Impact of Age and Heart Rate on Strain-Derived Myocardial Work in a Population of Healthy Subjects
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. Standard Echocardiographic Procedures
2.3. Two-Dimension Speckle Tracking Derived MW
2.4. Statistical Analyses
3. Results
4. Discussion
4.1. Study Limitations
4.2. Clinical Implication
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Smiseth, O.A.; Torp, H.; Opdahl, A.; Haugaa, K.H.; Urheim, S. Myocardial strain imaging: How useful is it in clinical decision making? Eur. Heart J. 2016, 37, 1196–1207. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Galderisi, M.; Cosyns, B.; Edvardsen, T.; Cardim, N.; Delgado, V.; Di Salvo, G.; Donal, E.; Sade, L.E.; Ernande, L.; Garbi, M.; et al. Standardization of adult transthoracic echocardiography reporting in agreement with recent chamber quantification, diastolic function, and heart disease recommendations: An expert consensus document of the European Association of Cardiovascular Imaging. Eur. Heart J. Cardiovasc. Imaging 2017, 18, 1301–1310. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Santoro, C.; Esposito, R.; Lembo, M.; Sorrentino, R.; De Santo, I.; Luciano, F.; Casciano, O.; Giuliano, M.; De Placido, S.; Trimarco, B.; et al. Strain-oriented strategy for guiding cardioprotection initiation of breast cancer patients experiencing cardiac dysfunction. Eur. Heart J. Cardiovasc. Imaging 2019, 20, 1345–1352. [Google Scholar] [CrossRef]
- Awadalla, M.; Mahmood, S.S.; Groarke, J.D.; Hassan, M.Z.O.; Nohria, A.; Rokicki, A.; Murphy, S.P.; Mercaldo, N.D.; Zhang, L.; Zlotoff, D.A.; et al. Global Longitudinal Strain and Cardiac Events in Patients with Immune Checkpoint Inhibitor-Related Myocarditis. J. Am. Coll. Cardiol. 2020, 75, 467–478. [Google Scholar] [CrossRef] [PubMed]
- Nafati, C.; Gardette, M.; Leone, M.; Reydellet, L.; Blasco, V.; Lannelongue, A.; Sayagh, F.; Wiramus, S.; Antonini, F.; Albanèse, J.; et al. Use of speckle-tracking strain in preload-dependent patients, need for cautious interpretation! Ann. Intensive Care 2018, 8, 29. [Google Scholar] [CrossRef] [PubMed]
- Hubert, A.; Le Rolle, V.; Leclercq, C.; Galli, E.; Samset, E.; Casset, C.; Mabo, P.; Hernandez, A.; Donal, E. Estimation of myocardial work from pressure-strain loops analysis: An experimental evaluation. Eur. Heart J. Cardiovasc. Imaging 2018, 19, 1372–1379. [Google Scholar] [CrossRef]
- Donal, E.; Bergerot, C.; Thibault, H.; Ernande, L.; Loufoua, J.; Augeul, L.; Ovize, M.; Derumeaux, G. Influence of afterload on left ventricular radial and longitudinal systolic functions: A two-dimensional strain imaging study. Eur. J. Echocardiogr. 2009, 10, 914–921. [Google Scholar] [CrossRef] [Green Version]
- Reant, P.; Metras, A.; Detaille, D.; Reynaud, A.; Diolez, P.; Jaspard-Vinassa, B.; Roudaut, R.; Ouattara, A.; Barandon, L.; Dos Santos, P.; et al. Impact of afterload increase on left ventricular myocardial deformation indices. J. Am. Soc. Echocardiogr. 2016, 29, 1217–1228. [Google Scholar] [CrossRef]
- Suga, H. Total mechanical energy of a ventricle model and cardiac oxygen consumption. Am. J. Physiol. 1979, 236, H498–H505. [Google Scholar] [CrossRef]
- Takaoka, H.; Takeuchi, M.; Odake, M.; Yokoyama, M. Assessment of myocardial oxygen consumption (Vo2) and systolic pressure–volume area (PVA) in human hearts. Eur. Heart J. 1992, 13 (Suppl. E), 85–90. [Google Scholar] [CrossRef]
- Forrester, J.S.; Tyberg, J.V.; Wyatt, H.L.; Goldner, S.; Parmely, W.W.; Swan, H.J. Pressure–length loop: A new method for simultaneous measurement of segmental and total cardiac function. J. Appl. Physiol. 1974, 37, 771–775. [Google Scholar] [CrossRef] [PubMed]
- El Mahdiui, M.; van der Bijl, P.; Abou, R.; Ajmone Marsan, N.; Delgado, V.; Bax, J.J. Global left ventricular myocardial work efficiency in healthy Individuals and patients with cardiovascular disease. J. Am. Soc. Echocardiogr. 2019, 32, 1120–1127. [Google Scholar] [CrossRef] [PubMed]
- Urheim, S.; Rabben, S.I.; Skulstad, H.; Lyseggen, E.; Ihlen, H.; Smiseth, O.A. Regional myocardial work by strain Doppler echocardiography and LV pressure: A new method for quantifying myocardial function. Am. J. Physiol. Heart Circ. Physiol. 2005, 288, H2375–H2380. [Google Scholar] [CrossRef]
- Russell, K.; Eriksen, M.; Aaberge, L.; Wilhelmsen, N.; Skulstad, H.; Remme, E.W.; Haugaa, K.H.; Opdahl, A.; Fjeld, J.G.; Gjesdal, O.; et al. A novel clinical method for quantification of regional left ventricular pressure-strain loop area: A non-invasive index of myocardial work. Eur. Heart J. 2012, 33, 724–733. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Russell, K.; Eriksen, M.; Aaberge, L.; Wilhelmsen, N.; Skulstad, H.; Gjesdal, O.; Edvardsen, T.; Smiseth, O.A. Assessment of wasted myocardial work: A novel method to quantify energy loss due to uncoordinated left ventricular contractions. Am. J. Physiol. Heart Circ. Physiol. 2013, 305, H996–H1003. [Google Scholar] [CrossRef]
- Boe, E.; Russell, K.; Eek, C.; Eriksen, M.; Remme, E.W.; Smiseth, O.A.; Skulstad, H. Non-invasive myocardial work index identifies acute coronary occlusion in patients with non-ST-segment elevation-acute coronary syndrome. Eur. Heart J. Cardiovasc. Imaging 2015, 16, 1247–1255. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chan, J.; Edwards, N.F.A.; Khandheria, B.K.; Shiino, K.; Sabapathy, S.; Anderson, B.; Chamberlain, R.; Scalia, G.M. A new approach to assess myocardial work by non-invasive left ventricular pressure-strain relations in hypertension and dilated cardiomyopathy. Eur. Heart J. Cardiovasc. Imaging 2019, 20, 31–39. [Google Scholar] [CrossRef] [Green Version]
- Galli, E.; John-Matthwes, B.; Rousseau, C.; Schnell, F.; Leclercq, C.; Donal, E. Echocardiographic reference ranges for myocardial work in healthy subjects: A preliminary study. Echocardiography 2019, 36, 1814–1824. [Google Scholar] [CrossRef]
- Vecera, J.; Penicka, M.; Eriksen, M.; Russell, K.; Bartunek, J.; Vanderheyden, M.; Smiseth, O. Wasted septal work in left ventricular dyssynchrony: A novel principle to predict response to cardiac resynchronization therapy. Eur. Heart J. Cardiovasc. Imaging 2016, 17, 624–632. [Google Scholar] [CrossRef] [Green Version]
- Galli, E.; Hubert, A.; Le Rolle, V.; Hernandez, A.; Smiseth, O.A.; Mabo, P.; Leclercq, C.; Donal, E. Myocardial constructive work and cardiac mortality in resynchronization therapy candidates. Am. Heart J. 2019, 212, 53–63. [Google Scholar] [CrossRef] [Green Version]
- Van der Bijl, P.; Vo, N.M.; Kostyukevich, M.V.; Mertens, B.; Ajmome Marsan, N.; Delgado, V.; Bax, J.J. Prognostic implications of global, left ventricular myocardial work efficiency before cardiac resynchronization therapy. Eur. Heart J. Cardiovasc. Imaging 2019, 20, 1388–1394. [Google Scholar] [CrossRef] [PubMed]
- Manganaro, R.; Marchetta, S.; Dulgheru, R.; Ilardi, F.; Sugimoto, T.; Robinet, S.; Cimino, S.; Go, Y.Y.; Bernard, A.; Kacharava, G.; et al. Echocardiographic reference ranges for normal non-invasive myocardial work indices: Results from the EACVI NORRE study. Eur. Heart J. Cardiovasc. Imaging 2019, 20, 582–590. [Google Scholar] [CrossRef]
- Bohm, M.; Reil, J.C.; Deedwania, P.; Kim, J.B.; Borer, J.S. Resting heart rate: Risk indicator and emerging risk factor in cardiovascular disease. Am. J. Med. 2015, 128, 219–228. [Google Scholar] [CrossRef] [PubMed]
- Lembo, M.; Esposito, R.; Lo Iudice, F.; Santoro, C.; Izzo, R.; De Luca, N.; Trimarco, B.; de Simone, G.; Galderisi, M. Impact of pulse pressure on left ventricular global longitudinal strain in normotensive and newly diagnosed, untreated hypertensive patients. J. Hypertens. 2016, 34, 1201–1207. [Google Scholar] [CrossRef] [PubMed]
- Alcidi, G.M.; Esposito, R.; Evola, V.; Santoro, C.; Lembo, M.; Sorrentino, R.; Lo Iudice, F.; Borgia, F.; Novo, G.; Trimarco, B.; et al. Normal reference values of multilayer longitudinal strain according to age decades in a healthy population: A single-centre experience. Eur. Heart J. Cardiovasc. Imaging 2018, 19, 1390–1396. [Google Scholar] [CrossRef]
- Lang, R.M.; Badano, L.P.; Mor-Avi, V.; Afilalo, J.; Armstrong, A.; Ernande, L.; Flachskampf, F.A.; Foster, E.; Goldstein, S.A.; Kuznetsova, T.; et al. Recommendations for cardiac chamber quantification by echocardiography in adults: An update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. Eur. Heart J. Cardiovasc. Imaging 2015, 16, 233–270. [Google Scholar] [CrossRef]
- Van der Bijil, P.; Kostyukevich, M.; El Mahdiui, M.; Hansen, G.; Samset, E.; Ajmone Marsan, N.; Bax, J.J.; Delgado, V. A roadmap to assess myocardial work. From theory to clinical practice. JACC Cardiovasc. Imaging 2019, 12, 2549–2554. [Google Scholar] [CrossRef]
- Ilardi, F.; D’Andrea, A.; D’Ascenzi, F.; Bandera, F.; Benfari, G.; Esposito, R.; Malagoli, A.; Mandoli, G.E.; Santoro, C.; Russo, V.; et al. Myocardial Work by Echocardiography: Principles and Applications in Clinical Practice. J. Clin. Med. 2021, 10, 4521. [Google Scholar] [CrossRef]
- Morbach, C.; Sahiti, F.; Tiffe, T.; Cejka, V.; Eichner, F.A.; Gelbrich, G.; Heuschmann, P.U.; Störk, S.; on behalf of the STAAB Consortium. Myocardial work—Correlation patterns and reference values from the population-based STAAB cohort study. PLoS ONE 2020, 15, e0239684. [Google Scholar] [CrossRef]
- Nagueh, S.F.; Smiseth, O.A.; Appleton, C.P.; Byrd, B.F., 3rd; Dokainish, H.; Edvardsen, T.; Flachskampf, F.A.; Gillebert, T.C.; Klein, A.L.; Lancellotti, P.; et al. Recommendations for the evaluation of left ventricular diastolic function by echocardiography: An update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. Eur. Heart J. Cardiovasc. Imaging 2016, 17, 1321–1360. [Google Scholar] [CrossRef]
- Manganaro, R.; Marchetta, S.; Dulgheru, R.; Sugimoto, T.; Tsugu, T.; Ilardi, F.; Cicenia, M.; Ancion, A.; Postolache, A.; Martinez, C.; et al. Correlation between non invasive myocardial work indices and main parameters of systolic and diastolic function: Results from EACVI NORRE study. Eur. Heart J. Cardiovasc. Imaging 2020, 21, 533–541. [Google Scholar] [CrossRef]
- Kroeker, E.J.; Wood, E.H. Comparison of simultaneously recorded central and peripheral arterial pressure pulses during rest, exercise and tilted position in man. Circ. Res. 1955, 3, 623–632. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Covic, A.; Goldsmith, D.J.A.; Panaghiu, L.; Covic, M.; Sedor, J. Analysis of the effect of haemodialysis on peripheral and central arterial pressure waveforms. Kidney Int. 2000, 57, 2634–2643. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Esfandiari, S.; Fuchs, F.; Wainstein, F.V.; Chelvanathan, A.; Mitoff, P.; Sasson, Z.; Mak, S. Heart rate-dependent left ventricular diastolic function in patients with and without heart failure. J. Card. Fail. 2015, 21, 68–75. [Google Scholar] [CrossRef] [PubMed]
- Böhm, M.; Swedberg, K.; Komajda, M.; Borer, J.S.; Ford, I.; Dubost-Brama, A.; Lerebours, G.; Tavazzi, L.; on behalf of the SHIFT Investigators. Heart rate as a risk factor in chronic heart failure (SHIFT): The association between heart rate and outcomes in a randomised placebo-controlled trial. Lancet 2010, 376, 886–894. [Google Scholar] [CrossRef]
- Hasenfuss, G.; Holubarsch, C.; Hermann, H.P.; Astheimer, K.; Pieske, B.; Just, H. Influence of the force-frequency relationship on haemodynamics and left ventricular function in patients with non-failing hearts and in patients with dilated cardiomyopathy. Eur. Heart J. 1994, 15, 164–170. [Google Scholar] [CrossRef]
Parameter | Mean ± SD | Range |
---|---|---|
Gender (M/F) | 84/93 | - |
Age (years) | 41.8 ± 15.9 | 18–86 |
BMI (Kg/m2) | 23.3 ± 2.6 | 13.9–29.8 |
Systolic BP (mmHg) | 120.5 ± 12.6 | 85–140 |
Diastolic BP (mmHg) | 75.0 ± 7.8 | 60–90 |
Mean BP (mmHg) | 90.2 ± 8.3 | 70–106.7 |
Heart rate (bpm) | 70.6 ± 10.4 | 46–97 |
LV mass index (g/m2) | 70.3 ± 16.5 | 26.9–119.7 |
RDWT | 0.32 ± 0.05 | 0.19–0.46 |
LV EF | 66.5 ± 7.0 | 53–79.7 |
E/A ratio | 1.33 ± 0.40 | 0.70–2.45 |
E velocity DT | 197.1 ± 33.0 | 107–254 |
E/e’ ratio | 6.69 ± 1.8 | 3.44–13.8 |
LAVi (mL/m2) | 24.7 ± 5.6 | 11–38.6 |
GLS (%) | 23.2 ± 2.0 | 20–30 |
GWI (mmHg %) | 2281 ± 350 | 1529–3518 |
GCW (mmHg %) | 2566 ± 348 | 1752–3753 |
GWW (mmHg %) | 68.4 ± 32.9 | 16–184 |
GWE (%) | 96.7 ± 1.5 | 87–99 |
Analysis According to Age Tertiles | ||||
---|---|---|---|---|
Parameter | 1st Tertile (<32 Years) n = 54 | 2d Tertile (32–<49 Years) n = 61 | 3rd Tertile (≥49 Years) n = 62 | Cumulative p |
GLS (%) | 23.4 ± 1.9 | 22.8 ± 1.7 | 23.4 ± 2.3 | 0.151 |
GWI (mmHg %) | 2230.3 ± 358.2 | 2288.0 ± 303.7 | 2319.4 ± 383.0 | 0.388 |
GCW (mmHg %) | 2492.7 ± 361.9 | 2554.7 ± 297.0 | 2640.5 ± 373.3 * | <0.01 |
GWW (mmHg %) | 70.6 ± 37.4 | 63.0 ± 26.2 | 71.7 ± 34.4 | 0.288 |
GWE (%) | 96.6 ± 1.9 | 96.9 ± 1.1 | 96.6 ± 1.5 | 0.289 |
Analysis According to HR Tertiles | ||||
Parameter | 1st Tertile (<66 bpm) n = 56 | 2d Tertile (66–<74 bpm) n = 57 | 3rd Tertile (≥74 bpm) n = 64 | Cumulative p |
GLS (%) | 23.3 ± 2.0 | 22.8 ± 1.9 | 23.4 ± 2.1 | 0.233 |
GWI (mmHg %) | 2294.8 ± 391.9 | 2272.5 ± 309.2 | 2277.6 ± 349.6 | 0.940 |
GCW (mmHg %) | 2565.4 ± 410.1 | 2542.6 ± 298.4 | 2587.1 ± 335.3 | 0.783 |
GWW (mmHg %) | 61.0 ± 32.5 | 67.9 ± 30.0 | 74.7 ± 33.6 ** | <0.02 |
GWE (%) | 96.8 ± 1.4 | 96.7 ± 1.2 | 96.5 ± 1.8 | 0.418 |
Dependent Variable | Covariate | Β Coefficient | p |
---|---|---|---|
GWI (mmHg %) | Age (years) | −0.148 | <0.001 |
Systolic BP (mmHg) | 0.685 | <0.0001 | |
HR (bpm) | −0.066 | <0.05 | |
GLS (%) | 0.591 | <0.0001 | |
E/e’ ratio | 0.106 | <0.02 | |
LAVi (mL/m2) | 0.017 | 0.644 | |
GCW (mmHg %) | Age (years) | −0.029 | 0.427 |
Systolic BP (mmHg) | 0.748 | <0.0001 | |
HR (bpm) | −0.004 | 0.989 | |
GLS (%) | 0.592 | <0.0001 | |
E/e’ ratio | 0.032 | 0.366 | |
LAVi (mL/m2) | −0.05 | 0.852 | |
GWW (mmHg %) | Age (years) | 0.014 | 0.890 |
Systolic BP (mmHg) | 0.111 | 0.152 | |
HR (bpm) | 0.212 | 0.006 | |
GLS (%) | −0.200 | 0.008 | |
E/e’ ratio | 0.068 | 0.461 | |
LAVi (mL/m2) | 0.057 | 0.451 | |
GWE (%) | Age (years) | −0.005 | 0.996 |
Systolic BP (mmHg) | 0.091 | 0.235 | |
HR (bpm) | −0.204 | 0.007 | |
GLS (%) | 0.266 | <0.0001 | |
E/e’ ratio | −0.117 | 0.206 | |
LAVi (mL/m2) | −0.078 | 0.302 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Santoro, C.; Ilardi, F.; Esposito, R.; Mandoli, G.E.; Canonico, M.E.; Buongiorno, F.; Canciello, G.; Prastaro, M.; Losi, M.-A.; Esposito, G. Impact of Age and Heart Rate on Strain-Derived Myocardial Work in a Population of Healthy Subjects. Diagnostics 2022, 12, 1697. https://doi.org/10.3390/diagnostics12071697
Santoro C, Ilardi F, Esposito R, Mandoli GE, Canonico ME, Buongiorno F, Canciello G, Prastaro M, Losi M-A, Esposito G. Impact of Age and Heart Rate on Strain-Derived Myocardial Work in a Population of Healthy Subjects. Diagnostics. 2022; 12(7):1697. https://doi.org/10.3390/diagnostics12071697
Chicago/Turabian StyleSantoro, Ciro, Federica Ilardi, Roberta Esposito, Giulia Elena Mandoli, Mario Enrico Canonico, Federica Buongiorno, Grazia Canciello, Maria Prastaro, Maria-Angela Losi, and Giovanni Esposito. 2022. "Impact of Age and Heart Rate on Strain-Derived Myocardial Work in a Population of Healthy Subjects" Diagnostics 12, no. 7: 1697. https://doi.org/10.3390/diagnostics12071697
APA StyleSantoro, C., Ilardi, F., Esposito, R., Mandoli, G. E., Canonico, M. E., Buongiorno, F., Canciello, G., Prastaro, M., Losi, M. -A., & Esposito, G. (2022). Impact of Age and Heart Rate on Strain-Derived Myocardial Work in a Population of Healthy Subjects. Diagnostics, 12(7), 1697. https://doi.org/10.3390/diagnostics12071697