Clinical Utility of Amplification Refractory Mutation System-Based PCR and Mutation-Specific PCR for Precise and Rapid Genotyping of Angiotensin-Converting Enzyme 1 (ACE1-rs4646996 D>I) and Angiotensin-Converting Enzyme 2 (ACE2-rs4240157T>C) Gene Variations in Coronary Artery Disease and Their Strong Association with Its Disease Susceptibility and Progression
Abstract
:1. Introduction
Angiotensin Converting Enzyme-2 Gene System
2. Methodology
2.1. Study Population
2.2. Ethics Approvals
2.3. Patient Selection Criteria Inclusion Criteria
2.4. Exclusion Criteria
2.5. Selection Criteria of Healthy Controls
2.6. Measurement of Serum Lipids
2.7. Data Collection
2.8. Sample Collection from CAD Patients
2.9. Sample Collection from Healthy Controls
2.10. Genomic DNA Extraction
2.11. Genotyping of ACE 1 and ACE 2 Genes
2.12. Optimisation of T-ARMS-PCR Primers for ACE-1-rs4646994 I/D Gene Polymorphism
2.13. Preparation of the PCR Cocktail
2.14. Thermocycling Conditions
2.15. Gel Electrophoresis
2.16. Optimization of Mutation Specific PCR for ACE 1-rs4646994 I>D Polymorphism
2.17. Genotyping of ACE2 rs4240157T>C by ARMS-PCR
2.17.1. Preparation of PCR Cocktail
2.17.2. Gradient PCR and Thermocycling Conditions
2.17.3. Gel Electrophoresis for ACE2 rs4240157T>C Amplification
2.17.4. Statistical Analysis
3. Results
3.1. Demographic Features
3.2. Hardy–Weinberg Equilibrium
3.3. Statistical Comparisons between Patients and Controls (p Values) for ACE I/D Genotypes
3.4. Multivariate Analysis of ACE2 I/D Polymorphism in the Coronary Artery Disease Patients and Healthy Controls
3.5. Association of Biochemical and Clinical Features of Coronary Artery Disease Patients with ACE2 I/D Genotypes
- Association with gender and age: Our results indicated that there was a significant association between ACE2-rs4646994 I/D genotypes and the age of the coronary artery disease patients (p < 0.022), Table 5). However, the higher incidence of heterozygosity was reported among coronary artery disease patients who were younger (less than 50 years), whereas the result showed that there is no association between ACE2-rs4646994 I/D genotypes and the gender of patients with a (p < 0.33).
- Association with Lipid profile biomarkers: Association with total Cholesterol (mg/dL), as depicted in Table 5. The statistical analysis of the association between ACE2-rs4646994 I/D genotypes and Cholesterol (mg/dL) levels in the blood of coronary artery disease patients revealed a significant association (p < 0.002).
- Association with LDL-C (mg/dL): Moreover, the result showed that there is no significant association between ACE2-rs4646994 I/D genotypes and LDL-C (mg/dL) of coronary artery disease patients with a (p < 0.080).
- Association with HDL-C (mg/dL): Our result showed that there is a strong significant association between ACE2-rs4646994 I/D genotypes and HDL-C (mg/dL) of coronary artery disease patients with a (p < 0.035).
- Association with Triglycerides (mg/dL): A strong association was the association between ACE2-rs4646994 I/D genotypes and triglycerides (mg/dL) of coronary artery disease patients with a (p < 0.004).
- Association with hypertension and diabetes: Our result revealed that there was a significant correlation between ACE2-rs4646994 I/D genotypes and hypertension (p < 0.002). Similarly, a significant correlation was reported between ACE2-rs4646994 I/D genotypes and diabetes (p < 0.0001).
- Association with Creatinine (mg/dL): The statistical analysis of the correlation between ACE2 I/D genotypes and Creatinine (mg/dL) in coronary artery disease patients revealed a non-significant association (p < 0.42).
- Association with C-reactive protein (mg/L): The statistical analysis of the correlation between ACE2 I/D genotypes and C-reactive protein (mg/L) in coronary artery disease patients revealed a significant association (p < 0.0001).
- Association with hypertension and diabetes: Our result revealed that there was a significant correlation between ACE2 I/D genotypes and hypertension (p < 0.002) in coronary artery disease patients. Similarly, a significant correlation was reported between ACE2 I/D genotypes and diabetes (p < 0.0001) in coronary artery disease patients.
- Association with smoking and obesity: Our result revealed that there was no significant correlation between ACE2 I/D genotypes and smoking (p < 0.74) in coronary artery disease patients. Similarly, a significant correlation was reported between ACE2 I/D genotypes and obesity (p < 0.040).
- Association with Myocardial infarction (MI): Our result revealed that there was a significant correlation between ACE2 I/D genotypes and myocardial infarction (MI) (p < 0.0001) in coronary artery disease patients.
3.6. Statistical Comparisons between CAD Patients and Controls (p Values) for ACE2 rs4240157T>C Genotypes
3.7. Association of ACE2 rs4240157T>C Genotypes with CAD Susceptibility Utilizing Multivariate Analysis
3.8. Association of Clinical Features of Coronary Artery Disease Patients with ACE2 rs4240157T>C Genotypes
3.9. Association with Lipid Profile Biomarkers
- Association with LDL-C (mg/dL): Moreover, the result showed that there is no association between ACE2 rs4240157T>C genotypes and LDL-C (mg/dL) levels in the blood of CAD patients with a (p < 0.58). (Table 8)
- Association with HDL-C (mg/dL): The statistical analysis of the association between ACE2 rs4240157 genotypes and HDL-C (mg/dL) levels in the blood of CAD patients revealed a significant association (p < 0.0007). (Table 8)
- Association with Triglycerides (mg/dL): A significant association was observed in the triglycerides (mg/dL) between ACE2 rs4240157 genotypes and HDL-C (mg/dL) levels in the blood of CAD patients (p < 0.043).
- Association with Creatinine (mg/dL): The statistical analysis of the association between ACE2 rs4240157 genotypes and Creatinine (mg/dL) in coronary artery disease patients revealed a significant association (p < 0.0043). (Table 8)
- Association with C-reactive protein (mg/L): The statistical analysis of the association between ACE2 rs4240157 genotypes and C-reactive protein (mg/L) in coronary artery disease patients revealed a significant association (p < 0.017).
- Association with hypertension and diabetes: Our results revealed that there was a significant association between ACE2 rs4240157T>C genotypes and hypertension (p < 0.049). Similarly, a significant association was reported between ACE2 rs4240157T>C genotypes and diabetes (p < 0.037). (Table 8)
- Association with smoking and obesity: Our results revealed that there was no significant association between ACE2 rs4240157T>C genotypes and smoking (p < 0.77). Similarly, a significant association was reported between ACE2 rs4240157T>C genotypes and obesity (p < 0.0005).
Clinical and Biochemical Features | TT | CT | CC | χ2 | DF | p Value |
---|---|---|---|---|---|---|
Association with gender | ||||||
Male (96) | 6 | 45 | 45 | 1.32 | 2 | 0.51 |
Female (53) | 3 | 20 | 30 | |||
Association with age | ||||||
≤50 (108) | 5 | 55 | 48 | 8.8 | 2 | 0.012 |
>50 (41) | 4 | 10 | 27 | |||
Association with total Cholesterol (mg/dL) | ||||||
Cholesterol ≤200 mg (72) | 5 | 20 | 47 | 12.11 | 2 | 0.0023 |
Cholesterol >200 mg (77) | 4 | 43 | 30 | |||
Association with LDL-C (mg/dL) | ||||||
LDL ≤100 mg (86) | 4 | 38 | 44 | 1.08 | 2 | 0.58 |
LDL >100 mg (63) | 5 | 30 | 28 | |||
Association with HDL-C (mg/dL) | ||||||
HDL ≤40 mg (67) | 4 | 20 | 43 | 9.93 | 2 | 0.007 |
HDL >40 mg (82) | 5 | 45 | 32 | |||
Association with Triglycerides (mg/dL) | ||||||
TGL ≤ 150 mg (91) | 5 | 34 | 52 | 6.29 | 2 | 0.043 |
TGL > 150 mg (58) | 4 | 31 | 23 | |||
Association with Creatinine (mg/dL) | ||||||
<1.35 mg/dL(86) | 3 | 30 | 53 | 10.91 | 2 | 0.0043 |
>1.35 mg/dL(63) | 6 | 35 | 22 | |||
Association with C-reactive protein (mg/L) | ||||||
<10 mg/L (65) | 4 | 20 | 41 | 8.09 | 2 | 0.017 |
>10 mg/L (84) | 5 | 45 | 34 | |||
Association with hypertension | ||||||
Hyper (61) | 6 | 20 | 35 | 6.26 | 2 | 0.049 |
No Hyper (88) | 3 | 45 | 40 | |||
Association with Diabetes | ||||||
T2D (75) | 5 | 25 | 45 | 6.57 | 2 | 0.037 |
T2D (74) | 4 | 40 | 30 | |||
Association with Smoking | ||||||
Smoking (Yes) 82 | 4 | 37 | 41 | 0.5 | 2 | 0.77 |
Smoking (N0) 67 | 5 | 28 | 34 | |||
Association with Obesity | ||||||
Obesity (72) | 7 | 20 | 45 | 15.24 | 2 | 0.0005 |
Obesity (77) | 2 | 45 | 30 | |||
Association with Myocardial infarction (MI) | ||||||
(MI) (84) | 6 | 35 | 43 | 0.58 | 2 | 0.748 |
(MI) (65) | 3 | 30 | 32 |
4. Discussion
4.1. Correlation of ACE2 I/D Gene Variability with CAD Patients
4.2. Association of ACE2 rs4240157T>C
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Amara, A.; Mrad, M.; Sayeh, A.; Lahideb, D.; Layouni, S.; Haggui, A.; Fekih-Mrissa, N.; Haouala, H.; Nsiri, B. The Effect of ACE I/D Polymorphisms Alone and With Concomitant Risk Factors on Coronary Artery Disease. Clin. Appl. Thromb./Hemost. 2018, 24, 157–163. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Raedle-Hurst, T.; Wissing, S.; Mackenstein, N.; Obeid, R.; Geisel, J.; Wagenpfeil, S.; Abdul-Khaliq, H. Determinants of soluble angiotensin-converting enzyme 2 concentrations in adult patients with complex congenital heart disease. Clin. Res. Cardiol. 2022, 111, 154–162. [Google Scholar] [CrossRef] [PubMed]
- Franchini, M.; Peyvandi, F.; Mannucci, P.M. The genetic basis of coronary artery disease: From candidate genes to whole genome analysis. Trends Cardiovasc. Med. 2008, 18, 157–162. [Google Scholar] [CrossRef] [PubMed]
- Nsour, M.; Mahfoud, Z.; Kanaan, M.N.; Balbeissi, A. Prevalence and predictors of nonfatal myocardial infarction in Jordan. East Mediterr. Health J. 2008, 14, 818–830. [Google Scholar]
- Navarro-López, F. Genes and Coronary Heart Disease. Rev. Esp. Cardiol. 2002, 55, 413–431. [Google Scholar] [CrossRef]
- Singh, R.B.; Pandi-Perumal, S.R.; Singh, J.; Hristova, K.; Elkilany, G. Genetic Risk Factors of Coronary Artery Disease. World Heart J. 2015, 7, 171–175. [Google Scholar]
- Zhang, Y.; Yang, T.; Zhou, Z.; Huang, Y. A meta-analysis on the association of genetic polymorphism of the angiotensin-converting enzyme and coronary artery disease in the Chinese population. Rev. Assoc. Med. Bras. 2019, 65, 923–929. [Google Scholar] [CrossRef]
- Sayols-Baixeras, S.; Lluís-Ganella, C.; Lucas, G.; Elosua, R. Pathogenesis of coronary artery disease: Focus on genetic risk factors and identification of genetic variants. Appl. Clin. Genet. 2014, 7, 15–32. [Google Scholar]
- Crisan, D.; Carr, J. Angiotensin I-Converting Enzyme Genotype and Disease Associations. J. Mol. Diagn. 2000, 2, 105–115. [Google Scholar] [CrossRef]
- Borai, I.H.; Hassan, N.S.; Shaker, O.G.; Ashour, E.; Badrawy, M.E.; Fawzi, O.M.; Mageed, L. Synergistic effect of ACE and AGT genes in coronary artery disease. J. Basic Appl. Sci. 2018, 7, 111–117. [Google Scholar] [CrossRef]
- Rosendorff, C.; Lackland, D.T.; Allison, M.; Aronow, W.S.; Black, H.R.; Blumenthal, R.S.; White, W.B. Treatment of hypertension in patients with coronary artery disease. J. Am. Coll. Cardiol. 2015, 65, 1998–2038. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ishigami, T.; Umemura, S.; Iwamoto, T.; Tamura, K.; Hibi, K.; Yamaguchi, S.; Ishii, M. Molecular Variant of Angiotensinogen Gene Is Associated with Coronary Atherosclerosis. Circulation 1995, 91, 951–954. [Google Scholar] [CrossRef] [PubMed]
- Fukazawa, R.; Sonobe, T.; Hamamoto, K.; Hamaoka, K.; Sakata, K.; Asano, T.; Ogawa, S. Possible Synergic Effect of Angiotensin-I Converting Enzyme Gene Insertion/Deletion Polymorphism and Angiotensin-II Type-1 Receptor 1166A/C Gene Polymorphism on Ischemic Heart Disease in Patients with Kawasaki Disease. Pediatric Res. 2004, 56, 597–601. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Imai, Y.; Kuba, K.; Ohto-Nakanishi, T.; Penninger, J.M. Angiotensin-Converting Enzyme 2 (ACE2) in Disease Pathogenesis. Circ. J. 2010, 74, 405–410. [Google Scholar] [CrossRef] [Green Version]
- Moorthy, N.; Ramegowda, K.S.; Jain, S.; Bharath, G.; Sinha, A.; Nanjappa, M.C.; Christopher, R. Role of Angiotensin-Converting Enzyme (ACE) gene polymorphism and ACE activity in predicting outcome after acute myocardial infarction. IJC Heart Vasc. 2021, 32, 100701. [Google Scholar] [CrossRef]
- Brugts, J.J.; den Uil, C.A.; Danser, A.H.J.; Boersma, E. The Renin-Angiotensin-Aldosterone System: Approaches to Guide Angiotensin-Converting Enzyme Inhibition in Patients with Coronary Artery Disease. Cardiology 2009, 112, 303–312. [Google Scholar] [CrossRef]
- Frossard, P.M.; Lestringant, G.G.; Obineche, E.N.; Hill, S.H. The Angiotensin-Converting Enzyme (ACE) Gene Insertion/Deletion Dimorphism Tracks with Higher Serum ACE Activities in both Younger and Older Subjects. Ann. Saudi Med. 1998, 18, 389–392. [Google Scholar] [CrossRef] [Green Version]
- Villard, E.; Soubrier, F. Molecular biology and genetics of the angiotensin I-converting enzyme: Potential implications in cardiovascular diseases. Cardiovasc. Res. 1996, 32, 999–1007. [Google Scholar] [CrossRef] [Green Version]
- Muthumala, A.; Gable, D.R.; Palmen, J.; Cooper, J.A.; Stephens, J.W.; Miller, G.J.; Humphries, S.E. Is the influence of variation in the ACE gene on the prospective risk of Type 2 diabetes in middle-aged men modified by obesity. Clin. Sci. 2007, 113, 467–472. [Google Scholar] [CrossRef] [Green Version]
- Zhou, T.B.; Qin, Y.H.; Su, L.N.; Lei, F.Y.; Huang, W.F.; Zhao, Y.J.; Yang, K.P. The association between angiotensin-converting enzyme insertion/deletion gene variant and risk of focal segmental glomerulosclerosis: A systematic review and meta-analysis. J. Renin Angiotensin. Aldosterone Syst. 2011, 12, 624–633. [Google Scholar] [CrossRef]
- Fu, Q.; Wang, F.; Wang, H.; Xu, F.; Zaneveld, J.E.; Ren, H.; Sui, R. Next-generation sequencing–based molecular diagnosis of a Chinese patient cohort with autosomal recessive retinitis pigmentosa. Investig. Ophthalmol. Vis. Sci. 2013, 54, 4158–4166. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhu, Y.; Guo, Z.; Liu, Y.; Zheng, X.; Yang, G.; Zheng, G. A novel ARMS-based assay for the quantification of EGFR mutations in patients with lung adenocarcinoma. Oncol. Lett. 2018, 15, 2905–2912. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mir, M.M.; Mir, R.; Alghamdi, M.A.A.; Wani, J.I.; Elfaki, I.; Sabah, Z.U.; Alhujaily, M.; Jeelani, M.; Marakala, V.; Alharthi, M.H.; et al. Potential impact of GCK, MIR-196A-2 and MIR-423 gene abnormalities on the development and progression of type 2 diabetes mellitus in Asir and Tabuk regions of Saudi Arabia. Mol. Med. Rep. 2022, 25, 162. [Google Scholar] [CrossRef] [PubMed]
- Mir, R.; Tayeb, F.J.; Barnawi, J.; Jalal, M.M.; Saeedi, N.H.; Hamadi, A.; Altayar, M.A.; Alshammari, S.E.; Mtiraoui, N.; Ali, M.E.; et al. Biochemical Characterization and Molecular Determination of Estrogen Receptor-α (ESR1 PvuII-rs2234693 T>C) and MiRNA-146a (rs2910164 C>G) Polymorphic Gene Variations and Their Association with the Risk of Polycystic Ovary Syndrome. Int. J. Environ. Res. Public Health 2022, 19, 3114. [Google Scholar] [CrossRef]
- Kanae, Y.; Endoh, D.; Nagahata, H.; Hayashi, M. A method for detecting complex vertebral malformation in Holstein calves using polymerase chain reaction--primer introduced restriction analysis. J. Vet. Diagn. Investig. 2005, 17, 258–262. [Google Scholar] [CrossRef] [Green Version]
- Schmieder, R.E.; Hilgers, K.F.; Schlaich, M.P. Renin-angiotensin system and cardiovascular risk. Lancet 2007, 369, 1208–1219. [Google Scholar] [CrossRef]
- Arfa, I.; Abid, A.; Nouira, S. Lack of association between the angiotensin-converting enzyme gene (I/D) polymorphism and diabetic nephropathy in Tunisian type 2 diabetic patients. J. Renin Angiotensin. Aldosterone Syst. 2008, 9, 32–36. [Google Scholar] [CrossRef] [Green Version]
- Cambien, F.; Poirier, O.; Lecerf, L. Deletion polymorphism in the gene of angiotensin converting enzyme is a potent risk factor for myocardial infraction. Nature 1992, 359, 641–644. [Google Scholar] [CrossRef]
- Marian, A.; Yu, Q.; Workman, R. Angiotensin converting enzyme polymorphism in hypertrophic cardiomyopathy and sudden cardiac death. Lancet 1993, 342, 1085–1086. [Google Scholar] [CrossRef]
- Kario, K.; Kanai, N.; Saito, K. Ischemic stroke and the gene for angiotensin converting enzyme in Japanese hypertensives. Circulation 1996, 93, 1630–1633. [Google Scholar] [CrossRef]
- Keavney, B.; McKenzie, C.; Parish, S. Large scale test of hypothesized associations between the angiotensin converting enzyme insertion/deletion polymorphism and myocardial infarction in about 5000 cases and 6000 controls. Lancet 2000, 355, 434–442. [Google Scholar] [CrossRef]
- Francois, B.; Bernard, K. Angiotensin converting enzyme insertion or deletion polymorphism and coronary restenosis: A meta-analysis of 16 studies. Brit. Med. J. 2002, 325, 517–520. [Google Scholar]
- Sobti, R.C.; Maithil, N.; Thakur, H. Association of ACE and FACTOR VII gene variability with the risk of coronary heart disease in north Indian population. Mol. Cell Biochem. 2010, 341, 87–98. [Google Scholar] [CrossRef]
- Lei, H.P.; Chen, H.M.; Zhong, S.L.; Yao, Q.Z.; Tan, H.H.; Yang, M.; Lin, Q.X.; Shan, Z.X.; Zheng, Z.W.; Zhu, J.N.; et al. Association between polymorphisms of the renin-angiotensin system and coronary artery disease in Chinese patients with type 2 diabetes. J. Renin Angiotensin Aldosterone Syst. 2012, 13, 305–313. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sabater Molina, M.; Nicolás Rocamora, E.; Bendicho, A.I.; Vázquez, E.G.; Zorio, E.; Rodriguez, F.D.; Gil Ortuño, C.; Rodríguez, A.I.; Sánchez-López, A.J.; Jara Rubio, R.; et al. Polymorphisms in ACE, ACE2, AGTR1 genes and severity of COVID-19 disease. PLoS ONE 2022, 17, e0263140. [Google Scholar] [CrossRef]
- Bhushan, S.; Xiao, Z.; Gao, K.; Mao, L.; Chen, J.; Ping, W.; Hong, W.; Zhang, Z. Role and Interaction Between ACE1, ACE2 and Their Related Genes in Cardiovascular Disorders. Curr. Probl. Cardiol. 2022, 101162. [Google Scholar] [CrossRef]
- Bánhegyi, V.; Enyedi, A.; Fülöp, G.Á.; Oláh, A.; Siket, I.M.; Váradi, C.; Bottyán, K.; Lódi, M.; Csongrádi, A.; Umar, A.J.; et al. Human Tissue Angiotensin Converting Enzyme (ACE) Activity Is Regulated by Genetic Polymorphisms, Posttranslational Modifications, Endogenous Inhibitors and Secretion in the Serum, Lungs and Heart. Cells 2021, 10, 1708. [Google Scholar] [CrossRef]
- Mehri, S.; Mahjoub, S.; Hammami, S.; Zaroui, A.; Frih, A.; Betbout, F.; Hammami, M. Renin angiotensin system polymorphisms in relation to hypertension status and obesity in a Tunisian population. Mol. Biol. Rep. 2012, 39, 4059–4065. [Google Scholar] [CrossRef]
- Tchelougou, D.; Kologo, J.K.; Karou, S.D.; Yaméogo, V.N.; Bisseye, C.; Djigma, F.W.; Simpore, J. Renin angiotensin system genes polymorphisms and essential hypertension in Burkina Faso, West Africa. Int. J. Hypertens. 2015, 2015, 979631. [Google Scholar] [CrossRef] [Green Version]
- Defoor, J.; Vanhees, L.; Martens, K.; Matthijs, G.; Van Vlerken, A.; Zielinska, D.; Fagard, R. The CAREGENE study: ACE gene I/D polymorphism and effect of physical training on aerobic power in coronary artery disease. Heart 2006, 92, 527–528. [Google Scholar] [CrossRef] [Green Version]
- Nakhjavani, M.; Esfahanian, F.; Jahanshahi, A.; Esteghamati, A.; Nikzamir, A.R.; Rashidi, A.; Zahraei, M. The relationship between the insertion/deletion polymorphism of the ACE gene and hypertension in Iranian patients with type 2 diabetes. Nephrol. Dial. Transplant. 2007, 22, 2549–2553. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Niemiec, P.; Zak, I.; Wita, K. Modification of the coronary artery disease risk associated with the presence of traditional risk factors by insertion/deletion polymorphism of the ACE gene. Genet. Test 2007, 11, 353–359. [Google Scholar] [CrossRef] [PubMed]
- Purnamasari, D.; Widjojo, B.D.; Antono, D.; Syampurnawati, M. ACE gene polymorphism and atherosclerotic lesion of carotid artery among offsprings of type 2 diabetes mellitus. Acta Med. Indones. 2012, 44, 128–134. [Google Scholar]
- Kato, N.; Tatara, Y.; Ohishi, M.; Takeya, Y.; Onishi, M.; Maekawa, Y.; Rakugi, H. Angiotensin-converting enzyme single nucleotide polymorphism is a genetic risk factor for cardiovascular disease: A cohort study of hypertensive patients. Hypertens. Res. 2011, 34, 728–734. [Google Scholar] [CrossRef] [PubMed]
- Badenhop, R.F.; Wang, X.L.; Wilcken, D.E. Angiotensin-converting enzyme genotype in children and coronary events in their grandparents. Circulation 1995, 91, 1655–1658. [Google Scholar] [CrossRef] [PubMed]
- Mir, M.M.; Mir, R.; Alghamdi, M.A.A.; Alsayed, B.A.; Wani, J.I.; Alharthi, M.H.; Al-Shahrani, A.M. Strong Association of Angiotensin Converting Enzyme-2 Gene Insertion/Deletion Polymorphism with Susceptibility to SARS-CoV-2, Hypertension, Coronary Artery Disease and COVID-19 Disease Mortality. Pers. Med. 2021, 11, 1098. [Google Scholar] [CrossRef]
- Vladeanu, M.C.; Bojan, I.B.; Bojan, A.; Iliescu, D.; Badescu, M.C.; Badulescu, O.V.; Badescu, M.; Georgescu, C.A.; Ciocoiu, M. Angiotensin-converting enzyme gene D-allele and the severity of coronary artery disease. Exp. Ther. Med. 2020, 20, 3407–3411. [Google Scholar] [CrossRef]
- Winkelmann, B.R.; Nauck, M.; Klein, B.; Russ, A.P.; Böhm, B.O.; Siekmeier, R.; Ihnken, K.; Verho, M.; Gross, W.; März, W. Deletion polymorphism of the angiotensin I-converting enzyme gene is associated with increased plasma angiotensin-converting enzyme activity but not with increased risk for myocardial infarction and coronary artery disease. Ann. Intern. Med. 1996, 125, 19–25. [Google Scholar] [CrossRef]
- Šeruga, M.; Makuc, J.; Završnik, M.; Cilenšek, I.; Ekart, R.; Petrovič, D. Polymorphism of Angiotensin-converting enzyme (rs4340) And Diabetic Nephropathy In Caucasians With Type 2 diabetes mellitus. Balkan J. Med. Genet. 2016, 19, 29–34. [Google Scholar] [CrossRef] [Green Version]
- Freitas, A.I.; Mendonça, I.; Brión, M.; Sequeira, M.M.; Reis, R.P.; Carracedo, A.; Brehm, A. RAS gene polymorphisms, classical risk factors and the advent of coronary artery disease in the Portuguese population. BMC Cardiovasc. Disord. 2008, 8, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Pinheiro, D.S.; Santos, R.S.; Jardim, P.C.V.; Silva, E.G.; Reis, A.A.; Pedrino, G.R.; Ulhoa, C.J. The combination of ACE I/D and ACE2 G8790A polymorphisms revels susceptibility to hypertension: A genetic association study in Brazilian patients. PLoS ONE 2019, 14, e0221248. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pechlivanis, S.; Lehmann, N.; Hoffmann, P.; Nöthen, M.M.; Jöckel, K.H.; Erbel, R.; Moebus, S. Risk prediction for coronary heart disease by a genetic risk score—Results from the Heinz Nixdorf Recall study. BMC Med. Genet. 2020, 21, 178. [Google Scholar] [CrossRef] [PubMed]
- Patel, S.K.; Wai, B.; Ord, M.; MacIsaac, R.J.; Grant, S.; Velkoska, E.; Panagiotopoulos, S.; Jerums, G.; Srivastava, P.M.; Burrell, L.M. Association of ACE2 genetic variants with blood pressure, left ventricular mass, and cardiac function in Caucasians with type 2 diabetes. Am. J. Hypertens. 2012, 25, 216–222. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, C.; Li, Y.; Guan, T.; Lai, Y.; Shen, Y.; Zeyaweiding, A.; Zhao, H.; Li, F.; Maimaiti, T. ACE2 polymorphisms associated with cardiovascular risk in Uygurs with type 2 diabetes mellitus. Cardiovasc. Diabetol. 2018, 17, 127. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.X.; Song, L.; Xing, A.J.; Gao, M.; Zhao, H.Y.; Li, C.H.; Zhao, H.L.; Chen, S.H.; Lu, C.Z.; Wu, S.L. Predictive value of cumulative blood pressure for all-cause mortality and cardiovascular events. Sci. Rep. 2017, 7, 41969. [Google Scholar] [CrossRef] [Green Version]
- Bays, H.E.; Jones, P.H.; Orringer, C.E.; Brown, W.V.; Jacobson, T.A. National lipid association annual summary of clinical lipidology 2016. J. Clin. Lipidol. 2016, 10, S1–S43. [Google Scholar] [CrossRef] [Green Version]
- Pan, Y.; Wang, T.; Li, Y.; Guan, T.; Lai, Y.; Shen, Y.; Zeyaweiding, A.; Maimaiti, T.; Li, F.; Zhao, H.; et al. Association of ACE2 polymorphisms with susceptibility to essential hypertension and dyslipidemia in Xinjiang, China. Lipids Health Dis. 2018, 17, 241. [Google Scholar] [CrossRef] [Green Version]
Direction | Primer Sequence | PCR Product | Annealing Temperature |
---|---|---|---|
T-ARMS-PCR primers for ACE-1-rs4646994 I/D gene polymorphism | |||
Fo primer D/I | 5′-GAGGCTGAGATGGAAGGATTG-3′ | 488 bp | Touch down PCR |
Ro primer D/I | 5′-GCTCTCCCAACACCACATTAC-3′ | 712 bp | 69 to 69 °C |
FI primer A | 5′-TCTGACGAATGTGATGGCCCCA-3′ | 271 bp | |
RI primer G | 5′-AACAGGTCTTCATATTTCCGGTAC-3′ | 200 bp | |
T-ARMS-PCR primers for ACE2 rs4240157T>C gene polymorphism | |||
ACE2 Fo | GCTGAGTTCTCAAAATAATGCCATAGAT | 386 bp | 60 °C |
ACE2 Ro | GCATTTCTTTCCAATCATTAAGAGTTCA | ||
ACE2 FI-T | GCCTCAGAACATTACAGAATCAACCT | 244 bp | |
ACE2 RI-C | GAGGGTTGGTAAATAGTGTTCAGTGG | 194 bp | |
Mutation specific PCR primers for ACE-1-rs4646994 I/D gene polymorphism | |||
ACE-F | 5′-CTGGAGACCACTCCCATCCTTTCT-3′ | 490-bp (II) | 58 °C |
ACE-R | 5′-GATGTGGCCATCACATTCGTCAGAT-3′. | 190-bp (DD) |
Parameters | Value (%) | |
---|---|---|
CAD Patients | 150 | % |
Male | 96 | 64% |
Female | 54 | 36% |
Age < 50 | 108 | 72% |
Age > 50 | 42 | 28% |
Cholesterol ≤ 200 (mg/dL) | 72 | 48% |
Cholesterol > 200 (mg/dL) | 78 | 52% |
LDL ≤ 100 (mg/dL) | 86 | 57.33% |
LDL > 100 (mg/dL) | 64 | 42.66% |
HDL ≤ 40 (mg/dL) | 67 | 44.66% |
HDL > 40 (mg/dL) | 83 | 55.33% |
TGL ≤ 150 (mg/dL) | 91 | 60.66% |
TGL > 150 (mg/dL) | 59 | 39.33% |
Creatinine < 1.35 mg/dL | 86 | 57.33% |
Creatinine > 1.35 mg/dL | 64 | 42.66% |
C-reactive protein < 10 mg/L | 65 | 43.33% |
C-reactive protein > 10 mg/L | 85 | 56.66% |
Hypertension | 61 | 40.66% |
No hypertension | 89 | 59.33% |
T2D | 76 | 50.66% |
No T2D | 74 | 49.33% |
Smoking (Yes) | 82 | 54.66% |
Smoking (No) | 68 | 45.33% |
Obesity | 72 | 48% |
No Obesity | 78 | 52% |
Myocardial infarction (MI) | 84 | 56% |
No Myocardial infarction (MI) | 66 | 44% |
Subjects | n= | II | DI | DD | Df | χ2 | I | D | p Value |
---|---|---|---|---|---|---|---|---|---|
Cases | 149 | 09(6.0%) | 65(43.62%) | 75(50.33%) | 2 | 9.46 | 0.28 | 0.72 | 0.008 |
Controls | 150 | 23(15.33%) | 70(46.66%) | 55(36.66%) | 0.40 | 0.60 |
Genotypes | Healthy Controls | CAD Cases | OR (95% CI) | Risk Ratio(RR) | p-Value |
---|---|---|---|---|---|
(n = 148) | (n = 149) | ||||
Codominant inheritance model | |||||
ACE2–II | 23 | 09 | 1 (ref.) | 1 (ref.) | |
ACE2–ID | 70 | 65 | 2.37 (1.0231 to 5.5041) | 1.38 (1.0572 to 1.8175) | 0.044 |
ACE2–DD | 55 | 75 | 3.48 (1.4961 to 8.1170) | 1.69 (1.2643 to 2.2827) | 0.003 |
Dominant inheritance model | |||||
ACE2–II | 23 | 09 | 1 (ref.) | 1 (ref.) | |
ACE2–(ID+DD) | 125 | 140 | 2.86 (1.2765 to 6.4179) | 1.52 (1.1850 to 1.9593) | 0.010 |
Recessive inheritance model | |||||
ACE2–(II+ID) | 93 | 74 | 1 (ref.) | 1 (ref.) | |
ACE2–DD | 55 | 75 | 1.71 (1.0787 to 2.7226) | 1.31 (1.0333 to 1.6768) | 0.022 |
Allele | |||||
ACE2–I | 116 | 83 | 1 (ref.) | 1 (ref.) | |
ACE2–D | 180 | 215 | 1.66 (1.1830 to 2.3557) | 1.27 (1.0906 to 1.5003) | 0.003 |
Clinical Feature | II | DI | DD | χ2 | DF | p Value |
---|---|---|---|---|---|---|
Association with gender | ||||||
Male (100) | 5 | 45 | 50 | 2.18 | 2 | 0.33 |
Female (49) | 4 | 20 | 25 | |||
Association with age | ||||||
≤50 (108) | 3 | 50 | 55 | 7.9 | 2 | 0.022 |
>50 (41) | 6 | 15 | 20 | |||
Association with total Cholesterol (mg/dL) | ||||||
Cholesterol ≤ 200 mg (72) | 6 | 21 | 45 | 11.98 | 2 | 0.002 |
Cholesterol > 200 mg (77) | 3 | 44 | 30 | |||
Association with LDL-C (mg/dL) | ||||||
LDL ≤ 100 mg (86) | 4 | 32 | 50 | 5.03 | 2 | 0.080 |
LDL > 100 mg (63) | 5 | 33 | 25 | |||
Association with HDL-C (mg/dL) | ||||||
HDL ≤ 40 mg (67) | 3 | 37 | 27 | 6.68 | 2 | 0.035 |
HDL > 40 mg (82) | 6 | 28 | 48 | |||
Association with Triglycerides (mg/dL) | ||||||
TGL ≤ 150 mg (91) | 6 | 30 | 55 | 10.95 | 2 | 0.004 |
TGL > 150 mg (58) | 3 | 35 | 20 | |||
Association with Creatinine (mg/dL) | ||||||
<1.35 mg/dL(86) | 6 | 30 | 50 | 6.32 | 2 | 0.42 |
>1.35 mg/dL(63) | 3 | 35 | 25 | |||
Association with C-reactive protein(mg/L) | ||||||
<10 mg/L (65) | 5 | 15 | 45 | 19.36 | 2 | 0.0001 |
>10 mg/L (84) | 4 | 50 | 30 | |||
Association with hypertension | ||||||
Hyper (61) | 3 | 37 | 21 | 12.28 | 2 | 0.002 |
No Hyper (88) | 6 | 28 | 54 | |||
Association with Diabetes | ||||||
T2D (75) | 4 | 47 | 24 | 22.7 | 2 | 0.0001 |
T2D (74) | 5 | 18 | 51 | |||
Correlation with Smoking | ||||||
Smoking (Yes) | 6 | 36 | 40 | 0.58 | 2 | 0.74 |
Smoking (N0) | 3 | 29 | 35 | |||
Association with Obesity | ||||||
Obesity (72) | 7 | 25 | 40 | 6.41 | 2 | 0.040 |
Obesity (77) | 2 | 40 | 35 | |||
Association with Myocardial infarction (MI) | ||||||
(MI) (84) | 5 | 24 | 55 | 18.77 | 2 | 0.0001 |
(MI) (65) | 4 | 41 | 20 |
Subjects | n = | TT% | CT% | CC% | Df | χ2 | T | C | p Value |
---|---|---|---|---|---|---|---|---|---|
Cases | 150 | 27(18%) | 54(36%) | 69(46%) | 2 | 66.44 | 0.35 | 0.65 | 0.0001 |
Controls | 152 | 87(57.23%) | 50(31.57%) | 15(9.86%) | 0.74 | 0.26 |
Genotypes | Healthy Controls (n = 152) | CAD Cases (n = 150) | OR (95% CI) | Risk Ratio (RR) | p Value |
---|---|---|---|---|---|
Codominant | |||||
ACE2-TT | 87 | 27 | 1 (ref.) | 1 (ref.) | |
ACE2-CT | 50 | 54 | 3.48 (1.95 to 6.20) | 1.58 (1.2683 to 1.986) | 0.0001 |
ACE2-CC | 15 | 69 | 14.82 (7.3176 to 30.0233) | 4.27 (2.6713 to 6.8374) | 0.0001 |
Dominant | |||||
ACE2-TT | 87 | 27 | 1 (ref.) | 1 (ref.) | |
ACE2-(CT+CC) | 65 | 123 | 6.09 (3.6030 to 10.3187) | 2.20 (1.7685 to 2.7550) | 0.0001 |
Recessive | |||||
ACE2-(TT+CT) | 137 | 81 | 1 (ref.) | 1 (ref.) | |
ACE2-CC | 15 | 69 | 7.78 (4.1757 to 14.4961) | 3.51 (2.1998 to 5.6302) | 0.0001 |
Allele | |||||
ACE2-T | 224 | 108 | 1 (ref.) | 1 (ref.) | |
ACE2-C | 78 | 192 | 5.10 (3.6004 to 7.2395) | 2.33 (1.9093 to 2.8569) | 0.0001 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yousif, A.; Mir, R.; Javid, J.; Barnawi, J.; Jalal, M.M.; Altayar, M.A.; Albalawi, S.O.; Abuduhier, F.M. Clinical Utility of Amplification Refractory Mutation System-Based PCR and Mutation-Specific PCR for Precise and Rapid Genotyping of Angiotensin-Converting Enzyme 1 (ACE1-rs4646996 D>I) and Angiotensin-Converting Enzyme 2 (ACE2-rs4240157T>C) Gene Variations in Coronary Artery Disease and Their Strong Association with Its Disease Susceptibility and Progression. Diagnostics 2022, 12, 1321. https://doi.org/10.3390/diagnostics12061321
Yousif A, Mir R, Javid J, Barnawi J, Jalal MM, Altayar MA, Albalawi SO, Abuduhier FM. Clinical Utility of Amplification Refractory Mutation System-Based PCR and Mutation-Specific PCR for Precise and Rapid Genotyping of Angiotensin-Converting Enzyme 1 (ACE1-rs4646996 D>I) and Angiotensin-Converting Enzyme 2 (ACE2-rs4240157T>C) Gene Variations in Coronary Artery Disease and Their Strong Association with Its Disease Susceptibility and Progression. Diagnostics. 2022; 12(6):1321. https://doi.org/10.3390/diagnostics12061321
Chicago/Turabian StyleYousif, Aadil, Rashid Mir, Jamsheed Javid, Jameel Barnawi, Mohammed M. Jalal, Malik A. Altayar, Salem Owaid Albalawi, and Faisel M. Abuduhier. 2022. "Clinical Utility of Amplification Refractory Mutation System-Based PCR and Mutation-Specific PCR for Precise and Rapid Genotyping of Angiotensin-Converting Enzyme 1 (ACE1-rs4646996 D>I) and Angiotensin-Converting Enzyme 2 (ACE2-rs4240157T>C) Gene Variations in Coronary Artery Disease and Their Strong Association with Its Disease Susceptibility and Progression" Diagnostics 12, no. 6: 1321. https://doi.org/10.3390/diagnostics12061321
APA StyleYousif, A., Mir, R., Javid, J., Barnawi, J., Jalal, M. M., Altayar, M. A., Albalawi, S. O., & Abuduhier, F. M. (2022). Clinical Utility of Amplification Refractory Mutation System-Based PCR and Mutation-Specific PCR for Precise and Rapid Genotyping of Angiotensin-Converting Enzyme 1 (ACE1-rs4646996 D>I) and Angiotensin-Converting Enzyme 2 (ACE2-rs4240157T>C) Gene Variations in Coronary Artery Disease and Their Strong Association with Its Disease Susceptibility and Progression. Diagnostics, 12(6), 1321. https://doi.org/10.3390/diagnostics12061321