang, G.; Qin, D. Human Herpesvirus 6 Activates Lytic Cycle Replication of Kaposi’s Sarcoma-Associated Herpesvirus. Am. J. Pathol. 2005, 166, 173–183. [Google Scholar] [CrossRef]
- Tang, Q.; Qin, D.; Lv, Z.; Zhu, X.; Ma, X.; Yan, Q.; Zeng, Y.; Guo, Y.; Feng, N.; Lu, C. Herpes Simplex Virus Type 2 Triggers Reactivation of Kaposi’s Sarcoma-Associated Herpesvirus from Latency and Collaborates with HIV-1 Tat. PLoS ONE 2012, 7, e31652. [Google Scholar] [CrossRef]
- Grundhoff, A.; Ganem, D. Inefficient establishment of KSHV latency suggests an additional role for continued lytic replication in Kaposi sarcoma pathogenesis. J. Clin. Investig. 2004, 113, 124–136. [Google Scholar] [CrossRef]
- Yan, L.; Majerciak, V.; Zheng, Z.-M.; Lan, K. Towards Better Understanding of KSHV Life Cycle: From Transcription and Posttranscriptional Regulations to Pathogenesis. Virol. Sin. 2019, 34, 135–161. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alzhanova, D.; Meyo, J.O.; Juarez, A.; Dittmer, D.P. The ORF45 Protein of Kaposi Sarcoma-Associated Herpesvirus Is an Inhibitor of p53 Signaling during Viral Reactivation. J. Virol. 2021, 95. [Google Scholar] [CrossRef] [PubMed]
- Wong, L.-Y.; Brulois, K.; Toth, Z.; Inn, K.-S.; Lee, S.-H.; O’Brien, K.; Lee, H.; Gao, S.-J.; Cesarman, E.; Ensser, A.; et al. The Product of Kaposi’s Sarcoma-Associated Herpesvirus Immediate Early Gene K4.2 Regulates Immunoglobulin Secretion and Calcium Homeostasis by Interacting with and Inhibiting pERP1. J. Virol. 2013, 87, 12069–12079. [Google Scholar] [CrossRef] [Green Version]
- Schulz, T.F.; Cesarman, E. Kaposi Sarcoma-associated Herpesvirus: Mechanisms of oncogenesis. Curr. Opin. Virol. 2015, 14, 116–128. [Google Scholar] [CrossRef]
- Corcoran, J.A.; Johnston, B.P.; McCormick, C. Viral Activation of MK2-hsp27-p115RhoGEF-RhoA Signaling Axis Causes Cytoskeletal Rearrangements, P-body Disruption and ARE-mRNA Stabilization. PLoS Pathog. 2015, 11, e1004597. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- King, C.A. Kaposi’s Sarcoma-Associated Herpesvirus Kaposin B Induces Unique Monophosphorylation of STAT3 at Serine 727 and MK2-Mediated Inactivation of the STAT3 Transcriptional Repressor TRIM28. J. Virol. 2013, 87, 8779–8791. [Google Scholar] [CrossRef] [Green Version]
- McCormick, C.; Ganem, D. The Kaposin B Protein of KSHV Activates the p38/MK2 Pathway and Stabilizes Cytokine mRNAs. Science 2005, 307, 739–741. [Google Scholar] [CrossRef] [PubMed]
- Yoo, J.; Kang, J.; Lee, H.N.; Aguilar, B.; Kafka, D.; Lee, S.; Choi, I.; Lee, J.; Ramu, S.; Haas, J.; et al. Kaposin-B Enhances the PROX1 mRNA Stability during Lymphatic Reprogramming of Vascular Endothelial Cells by Kaposi’s Sarcoma Herpes Virus. PLoS Pathog. 2010, 6, e1001046. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Boyne, J.; Jackson, B.; Taylor, A.; Macnab, S.A.; Whitehouse, A. Kaposi’s sarcoma-associated herpesvirus ORF57 protein interacts with PYM to enhance translation of viral intronless mRNAs. EMBO J. 2010, 29, 1851–1864. [Google Scholar] [CrossRef] [Green Version]
- Kang, J.-G.; Pripuzova, N.; Majerciak, V.; Kruhlak, M.; Le, S.-Y.; Zheng, Z.-M. Kaposi’s Sarcoma-Associated Herpesvirus ORF57 Promotes Escape of Viral and Human Interleukin-6 from MicroRNA-Mediated Suppression. J. Virol. 2011, 85, 2620–2630. [Google Scholar] [CrossRef] [Green Version]
- Izumiya, Y.; Lin, S.-F.; Ellison, T.; Chen, L.-Y.; Izumiya, C.; Luciw, P.; Kung, H.-J. Kaposi’s Sarcoma-Associated Herpesvirus K-bZIP Is a Coregulator of K-Rta: Physical Association and Promoter-Dependent Transcriptional Repression. J. Virol. 2003, 77, 1441–1451. [Google Scholar] [CrossRef] [Green Version]
- Aoki, Y.; Jaffe, E.S.; Chang, Y.; Jones, K.; Teruya-Feldstein, J.; Moore, P.S.; Tosato, G. Angiogenesis and Hematopoiesis Induced by Kaposi’s Sarcoma-Associated Herpesvirus-Encoded Interleukin-6: Presented in part at the 40th Annual American Society of Hematology Meeting, December 7, 1998 (Miami Beach, FL). Blood 1999, 93, 4034–4043. [Google Scholar] [CrossRef]
- Mansouri, M.; Rose, P.P.; Moses, A.V.; Früh, K. Remodeling of Endothelial Adherens Junctions by Kaposi’s Sarcoma-Associated Herpesvirus. J. Virol. 2008, 82, 9615–9628. [Google Scholar] [CrossRef] [Green Version]
- Chung, Y.-H.; Means, R.E.; Choi, J.-K.; Lee, B.-S.; Jung, J.U. Kaposi’s Sarcoma-Associated Herpesvirus OX2 Glycoprotein Activates Myeloid-Lineage Cells to Induce Inflammatory Cytokine Production. J. Virol. 2002, 76, 4688–4698. [Google Scholar] [CrossRef] [Green Version]
- Bala, K.; Bosco, R.; Gramolelli, S.; Haas, D.; Kati, S.; Pietrek, M.; Hävemeier, A.; Yakushko, Y.; Singh, V.V.; Dittrich-Breiholz, O.; et al. Kaposi’s Sarcoma Herpesvirus K15 Protein Contributes to Virus-Induced Angiogenesis by Recruiting PLCγ1 and Activating NFAT1-dependent RCAN1 Expression. PLoS Pathog. 2012, 8, e1002927. [Google Scholar] [CrossRef] [PubMed]
- Chen, W.; Xu, C.; Wang, L.; Shen, B.; Wang, L. K15 Protein of Kaposi’s Sarcoma Herpesviruses Increases Endothelial Cell Proliferation and Migration through Store-Operated Calcium Entry. Viruses 2018, 10, 282. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gallo, A.; Lampe, M.; Günther, T.; Brune, W. The Viral Bcl-2 Homologs of Kaposi’s Sarcoma-Associated Herpesvirus and Rhesus Rhadinovirus Share an Essential Role for Viral Replication. J. Virol. 2017, 91, e01875-16. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gelgor, A.; Kalt, I.; Bergson, S.; Brulois, K.F.; Jung, J.U.; Sarid, R. Viral Bcl-2 Encoded by the Kaposi’s Sarcoma-Associated Herpesvirus Is Vital for Virus Reactivation. J. Virol. 2015, 89, 5298–5307. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liang, C.; Feng, P.; Ku, B.; Dotan, I.; Canaani, D.; Oh, B.-H.; Jung, J.U. Autophagic and tumour suppressor activity of a novel Beclin1-binding protein UVRAG. Nat. Cell Biol. 2006, 8, 688–698. [Google Scholar] [CrossRef] [PubMed]
- Pattingre, S.; Tassa, A.; Qu, X.; Garuti, R.; Liang, X.H.; Mizushima, N.; Packer, M.; Schneider, M.D.; Levine, B. Bcl-2 Antiapoptotic Proteins Inhibit Beclin 1-Dependent Autophagy. Cell 2005, 122, 927–939. [Google Scholar] [CrossRef] [Green Version]
- Wei, Y.; Pattingre, S.; Sinha, S.; Bassik, M.; Levine, B. JNK1-Mediated Phosphorylation of Bcl-2 Regulates Starvation-Induced Autophagy. Mol. Cell 2008, 30, 678–688. [Google Scholar] [CrossRef] [Green Version]
- Cheng, E.H.-Y.; Nicholas, J.; Bellows, D.S.; Hayward, G.S.; Guo, H.-G.; Reitz, M.S.; Hardwick, J.M. A Bcl-2 homolog encoded by Kaposi sarcoma-associated virus, human herpesvirus 8, inhibits apoptosis but does not heterodimerize with Bax or Bak. Proc. Natl. Acad. Sci. USA 1997, 94, 690–694. [Google Scholar] [CrossRef] [Green Version]
- Sarid, R.; Sato, T.; Bohenzky, R.A.; Russo, J.J.; Chang, Y. Kaposi’s sarcoma-associated herpesvirus encodes a functional Bcl-2 homologue. Nat. Med. 1997, 3, 293–298. [Google Scholar] [CrossRef]
- Bhatt, A.P.; Damania, B. AKTivation of PI3K/AKT/mTOR signaling pathway by KSHV. Front. Immunol. 2013, 3, 401. [Google Scholar] [CrossRef] [Green Version]
- Bais, C.; Van Geelen, A.; Eroles, P.; Mutlu, A.; Chiozzini, C.; Dias, S.; Silverstein, R.L.; Rafii, S.; Mesri, E.A. Kaposi’s sarcoma associated herpesvirus G protein-coupled receptor immortalizes human endothelial cells by activation of the VEGF receptor-2/ KDR. Cancer Cell 2003, 3, 131–143. [Google Scholar] [CrossRef] [Green Version]
- Mutlu, A.D.; Cavallin, L.E.; Vincent, L.; Chiozzini, C.; Eroles, P.; Duran, E.M.; Asgari, Z.; Hooper, A.T.; La Perle, K.M.; Hilsher, C.; et al. In Vivo-Restricted and Reversible Malignancy Induced by Human Herpesvirus-8 KSHV: A Cell and Animal Model of Virally Induced Kaposi’s Sarcoma. Cancer Cell 2007, 11, 245–258. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rabkin, C.S.; Janz, S.; Lash, A.; Coleman, A.E.; Musaba, E.; Liotta, L.; Biggar, R.J.; Zhuang, Z. Monoclonal Origin of Multicentric Kaposi’s Sarcoma Lesions. N. Engl. J. Med. 1997, 336, 988–993. [Google Scholar] [CrossRef] [PubMed]
- Duprez, R.; Lacoste, V.; Brière, J.; Couppie, P.; Frances, C.; Sainte-Marie, D.; Kassa-Kelembho, E.; Lando, M.-J.; Oyono, J.-L.E.; Nkegoum, B.; et al. Evidence for a Multiclonal Origin of Multicentric Advanced Lesions of Kaposi Sarcoma. JNCI J. Natl. Cancer Inst. 2007, 99, 1086–1094. [Google Scholar] [CrossRef] [Green Version]
- Gill, P.S.; Tsai, Y.C.; Rao, A.P.; Spruck, C.H.; Zheng, T.; Harrington, W.A.; Cheung, T.; Nathwani, B.; Jones, P.A. Evidence for multiclonality in multicentric Kaposi’s sarcoma. Proc. Natl. Acad. Sci. USA 1998, 95, 8257–8261. [Google Scholar] [CrossRef] [Green Version]
- Chang, Y.; Moore, P.S.; Talbot, S.J.; Boshoff, C.H.; Zarkowska, T.; Godden-Kent, D.; Paterson, H.; Weiss, R.A.; Mittnacht, S. Cyclin encoded by KS herpesvirus. Nature 1996, 382, 410. [Google Scholar] [CrossRef]
- Fujimuro, M.; Hayward, S.D. The Latency-Associated Nuclear Antigen of Kaposi’s Sarcoma-Associated Herpesvirus Manipulates the Activity of Glycogen Synthase Kinase-3β. J. Virol. 2003, 77, 8019–8030. [Google Scholar] [CrossRef] [Green Version]
- Fujimuro, M.; Wu, F.Y.; Aprhys, C.; Kajumbula, H.; Young, D.B.; Hayward, G.S.; Hayward, S.D. A novel viral mechanism for dysregulation of β-catenin in Kaposi’s sarcoma–associated herpesvirus latency. Nat. Med. 2003, 9, 300–306. [Google Scholar] [CrossRef]
- Liu, J.; Martin, H.J.; Liao, G.; Hayward, S.D. The Kaposi’s Sarcoma-Associated Herpesvirus LANA Protein Stabilizes and Activates c-Myc. J. Virol. 2007, 81, 10451–10459. [Google Scholar] [CrossRef] [Green Version]
- Lane, D.P. p53, guardian of the genome. Nature 1992, 358, 15–16. [Google Scholar] [CrossRef]
- Levine, A.J.; Momand, J.; Finlay, C.A. The p53 tumour suppressor gene. Nature 1991, 351, 453–456. [Google Scholar] [CrossRef] [PubMed]
- Hollstein, M.; Sidransky, D.; Vogelstein, B.; Harris, C.C. p53 Mutations in Human Cancers. Science 1991, 253, 49–53. [Google Scholar] [CrossRef] [Green Version]
- Lee, H.-R.; Toth, Z.; Shin, Y.C.; Lee, J.-S.; Chang, H.; Gu, W.; Oh, T.-K.; Kim, M.H.; Jung, J.U. Kaposi’s Sarcoma-Associated Herpesvirus Viral Interferon Regulatory Factor 4 Targets MDM2 To Deregulate the p53 Tumor Suppressor Pathway. J. Virol. 2009, 83, 6739–6747. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gwack, Y.; Hwang, S.; Byun, H.; Lim, C.; Kim, J.W.; Choi, E.-J.; Choe, J. Kaposi’s Sarcoma-Associated Herpesvirus Open Reading Frame 50 Represses p53-Induced Transcriptional Activity and Apoptosis. J. Virol. 2001, 75, 6245–6248. [Google Scholar] [CrossRef] [Green Version]
- Li, W.; Wang, Q.; Qi, X.; Guo, Y.; Lu, H.; Chen, Y.; Lu, Z.; Yan, Q.; Zhu, X.; Jung, J.U.; et al. Viral interleukin-6 encoded by an oncogenic virus promotes angiogenesis and cellular transformation by enhancing STAT3-mediated epigenetic silencing of caveolin 1. Oncogene 2020, 39, 4603–4618. [Google Scholar] [CrossRef] [PubMed]
- Xu, H.; Zhang, L.; Chen, W.; Xu, J.; Zhang, R.; Liu, R.; Zhou, L.; Hu, W.; Ju, R.; Lee, C.; et al. Inhibitory effect of caveolin-1 in vascular endothelial cells, pericytes and smooth muscle cells. Oncotarget 2017, 8, 76165–76173. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bellows, D.S.; Chau, B.N.; Lee, P.; Lazebnik, Y.; Burns, W.H.; Hardwick, J.M. Antiapoptotic Herpesvirus Bcl-2 Homologs Escape Caspase-Mediated Conversion to Proapoptotic Proteins. J. Virol. 2000, 74, 5024–5031. [Google Scholar] [CrossRef]
- Ojala, P.M.; Yamamoto, K.; Castaños-Vélez, E.; Biberfeld, P.; Korsmeyer, S.J.; Makela, T. The apoptotic v-cyclin–CDK6 complex phosphorylates and inactivates Bcl-2. Nat. Cell Biol. 2000, 2, 819–825. [Google Scholar] [CrossRef]
- Wang, H.; Sharp, T.V.; Koumi, A.; Koentges, G.; Boshoff, C. Characterization of an anti-apoptotic glycoprotein encoded by Kaposi’s sarcoma-associated herpesvirus which resembles a spliced variant of human survivin. EMBO J. 2002, 21, 2602–2615. [Google Scholar] [CrossRef] [Green Version]
- Feng, P.; Scott, C.W.; Cho, N.-H.; Nakamura, H.; Chung, Y.-H.; Monteiro, M.J.; Jung, J.U. Kaposi’s Sarcoma-Associated Herpesvirus K7 Protein Targets a Ubiquitin-Like/Ubiquitin-Associated Domain-Containing Protein to Promote Protein Degradation. Mol. Cell. Biol. 2004, 24, 3938–3948. [Google Scholar] [CrossRef] [Green Version]
- Papa, S.; Bubici, C.; Zazzeroni, F.; Pham, C.G.; Kuntzen, C.; Knabb, J.R.; Dean, K.; Franzoso, G. The NF-κB-mediated control of the JNK cascade in the antagonism of programmed cell death in health and disease. Cell Death Differ. 2006, 13, 712–729. [Google Scholar] [CrossRef]
- Wang, L.; Dittmer, D.P.; Tomlinson, C.C.; Fakhari, F.D.; Damania, B. Immortalization of Primary Endothelial Cells by the K1 Protein of Kaposi’s Sarcoma–Associated Herpesvirus. Cancer Res. 2006, 66, 3658–3666. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tomlinson, C.C.; Damania, B. The K1 Protein of Kaposi’s Sarcoma-Associated Herpesvirus Activates the Akt Signaling Pathway. J. Virol. 2004, 78, 1918–1927. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hanahan, D.; Folkman, J. Patterns and Emerging Mechanisms of the Angiogenic Switch during Tumorigenesis. Cell 1996, 86, 353–364. [Google Scholar] [CrossRef] [Green Version]
- Pugh, C.W.; Ratcliffe, P.J. Regulation of angiogenesis by hypoxia: Role of the HIF system. Nat. Med. 2003, 9, 677–684. [Google Scholar] [CrossRef]
- Cai, Q.; Murakami, M.; Si, H.; Robertson, E.S. A Potential α-Helix Motif in the Amino Terminus of LANA Encoded by Kaposi’s Sarcoma-Associated Herpesvirus Is Critical for Nuclear Accumulation of HIF-1α in Normoxia. J. Virol. 2007, 81, 10413–10423. [Google Scholar] [CrossRef] [Green Version]
- Carroll, P.; Kenerson, H.L.; Yeung, R.S.; Lagunoff, M. Latent Kaposi’s Sarcoma-Associated Herpesvirus Infection of Endothelial Cells Activates Hypoxia-Induced Factors. J. Virol. 2006, 80, 10802–10812. [Google Scholar] [CrossRef] [Green Version]
- Shin, Y.C.; Joo, C.-H.; Gack, M.U.; Lee, H.-R.; Jung, J.U. Kaposi’s Sarcoma–Associated Herpesvirus Viral IFN Regulatory Factor 3 Stabilizes Hypoxia-Inducible Factor-1α to Induce Vascular Endothelial Growth Factor Expression. Cancer Res. 2008, 68, 1751–1759. [Google Scholar] [CrossRef] [Green Version]
- Jham, B.C.; Ma, T.; Hu, J.; Chaisuparat, R.; Friedman, E.R.; Pandolfi, P.P.; Schneider, A.; Sodhi, A.; Montaner, S. Amplification of the Angiogenic Signal through the Activation of the TSC/mTOR/HIF Axis by the KSHV vGPCR in Kaposi’s Sarcoma. PLoS ONE 2011, 6, e19103. [Google Scholar] [CrossRef] [Green Version]
- Sodhi, A.; Montaner, S.; Patel, V.; Zohar, M.; Bais, C.; Mesri, E.A.; Gutkind, J.S. The Kaposi’s Sarcoma-associated Herpes Virus G Protein-coupled Receptor Up-Regulates Vascular Endothelial Growth Factor Expression and Secretion through Mitogen-activated Protein Kinase and p38 Pathways Acting on Hypoxia-inducible Factor 1α1. Cancer Res. 2000, 60, 4873–4880. [Google Scholar]
- Subramanian, R.; Sehgal, I.; D’Auvergne, O.; Kousoulas, K.G. Kaposi’s Sarcoma-Associated Herpesvirus Glycoproteins B and K8.1 Regulate Virion Egress and Synthesis of Vascular Endothelial Growth Factor and Viral Interleukin-6 in BCBL-1 Cells. J. Virol. 2010, 84, 1704–1714. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sivakumar, R.; Sharma-Walia, N.; Raghu, H.; Veettil, M.V.; Sadagopan, S.; Bottero, V.; Varga, L.; Levine, R.; Chandran, B. Kaposi’s Sarcoma-Associated Herpesvirus Induces Sustained Levels of Vascular Endothelial Growth Factors A and C Early during In Vitro Infection of Human Microvascular Dermal Endothelial Cells: Biological Implications. J. Virol. 2008, 82, 1759–1776. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Taraboletti, G.; Benelli, R.; Borsotti, P.; Rusnati, M.; Presta, M.; Giavazzi, R.; Ruco, L.; Albini, A. Thrombospondin-1 inhibits Kaposi’s sarcoma (KS) cell and HIV-1 Tat-induced angiogenesis and is poorly expressed in KS lesions. J. Pathol. 1999, 188, 76–81. [Google Scholar] [CrossRef]
- Gupta, K.; Gupta, P.; Wild, R.; Ramakrishnan, S.; Hebbel, R.P. Binding and displacement of vascular endothelial growth factor (VEGF) by thrombospondin: Effect on human microvascular endothelial cell proliferation and angiogenesis. Angiogenesis 1999, 3, 147–158. [Google Scholar] [CrossRef]
- Lawler, J. Thrombospondin-1 as an endogenous inhibitor of angiogenesis and tumor growth. J. Cell. Mol. Med. 2002, 6, 1–12. [Google Scholar] [CrossRef]
- Rusnati, M.; Urbinati, C.; Bonifacio, S.; Presta, M.; Taraboletti, G. Thrombospondin-1 as a Paradigm for the Development of Antiangiogenic Agents Endowed with Multiple Mechanisms of Action. Pharmaceuticals 2010, 3, 1241–1278. [Google Scholar] [CrossRef] [Green Version]
- DiMaio, T.A.; Gutierrez, K.D.; Lagunoff, M. Kaposi’s Sarcoma-Associated Herpesvirus Downregulates Transforming Growth Factor β2 To Promote Enhanced Stability of Capillary-Like Tube Formation. J. Virol. 2014, 88, 14301–14309. [Google Scholar] [CrossRef] [Green Version]
- Garrett, T.A.; Van Buul, J.; Burridge, K. VEGF-induced Rac1 activation in endothelial cells is regulated by the guanine nucleotide exchange factor Vav2. Exp. Cell Res. 2007, 313, 3285–3297. [Google Scholar] [CrossRef] [Green Version]
- Stockton, R.A.; Schaefer, E.; Schwartz, M. p21-activated Kinase Regulates Endothelial Permeability through Modulation of Contractility. J. Biol. Chem. 2004, 279, 46621–46630. [Google Scholar] [CrossRef] [Green Version]
- Guilluy, C.; Zhang, Z.; Bhende, P.M.; Sharek, L.; Wang, L.; Burridge, K.; Damania, B. Latent KSHV infection increases the vascular permeability of human endothelial cells. Blood 2011, 118, 5344–5354. [Google Scholar] [CrossRef] [Green Version]
- Ouellette, M.M.; Yan, Y. Radiation-activated prosurvival signaling pathways in cancer cells. Precis. Radiat. Oncol. 2019, 3, 111–120. [Google Scholar] [CrossRef]
- Qian, L.-W.; Greene, W.; Ye, F.; Gao, S.-J. Kaposi’s Sarcoma-Associated Herpesvirus Disrupts Adherens Junctions and Increases Endothelial Permeability by Inducing Degradation of VE-Cadherin. J. Virol. 2008, 82, 11902–11912. [Google Scholar] [CrossRef] [Green Version]
- Mansouri, M.; Douglas, J.; Rose, P.P.; Gouveia, K.; Thomas, G.; Means, R.E.; Moses, A.V.; Früh, K. Kaposi sarcoma herpesvirus K5 removes CD31/PECAM from endothelial cells. Blood 2006, 108, 1932–1940. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nanes, B.; Grimsley-Myers, C.M.; Cadwell, C.M.; Robinson, B.S.; Lowery, A.M.; Vincent, P.A.; Mosunjac, M.; Früh, K.; Kowalczyk, A.P. p120-catenin regulates VE-cadherin endocytosis and degradation induced by the Kaposi sarcoma-associated ubiquitin ligase K5. Mol. Biol. Cell 2017, 28, 30–40. [Google Scholar] [CrossRef] [PubMed]
- Dwyer, J.; Le Guelte, A.; Galan-Moya, E.M.; Sumbal, M.; Carlotti, A.; Douguet, L.; Gutkind, J.S.; Grange, P.; Dupin, N.; Gavard, J. Remodeling of VE-cadherin junctions by the human herpes virus 8 G-protein coupled receptor. Oncogene 2010, 30, 190–200. [Google Scholar] [CrossRef]
- Gavard, J.; Gutkind, J.S. VEGF controls endothelial-cell permeability by promoting the β-arrestin-dependent endocytosis of VE-cadherin. Nat. Cell Biol. 2006, 8, 1223–1234. [Google Scholar] [CrossRef]
- Brown, L.F.; Dezube, B.J.; Tognazzi, K.; Dvorak, H.F.; Yancopoulos, G.D. Expression of Tie1, Tie2, and Angiopoietins 1, 2, and 4 in Kaposi’s Sarcoma and Cutaneous Angiosarcoma. Am. J. Pathol. 2000, 156, 2179–2183. [Google Scholar] [CrossRef]
- Ye, F.-C.; Blackbourn, D.; Mengel, M.; Xie, J.-P.; Qian, L.-W.; Greene, W.; Yeh, I.-T.; Graham, D.; Gao, S.-J. Kaposi’s Sarcoma-Associated Herpesvirus Promotes Angiogenesis by Inducing Angiopoietin-2 Expression via AP-1 and Ets1. J. Virol. 2007, 81, 3980–3991. [Google Scholar] [CrossRef] [Green Version]
- Hu, J.; Jham, B.C.; Ma, T.; Friedman, E.R.; Ferreira, L.; Wright, J.M.; Accurso, B.; Allen, C.M.; Basile, J.R.; Montaner, S. Angiopoietin-like 4: A novel molecular hallmark in oral Kaposi’s sarcoma. Oral Oncol. 2011, 47, 371–375. [Google Scholar] [CrossRef] [Green Version]
- Lee, H.-R.; Lee, S.; Chaudhary, P.M.; Gill, P.; Jung, J.U. Immune evasion by Kaposi’s sarcoma-associated herpesvirus. Futur. Microbiol. 2010, 5, 1349–1365. [Google Scholar] [CrossRef] [Green Version]
- Choi, Y.B.; Nicholas, J. Induction of angiogenic chemokine CCL2 by human herpesvirus 8 chemokine receptor. Virology 2010, 397, 369–378. [Google Scholar] [CrossRef] [Green Version]
- Wang, H.-W.; Trotter, M.; Lagos, D.; Bourboulia, D.; Henderson, S.; Makinen, T.; Elliman, S.; Flanagan, A.; Alitalo, K.; Boshoff, C. Kaposi sarcoma herpesvirus–induced cellular reprogramming contributes to the lymphatic endothelial gene expression in Kaposi sarcoma. Nat. Genet. 2004, 36, 687–693. [Google Scholar] [CrossRef]
- Hong, Y.-K.; Foreman, K.; Shin, J.W.; Hirakawa, S.; Curry, C.L.; Sage, D.R.; Libermann, T.; Dezube, B.J.; Fingeroth, J.D.; Detmar, M. Lymphatic reprogramming of blood vascular endothelium by Kaposi sarcoma-associated herpesvirus. Nat. Genet. 2004, 36, 683–685. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Carroll, P.; Brazeau, E.; Lagunoff, M. Kaposi’s sarcoma-associated herpesvirus infection of blood endothelial cells induces lymphatic differentiation. Virology 2004, 328, 7–18. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Marchio’, S.; Primo, L.; Pagano, M.; Palestro, G.; Albini, A.; Veikkola, T.; Cascone, I.; Alitalo, K.; Bussolino, F. Vascular Endothelial Growth Factor-C Stimulates the Migration and Proliferation of Kaposi’s Sarcoma Cells. J. Biol. Chem. 1999, 274, 27617–27622. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pantanowitz, L.; Dezube, B.J.; Tahan, S.R.; Dabbous, M.K.; Hernandez-Barrantes, S. Matrix metalloproteinases in the progression and regression of Kaposi’s sarcoma. J. Cutan. Pathol. 2006, 33, 793–798. [Google Scholar] [CrossRef] [PubMed]
- Bongiorno, M.R.; Doukaki, S.; Ferro, G.; Aricò, M. Matrix metalloproteinases 2 and 9, and extracellular matrix in Kaposi’s sarcoma. Dermatol. Ther. 2010, 23, S33–S36. [Google Scholar] [CrossRef] [PubMed]
- Toschi, E.; Barillari, G.; Sgadari, C.; Bacigalupo, I.; Cereseto, A.; Carlei, D.; Palladino, C.; Zietz, C.; Leone, P.; Stürzl, M.; et al. Activation of Matrix-Metalloproteinase-2 and Membrane-Type-1-Matrix-Metalloproteinase in Endothelial Cells and Induction of Vascular Permeability In Vivo by Human Immunodeficiency Virus-1 Tat Protein and Basic Fibroblast Growth Factor. Mol. Biol. Cell 2001, 12, 2934–2946. [Google Scholar] [CrossRef] [Green Version]
- Dezube, B.J.; Krown, S.E.; Lee, J.Y.; Bauer, K.S.; Aboulafia, D.M. Randomized Phase II Trial of Matrix Metalloproteinase Inhibitor COL-3 in AIDS-Related Kaposi’s Sarcoma: An AIDS Malignancy Consortium Study. J. Clin. Oncol. 2006, 24, 1389–1394. [Google Scholar] [CrossRef]
- Baggiolini, M. Chemokines and leukocyte traffic. Nature 1998, 392, 565–568. [Google Scholar] [CrossRef]
- Fuld, S.; Cunningham, C.; Klucher, K.; Davison, A.J.; Blackbourn, D.J. Inhibition of Interferon Signaling by the Kaposi’s Sarcoma-Associated Herpesvirus Full-Length Viral Interferon Regulatory Factor 2 Protein. J. Virol. 2006, 80, 3092–3097. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Joo, C.H.; Shin, Y.C.; Gack, M.; Wu, L.; Levy, D.; Jung, J.U. Inhibition of Interferon Regulatory Factor 7 (IRF7)-Mediated Interferon Signal Transduction by the Kaposi’s Sarcoma-Associated Herpesvirus Viral IRF Homolog vIRF3. J. Virol. 2007, 81, 8282–8292. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cloutier, N.; Flamand, L. Kaposi Sarcoma-associated Herpesvirus Latency-associated Nuclear Antigen Inhibits Interferon (IFN) β Expression by Competing with IFN Regulatory Factor-3 for Binding to IFNB Promoter. J. Biol. Chem. 2010, 285, 7208–7221. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lefort, S.; Soucy-Faulkner, A.; Grandvaux, N.; Flamand, L. Binding of Kaposi’s Sarcoma-Associated Herpesvirus K-bZIP to Interferon-Responsive Factor 3 Elements Modulates Antiviral Gene Expression. J. Virol. 2007, 81, 10950–10960. [Google Scholar] [CrossRef] [Green Version]
- Sozzani, S.; Luini, W.; Bianchi, G.; Allavena, P.; Wells, T.N.C.; Napolitano, M.; Bernardini, G.; Vecchi, A.; D’Ambrosio, D.; Mazzeo, D.; et al. The Viral Chemokine Macrophage Inflammatory Protein-II Is a Selective Th2 Chemoattractant. Blood 1998, 92, 4036–4039. [Google Scholar] [CrossRef]
- Stine, J.T.; Wood, C.; Hill, M.; Epp, A.; Raport, C.J.; Schweickart, V.L.; Endo, Y.; Sasaki, T.; Simmons, G.; Boshoff, C.; et al. KSHV-encoded CC chemokine vMIP-III is a CCR4 agonist, stimulates angiogenesis, and selectively chemoattracts TH2 cells. Blood 2000, 95, 1151–1157. [Google Scholar] [CrossRef]
- Dairaghi, D.J.; Fan, R.A.; McMaster, B.E.; Hanley, M.R.; Schall, T.J. HHV8-encoded vMIP-I Selectively Engages Chemokine Receptor CCR8. J. Biol. Chem. 1999, 274, 21569–21574. [Google Scholar] [CrossRef] [Green Version]
- Iellem, A.; Mariani, M.; Lang, R.; Recalde, H.; Panina-Bordignon, P.; Sinigaglia, F.; D’Ambrosio, D. Unique Chemotactic Response Profile and Specific Expression of Chemokine Receptors Ccr4 and Ccr8 by Cd4+Cd25+ Regulatory T Cells. J. Exp. Med. 2001, 194, 847–854. [Google Scholar] [CrossRef] [Green Version]
- Weber, C.; Weber, K.S.C.; Klier, C.; Gu, S.; Wank, R.; Horuk, R.; Nelson, P.J. Specialized roles of the chemokine receptors CCR1 and CCR5 in the recruitment of monocytes and TH1-like/CD45RO+T cells. Blood 2001, 97, 1144–1146. [Google Scholar] [CrossRef]
- Chen, S.; Bacon, K.B.; Li, L.; Garcia, G.E.; Xia, Y.; Lo, D.; Thompson, D.A.; Siani, M.A.; Yamamoto, T.; Harrison, J.K.; et al. In Vivo Inhibition of CC and CX3C Chemokine–induced Leukocyte Infiltration and Attenuation of Glomerulonephritis in Wistar-Kyoto (WKY) Rats by vMIP-II. J. Exp. Med. 1998, 188, 193–198. [Google Scholar] [CrossRef] [Green Version]
- Bhaskaran, N.; Ghosh, S.K.; Yu, X.; Qin, S.; Weinberg, A.; Pandiyan, P.; Ye, F. Kaposi’s sarcoma-associated herpesvirus infection promotes differentiation and polarization of monocytes into tumor-associated macrophages. Cell Cycle 2017, 16, 1611–1621. [Google Scholar] [CrossRef] [Green Version]
- Noy, R.; Pollard, J.W. Tumor-associated macrophages: From mechanisms to therapy. Immunity 2014, 41, 49–61. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mantovani, A.; Sica, A.; Sozzani, S.; Allavena, P.; Vecchi, A.; Locati, M. The chemokine system in diverse forms of macrophage activation and polarization. Trends Immunol. 2004, 25, 677–686. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Dai, L.; Goldstein, A.; Zhang, H.; Tang, W.; Forrest, J.C.; Post, S.R.; Chen, X.; Qin, Z. Identification of new antiviral agents against Kaposi’s sarcoma-associated herpesvirus (KSHV) by high-throughput drug screening reveals the role of histamine-related signaling in promoting viral lytic reactivation. PLoS Pathog. 2019, 15, e1008156. [Google Scholar] [CrossRef] [PubMed]
- Ayers, L.W.; Barbachano-Guerrero, A.; McAllister, S.C.; Ritchie, J.A.; Asiago-Reddy, E.; Bartlett, L.C.; Cesarman, E.; Wang, D.; Rochford, R.; Martin, J.N.; et al. Mast Cell Activation and KSHV Infection in Kaposi Sarcoma. Clin. Cancer Res. 2018, 24, 5085–5097. [Google Scholar] [CrossRef] [Green Version]
- Blasig, C.; Zietz, C.; Haar, B.; Neipel, F.; Esser, S.; Brockmeyer, N.H.; Tschachler, E.; Colombini, S.; Ensoli, B.; Stürzl, M. Monocytes in Kaposi’s sarcoma lesions are productively infected by human herpesvirus 8. J. Virol. 1997, 71, 7963–7968. [Google Scholar] [CrossRef] [Green Version]
- Monini, P.; Colombini, S.; Stürzl, M.; Goletti, D.; Cafaro, A.; Sgadari, C.; Buttò, S.; Franco, M.; Leone, P.; Fais, S.; et al. Reactivation and persistence of human herpesvirus-8 infection in B cells and monocytes by Th-1 cytokines increased in Kaposi’s sarcoma. Blood 1999, 93, 4044–4058. [Google Scholar] [CrossRef]
- Ding, M.; Wu, J.; Sun, R.; Yan, L.; Bai, L.; Shi, J.; Feng, H.; Zhang, Y.; Lan, K.; Wang, X. Androgen receptor transactivates KSHV noncoding RNA PAN to promote lytic replication–mediated oncogenesis: A mechanism of sex disparity in KS. PLoS Pathog. 2021, 17, e1009947. [Google Scholar] [CrossRef]
- Brenner, B.; Weissmann-Brenner, A.; Rakowsky, E.; Weltfriend, S.; Fenig, E.; Sara Weltfriend, M.D.; Rachel Friedman-Birnbaum, M.D.; Sulkes, A.; Linn, S. Classical Kaposi sarcoma. Cancer 2002, 95, 1982–1987. [Google Scholar] [CrossRef]
- DiGiovanna, J.J.; Safai, B. Kaposi’s sarcoma. Am. J. Med. 1981, 71, 779–783. [Google Scholar] [CrossRef]
- Luu, H.N.; Amirian, E.S.; Scheurer, M.E. The interaction between smoking status and highly active antiretroviral therapy (HAART) use on the risk of Kaposi’s sarcoma (KS) in a cohort of HIV-infected men. Br. J. Cancer 2013, 108, 1173–1177. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dow, D.E.; Cunningham, C.K.; Buchanan, A.M. A Review of Human Herpesvirus 8, the Kaposi’s Sarcoma-Associated Herpesvirus, in the Pediatric Population. J. Pediatr. Infect. Dis. Soc. 2013, 3, 66–76. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- El-Mallawany, N.K.; Villiera, J.; Kamiyango, W.; Peckham-Gregory, E.C.; Scheurer, M.E.; Allen, C.E.; McAtee, C.L.; Legarreta, A.; Dittmer, D.P.; Kovarik, C.L.; et al. Endemic Kaposi sarcoma in HIV-negative children and adolescents: An evaluation of overlapping and distinct clinical features in comparison with HIV-related disease. Infect. Agents Cancer 2018, 13, 33. [Google Scholar] [CrossRef]
- Ziegler, J. Endemic Kaposi’s sarcoma in Africa and local volcanic soils. Lancet 1993, 342, 1348–1351. [Google Scholar] [CrossRef]
- Judd, A.; Zangerle, R.; Touloumi, G.; Warszawski, J.; Meyer, L.; Dabis, F.; Krause, M.M.; Ghosn, J.; Leport, C. Comparison of Kaposi Sarcoma Risk in Human Immunodeficiency Virus-Positive Adults across 5 Continents: A Multiregional Multicohort Study. Clin. Infect. Dis. 2017, 65, 1316–1326. [Google Scholar] [CrossRef] [Green Version]
- Euvrard, S.; Kanitakis, J.; Claudy, A. Skin Cancers after Organ Transplantation. N. Engl. J. Med. 2003, 348, 1681–1691. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hinojosa, T.; Lewis, D.J.; Liu, M.; Garza, G.; Vangipuram, R.; Ramos, E.; Salas-Alanis, J.C.; Nawas, Z.Y.; Tyring, S.K. Nonepidemic Kaposi sarcoma: A recently proposed category. JAAD Case Rep. 2017, 3, 441–443. [Google Scholar] [CrossRef] [Green Version]
- Denis, D.; Seta, V.; Regnier-Rosencher, E.; Kramkimel, N.; Chanal, J.; Avril, M.; Dupin, N. A fifth subtype of Kaposi’s sarcoma, classic Kaposi’s sarcoma in men who have sex with men: A cohort study in Paris. J. Eur. Acad. Dermatol. Venereol. 2018, 32, 1377–1384. [Google Scholar] [CrossRef]
- Pantanowitz, L.; Dezube, B.J. Kaposi sarcoma in unusual locations. BMC Cancer 2008, 8, 190. [Google Scholar] [CrossRef] [Green Version]
- Coblentz, J.; Park, J.Y.; Discepola, G.; Arthurs, B.; Burnier, M. Conjunctival Kaposi’s sarcoma with orbital extension in an HIV-negative man. Can. J. Ophthalmol. 2018, 53, e111–e113. [Google Scholar] [CrossRef] [Green Version]
- Khan, M.A.; Dhillon, B. Epiphora due to Kaposi’s sarcoma of the nasolacrimal duct. Br. J. Ophthalmol. 1999, 83, 501a. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Venkateswaran, N.; Ramos, J.C.; Cohen, A.K.; Alvarez, O.P.; Cohen, N.K.; Galor, A.; Karp, C.L. Spotlight on ocular Kaposi’s sarcoma: An update on the presentation, diagnosis, and management options. Expert Rev. Ophthalmol. 2021, 16, 477–489. [Google Scholar] [CrossRef]
- Gonzalez-Crussi, F.; Mossanen, A.; Robertson, D.M. Neurological involvement in Kaposi’s sarcoma. Can. Med. Assoc. J. 1969, 100, 481–484. [Google Scholar] [PubMed]
- Neves, F.S.; Braga, J.; Da Costa, J.C.; Sequeira, J.; Prazeres, S. Kaposi’s sarcoma of the conjunctiva and the eyelid leads to the diagnosis of human immunodeficiency virus infection—A case report. BMC Cancer 2018, 18, 708. [Google Scholar] [CrossRef]
- Baldini, F.; Baiocchini, A.; Schininà, V.; Agrati, C.; Giancola, M.L.; Alba, L.; Grisetti, S.; Del Nonno, F.; Capobianchi, M.R.; Antinori, A. Brain localization of Kaposi’s sarcoma in a patient treated by combination antiretroviral therapy. BMC Infect. Dis. 2013, 13, 600. [Google Scholar] [CrossRef] [Green Version]
- Calonje, J.E.; Fletcher, C.D.M. Vascular tumors of intermediate malignancy. In Diagnostic Histopathology of Tumors, 4th ed.; Fletcher, C.D.M., Ed.; Elsevier: Amsterdam, The Netherlands, 2013; Volume 1, pp. 62–65. [Google Scholar]
- Billings, S.D. Tumors and tumorlike conditions of the skin. In Rosai and Ackerman’s Surgical Pathology, 11th ed.; Goldblum, J.R., Lamps, L.W., McKenney, J.K., Myers, J.L., Eds.; Elsevier: Amsterdam, The Netherlands, 2018; pp. 101–103. [Google Scholar]
- Grayson, W.; Landman, G. Kaposi sarcoma. In WHO Classification of Skin Tumours, 4th ed.; Elder, D.E., Massi, D., Scolyer, R.A., Willemze, R., Eds.; IARC: Lyon, France, 2018; pp. 340–343. [Google Scholar]
- Pantanowitz, L.; Moses, A.V.; Früh, K. CD31 Immunohistochemical Staining in Kaposi Sarcoma. Arch. Pathol. Lab. Med. 2012, 136, 1329. [Google Scholar] [CrossRef] [Green Version]
- Gardner, J.M.; Mentzel, T. Vascular tumors. In Diagnostic Pathology: Soft Tissue Tumors, 3rd ed.; Reynolds, J., Ed.; Elsevier: Amsterdam, The Netherlands, 2019; pp. 476–483. [Google Scholar]
- Meng, W.; Gao, S.-J. Targeting XPO1 enhances innate immune response and inhibits KSHV lytic replication during primary infection by nuclear stabilization of the p62 autophagy adaptor protein. Cell Death Dis. 2021, 12, 29. [Google Scholar] [CrossRef]
- Naimo, E.; Zischke, J.; Schulz, T.F. Recent Advances in Developing Treatments of Kaposi’s Sarcoma Herpesvirus-Related Diseases. Viruses 2021, 13, 1797. [Google Scholar] [CrossRef]
- Beauclair, G.; Naimo, E.; Dubich, T.; Rückert, J.; Koch, S.; Dhingra, A.; Wirth, D.; Schulz, T.F. Targeting Kaposi’s Sarcoma-Associated Herpesvirus ORF21 Tyrosine Kinase and Viral Lytic Reactivation by Tyrosine Kinase Inhibitors Approved for Clinical Use. J. Virol. 2020, 94. [Google Scholar] [CrossRef]
- Sullivan, R.J.; Pantanowitz, L.; Dezube, B.J. Targeted Therapy for Kaposi Sarcoma. BioDrugs 2009, 23, 69–75. [Google Scholar] [CrossRef] [Green Version]
- Lebbe, C.; Garbe, C.; Stratigos, A.J.; Harwood, C.; Peris, K.; del Marmol, V.; Malvehy, J.; Zalaudek, I.; Hoeller, C.; Dummer, R. Diagnosis and treatment of Kaposi’s sarcoma: European consensus-based interdisciplinary guideline (EDF/EADO/EORTC). Eur. J. Cancer 2019, 114, 117–127. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Coldiron, M.E.; Zamudio, A.G.G.; Manuel, R.; Luciano, G.; Rusch, B.; Ciglenecki, I.; Telnov, A.; Grais, R.F.; Trellu, L.T.; Molfino, L. Outcomes of AIDS-associated Kaposi sarcoma in Mozambique after treatment with pegylated liposomal doxorubicin. Infect. Agents Cancer 2021, 16, 2. [Google Scholar] [CrossRef]
- Cao, W.; Vyboh, K.; Routy, B.; Chababi-Atallah, M.; Lemire, B.; Routy, J. Imatinib for Highly Chemoresistant Kaposi Sarcoma in a Patient with Long-Term HIV Control: A Case Report and Literature Review. Curr. Oncol. 2015, 22, 395–399. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Koon, H.B.; Krown, S.E.; Lee, J.Y.; Honda, K.; Rapisuwon, S.; Wang, Z.; Aboulafia, D.; Reid, E.G.; Rudek, M.A.; Dezube, B.J.; et al. Phase II Trial of Imatinib in AIDS-Associated Kaposi’s Sarcoma: AIDS Malignancy Consortium Protocol 042. J. Clin. Oncol. 2014, 32, 402–408. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Poizot-Martin, I.; Brégigeon, S.; Palich, R.; Marcelin, A.-G.; Valantin, M.-A.; Solas, C.; Veyri, M.; Spano, J.-P.; Makinson, A. Immune Reconstitution Inflammatory Syndrome Associated Kaposi Sarcoma. Cancers 2022, 14, 986. [Google Scholar] [CrossRef] [PubMed]
- Tsao, M.N.; Sinclair, E.; Assaad, D.; Fialkov, J.; Antonyshyn, O.; Barnes, E. Radiation therapy for the treatment of skin Kaposi sarcoma. Ann. Palliat. Med. 2016, 5, 298–302. [Google Scholar] [CrossRef]
- Rescigno, P.; Di Trolio, R.; Buonerba, C.; De Fata, G.; Federico, P.; Bosso, D.; Virtuoso, A.; Izzo, M.; Policastro, T.; Vaccaro, L.; et al. Non-AIDS-related Kaposi’s sarcoma: A single-institution experience. World J. Clin. Oncol. 2013, 4, 52–57. [Google Scholar] [CrossRef]
- Espadafor-López, B.; Cuenca-Barrales, C.; Salvador-Rodriguez, L.; Ruiz-Villaverde, R. Sarcoma de Kaposi iatrogénico tratado con éxito con timolol tópico. Actas Dermo-Sifiliográficas 2019, 111, 176–178. [Google Scholar] [CrossRef] [PubMed]
- Valantin, M.-A.; Royston, L.; Hentzien, M.; Jary, A.; Makinson, A.; Veyri, M.; Ronot-Bregigeon, S.; Isnard, S.; Palich, R.; Routy, J.-P. Therapeutic Perspectives in the Systemic Treatment of Kaposi’s Sarcoma. Cancers 2022, 14, 484. [Google Scholar] [CrossRef]
- Gruffaz, M.; Yuan, H.; Meng, W.; Liu, H.; Bae, S.; Kim, J.-S.; Lu, C.; Huang, Y.; Gao, S.-J. CRISPR-Cas9 Screening of Kaposi’s Sarcoma-Associated Herpesvirus-Transformed Cells Identifies XPO1 as a Vulnerable Target of Cancer Cells. mBio 2019, 10, e00866-19. [Google Scholar] [CrossRef] [Green Version]
- Abere, B.; Mamo, T.M.; Hartmann, S.; Samarina, N.; Hage, E.; Rückert, J.; Hotop, S.-K.; Büsche, G.; Schulz, T.F. The Kaposi’s sarcoma-associated herpesvirus (KSHV) non-structural membrane protein K15 is required for viral lytic replication and may represent a therapeutic target. PLoS Pathog. 2017, 13, e1006639. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Angius, F.; Piras, E.; Uda, S.; Madeddu, C.; Serpe, R.; Bigi, R.; Chen, W.; Dittmer, D.; Pompei, R.; Ingianni, A. Antimicrobial sulfonamides clear latent Kaposi sarcoma herpesvirus infection and impair MDM2-p53 complex formation. J. Antibiot. 2017, 70, 962–966. [Google Scholar] [CrossRef] [PubMed]
Latent Cycle Gene—Protein | Function |
---|---|
ORF73—LANA | Serves as a means to circularize and attach the viral genome to the host’s chromosomes, but also inhibits p53 activity, tumor suppressor Rb, leads to progrowth proteins cyclin D and c-Myc upregulation and also extension of host cell life via telomerase expression. |
ORF72—vCyclin | Homologue of cellular Cyclin D. Can bind and activate the cyclin-dependent kinase cdk6 and through this complex lead to the inactivation of tumor suppressor retinoblastoma (Rb), cdk inhibitor p27 (Kip), and the antiapoptotic protein Bcl-2. |
ORF71/K13—vFlip | Is a homologue of caspase-8 inhibitory protein and has been shown to prevent the CD95 death receptor and cleavage of procaspase 8 (thus stopping the forming of active caspase 8). |
ORFK12—Kaposins A, B and C | Kaposins A, B and C; Kaposin A plays a role in cellular transformation and activation of the ERK/MAPK pathway. Kaposin B binds and activates the p38/MAPK target kinase MK2 inhibiting the decay of mRNAs such as those for PROX1, thus inducing the reprogramming of endothelial cells towards a lymphatic lineage |
miRNAs ** | Promotes cell survival via apoptosis inhibition, and continuation of latent phase, endothelial cell reprogramming, induction of migration and invasion (via miR-K12–3). miR-Ul112 downregulates MICB expression and reduces infected cell killing by natural killer cells; suppression of thrombospondin 1 (THBS1), a known tumor suppressor, leads to lowered TGB-β and subsequently leads to a loss of anti-angiogenic activity, contributing to carcinogenesis. miRNAs are present in all KSHV associated diseases (KS, Multicentric Castleman’s Disease (MCD) and primary effusion lymphoma (PEL), body cavity based cell lymphoma) |
ORFK10.5—vIRF3/LANA2 | Specific to B-cells. Inhibits p53 tumor suppressor. Expressed uniformly in PEL tumor cells. LANA2 inhibits cell cycle arrest mediated by 14-3-3σ overexpression. |
Gene—Protein | Function |
---|---|
ORF45—ORF45 | (IE) Inhibits p53 signaling and prevents interaction with USP7 (a deubiquitinase), which results in diminished transcriptional activity [59]. |
ORFK4.2—ORFK4.2 | (IE) Plays a role in immune evasion, lowering antibody-mediated adaptive immune responses [60]. |
ORFK12—Kaposins | (E) Kaposin B has been shown to contribute to angiogenesis, reprogramming of endothelial cells, which has a proinflammatory effect via citokine upregulation [61,62,63,64,65]. |
ORF57—ORF57 | (E) Interacts directly with PYM to facilitate the efficient translation of intronless KSHV mRNA transcripts [66]. Protects viral products such as viral interleukin-6 (vIL-6) and IL-6 from miRNA degradation [67]. |
K-bZIP (ORF-K8) | (E) Modulator of RTA activity. Inhibits RTA autoactivation and transactivation of ORF57 and ORF-K15 [68]. |
K2—vIL-6 | (E) Increased vascular endothelial growth factor a (VEGF-a) secretion (angiogenesis), tumor growth and plasmocytosis in mice [69]. |
K5—ubiquitin E3 ligases | (E) Disruption of endothelial cell adhesion via cadherin downregulation [70]. |
K14—vOX-2 | (E) Stimulates productions of inflammatory cytokines and chemokines, such as IL-1β, IL-6, tumor necrosis factor α (ΤNF-α), and monocyte chemoattractant protein-1 (MCP-1) [71]. |
K15—K15 | (E) Vascular endothelial growth factor receptor (VEGFR) independent angiogenesis stimulation [72]. Stimulates endothelial cell proliferation and migration [73]. |
ORF16—vBcl2 | (E) Essential to KSHV replication [74,75]. Anti-apoptotic and anti-autophagy evasion functions [76,77,78,79,80]. |
K1—K1 | (E) Activation of the Phosphoinositide 3-kinase (PI3K)/AKT/mammalian target of rapamycin (mTOR) pathway, which leads to upregulation of protein synthesis and survival, while also inhibiting apoptotic signaling [81]. |
ORF74—vGPCR | (E) Transformative properties [81]. Expression of vGPCR leads to immortalization of endothelial via VEGF receptor-2/KDR (kinase insert domain receptor) [82]. Knockdown of vGPCR is documented to lead to decreased tumor growth and lower secretion of VEGF in a mouse model [83]. |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rusu-Zota, G.; Manole, O.M.; Galeș, C.; Porumb-Andrese, E.; Obadă, O.; Mocanu, C.V. Kaposi Sarcoma, a Trifecta of Pathogenic Mechanisms. Diagnostics 2022, 12, 1242. https://doi.org/10.3390/diagnostics12051242
Rusu-Zota G, Manole OM, Galeș C, Porumb-Andrese E, Obadă O, Mocanu CV. Kaposi Sarcoma, a Trifecta of Pathogenic Mechanisms. Diagnostics. 2022; 12(5):1242. https://doi.org/10.3390/diagnostics12051242
Chicago/Turabian StyleRusu-Zota, Gabriela, Oana Mădălina Manole, Cristina Galeș, Elena Porumb-Andrese, Otilia Obadă, and Cezar Valentin Mocanu. 2022. "Kaposi Sarcoma, a Trifecta of Pathogenic Mechanisms" Diagnostics 12, no. 5: 1242. https://doi.org/10.3390/diagnostics12051242
APA StyleRusu-Zota, G., Manole, O. M., Galeș, C., Porumb-Andrese, E., Obadă, O., & Mocanu, C. V. (2022). Kaposi Sarcoma, a Trifecta of Pathogenic Mechanisms. Diagnostics, 12(5), 1242. https://doi.org/10.3390/diagnostics12051242