MELIF, a Fully Automated Liver Function Score Calculated from Gd-EOB-DTPA-Enhanced MR Images: Diagnostic Performance vs. the MELD Score
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Subjects
2.2. Image Acquisition and Analysis
2.3. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Moon, A.M.; Singal, A.G.; Tapper, E.B. Contemporary Epidemiology of Chronic Liver Disease and Cirrhosis. Clin. Gastroenterol. Hepatol. 2020, 18, 2650–2666. [Google Scholar] [CrossRef] [PubMed]
- Vogel, A.; Cervantes, A.; Chau, I.; Daniele, B.; Llovet, J.M.; Meyer, T.; Nault, J.C.; Neumann, U.; Ricke, J.; Sangro, B.; et al. Hepatocellular carcinoma: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann. Oncol. 2018, 29, iv238–iv255. [Google Scholar] [CrossRef] [PubMed]
- Asrani, S.K.; Devarbhavi, H.; Eaton, J.; Kamath, P.S. Burden of liver diseases in the world. J. Hepatol. 2019, 70, 151–171. [Google Scholar] [CrossRef]
- Bray, F.; Ferlay, J.; Soerjomataram, I.; Siegel, R.L.; Torre, L.A.; Jemal, A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2018, 68, 394–424. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tarao, K.; Nozaki, A.; Ikeda, T.; Sato, A.; Komatsu, H.; Komatsu, T.; Taguri, M.; Tanaka, K. Real impact of liver cirrhosis on the development of hepatocellular carcinoma in various liver diseases-meta-analytic assessment. Cancer Med. 2019, 8, 1054–1065. [Google Scholar] [CrossRef] [Green Version]
- Soreide, J.A.; Deshpande, R. Post hepatectomy liver failure (PHLF)—Recent advances in prevention and clinical management. Eur. J. Surg. Oncol. 2020, 47, 216–224. [Google Scholar] [CrossRef]
- Giannini, E.G.; Testa, R.; Savarino, V. Liver enzyme alteration: A guide for clinicians. Can. Med. Assoc. J. 2005, 172, 367–379. [Google Scholar] [CrossRef] [Green Version]
- Sakka, S.G. Assessing liver function. Curr. Opin. Crit. Care 2007, 13, 207–214. [Google Scholar] [CrossRef]
- Singal, A.K.; Kamath, P.S. Model for End-stage Liver Disease. J. Clin. Exp. Hepatol. 2013, 3, 50–60. [Google Scholar] [CrossRef] [Green Version]
- Malinchoc, M.; Kamath, P.S.; Gordon, F.D.; Peine, C.J.; Rank, J.; ter Borg, P.C. A model to predict poor survival in patients undergoing transjugular intrahepatic portosystemic shunts. Hepatology 2000, 31, 864–871. [Google Scholar] [CrossRef]
- Said, A.; Williams, J.; Holden, J.; Remington, P.; Gangnon, R.; Musat, A.; Lucey, M.R. Model for end stage liver disease score predicts mortality across a broad spectrum of liver disease. J. Hepatol. 2004, 40, 897–903. [Google Scholar] [CrossRef] [PubMed]
- Wiesner, R.; Edwards, E.; Freeman, R.; Harper, A.; Kim, R.; Kamath, P.; Kremers, W.; Lake, J.; Howard, T.; Merion, R.M.; et al. Model for end-stage liver disease (MELD) and allocation of donor livers. Gastroenterology 2003, 124, 91–96. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Haimerl, M.; Verloh, N.; Zeman, F.; Fellner, C.; Nickel, D.; Lang, S.A.; Teufel, A.; Stroszczynski, C.; Wiggermann, P. Gd-EOB-DTPA-enhanced MRI for evaluation of liver function: Comparison between signal-intensity-based indices and T1 relaxometry. Sci. Rep. 2017, 7, 43347. [Google Scholar] [CrossRef] [PubMed]
- Río Bártulos, C.; Senk, K.; Schumacher, M.; Plath, J.; Kaiser, N.; Bade, R.; Woetzel, J.; Wiggermann, P. Assessment of Liver Function With MRI: Where Do We Stand? Front. Med. 2022, 9, 839919. [Google Scholar] [CrossRef]
- Cho, S.H.; Kang, U.R.; Kim, J.D.; Han, Y.S.; Choi, D.L. The value of gadoxetate disodium-enhanced MR imaging for predicting posthepatectomy liver failure after major hepatic resection: A preliminary study. Eur. J. Radiol. 2011, 80, e195–e200. [Google Scholar] [CrossRef] [PubMed]
- Elkilany, A.; Geisel, D.; Muller, T.; Fischer, A.; Denecke, T. Gadoxetic acid-enhanced MRI in primary sclerosing cholangitis: Added value in assessing liver function and monitoring disease progression. Abdom. Radiol. 2020, 46, 979–999. [Google Scholar] [CrossRef]
- Haimerl, M.; Verloh, N.; Fellner, C.; Zeman, F.; Teufel, A.; Fichtner-Feigl, S.; Schreyer, A.G.; Stroszczynski, C.; Wiggermann, P. MRI-based estimation of liver function: Gd-EOB-DTPA-enhanced T1 relaxometry of 3T vs. the MELD score. Sci. Rep. 2014, 4, 5621. [Google Scholar] [CrossRef] [Green Version]
- Ippolito, D.; Pecorelli, A.; Famularo, S.; Bernasconi, D.; Orsini, E.B.; Giani, A.; Romano, F.; Talei Franzesi, C.; Sironi, S. Assessing liver function: Diagnostic efficacy of parenchymal enhancement and liver volume ratio of Gd-EOB-DTPA-enhanced MRI study during interstitial and hepatobiliary phase. Abdom. Radiol. 2019, 44, 1340–1349. [Google Scholar] [CrossRef]
- Ba-Ssalamah, A.; Bastati, N.; Wibmer, A.; Fragner, R.; Hodge, J.C.; Trauner, M.; Herold, C.J.; Bashir, M.R.; Van Beers, B.E. Hepatic gadoxetic acid uptake as a measure of diffuse liver disease: Where are we? J. Magn. Reson. Imaging 2017, 45, 646–659. [Google Scholar] [CrossRef]
- Yoneyama, T.; Fukukura, Y.; Kamimura, K.; Takumi, K.; Umanodan, A.; Ueno, S.; Nakajo, M. Efficacy of liver parenchymal enhancement and liver volume to standard liver volume ratio on Gd-EOB-DTPA-enhanced MRI for estimation of liver function. Eur. Radiol. 2014, 24, 857–865. [Google Scholar] [CrossRef]
- Okada, M.; Murakami, T.; Kuwatsuru, R.; Nakamura, Y.; Isoda, H.; Goshima, S.; Hanaoka, R.; Haradome, H.; Shinagawa, Y.; Kitao, A.; et al. Biochemical and Clinical Predictive Approach and Time Point Analysis of Hepatobiliary Phase Liver Enhancement on Gd-EOB-DTPA-enhanced MR Images: A Multicenter Study. Radiology 2016, 281, 474–483. [Google Scholar] [CrossRef] [PubMed]
- Unal, E.; Idilman, I.S.; Karcaaltincaba, M. Multiparametric or practical quantitative liver MRI: Towards millisecond, fat fraction, kilopascal and function era. Expert Rev. Gastroenterol. Hepatol. 2017, 11, 167–182. [Google Scholar] [CrossRef] [PubMed]
- Verloh, N.; Utpatel, K.; Zeman, F.; Fellner, C.; Schlitt, H.J.; Muller, M.; Stroszczynski, C.; Evert, M.; Wiggermann, P.; Haimerl, M. Diagnostic performance of Gd-EOB-DTPA-enhanced MRI for evaluation of liver dysfunction: A multivariable analysis of 3T MRI sequences. Oncotarget 2018, 9, 36371–36378. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Katsube, T.; Okada, M.; Kumano, S.; Hori, M.; Imaoka, I.; Ishii, K.; Kudo, M.; Kitagaki, H.; Murakami, T. Estimation of liver function using T1 mapping on Gd-EOB-DTPA-enhanced magnetic resonance imaging. Investig. Radiol. 2011, 46, 277–283. [Google Scholar] [CrossRef]
- Haimerl, M.; Schlabeck, M.; Verloh, N.; Zeman, F.; Fellner, C.; Nickel, D.; Barreiros, A.P.; Loss, M.; Stroszczynski, C.; Wiggermann, P. Volume-assisted estimation of liver function based on Gd-EOB-DTPA-enhanced MR relaxometry. Eur. Radiol. 2015, 26, 1125–1133. [Google Scholar] [CrossRef]
- Tomassini, F.; Giglio, M.C.; De Simone, G.; Montalti, R.; Troisi, R.I. Hepatic function assessment to predict post-hepatectomy liver failure: What can we trust? A systematic review. Updates Surg. 2020, 72, 925–938. [Google Scholar] [CrossRef] [PubMed]
- Haimerl, M.; Wächtler, M.; Zeman, F.; Verloh, N.; Platzek, I.; Schreyer, A.G.; Stroszczynski, C.; Wiggermann, P. Quantitative evaluation of enhancement patterns in focal solid liver lesions with Gd-EOB-DTPA-enhanced MRI. PLoS ONE 2014, 9, e100315. [Google Scholar] [CrossRef] [PubMed]
- Duan, T.; Jiang, H.; Xia, C.; Chen, J.; Cao, L.; Ye, Z.; Wei, Y.; Song, B.; Lee, J.M. Assessing Liver Function in Liver Tumors Patients: The Performance of T1 Mapping and Residual Liver Volume on Gd-EOBDTPA-Enhanced MRI. Front. Med. 2020, 7, 215. [Google Scholar] [CrossRef]
- Makuuchi, M. Living donor liver transplantation: Looking back at my 30 years of experience. Surg. Today 2019, 49, 288–294. [Google Scholar] [CrossRef]
- Hashikura, Y.; Makuuchi, M.; Kawasaki, S.; Matsunami, H.; Ikegami, T.; Nakazawa, Y.; Kiyosawa, K.; Ichida, T. Successful living-related partial liver transplantation to an adult patient. Lancet 1994, 343, 1233–1234. [Google Scholar] [CrossRef]
- Urata, K.; Hashikura, Y.; Ikegami, T.; Terada, M.; Kawasaki, S. Standard liver volume in adults. Transplant. Proc. 2000, 32, 2093–2094. [Google Scholar] [CrossRef]
- Youden, W.J. Index for rating diagnostic tests. Cancer 1950, 3, 32–35. [Google Scholar] [CrossRef]
- Sumiyoshi, T.; Shima, Y.; Tokorodani, R.; Okabayashi, T.; Kozuki, A.; Hata, Y.; Noda, Y.; Murata, Y.; Nakamura, T.; Uka, K. CT/99mTc-GSA SPECT fusion images demonstrate functional differences between the liver lobes. World J. Gastroenterol. 2013, 19, 3217–3225. [Google Scholar] [CrossRef] [PubMed]
- Nilsson, H.; Blomqvist, L.; Douglas, L.; Nordell, A.; Janczewska, I.; Naslund, E.; Jonas, E. Gd-EOB-DTPA-enhanced MRI for the assessment of liver function and volume in liver cirrhosis. Br. J. Radiol. 2013, 86, 20120653. [Google Scholar] [CrossRef] [Green Version]
- Ding, Y.; Rao, S.X.; Chen, C.; Li, R.; Zeng, M.S. Assessing liver function in patients with HBV-related HCC: A comparison of T(1) mapping on Gd-EOB-DTPA-enhanced MR imaging with DWI. Eur. Radiol. 2015, 25, 1392–1398. [Google Scholar] [CrossRef]
- Yamada, A.; Hara, T.; Li, F.; Fujinaga, Y.; Ueda, K.; Kadoya, M.; Doi, K. Quantitative evaluation of liver function with use of gadoxetate disodium-enhanced MR imaging. Radiology 2011, 260, 727–733. [Google Scholar] [CrossRef] [Green Version]
- Asenbaum, U.; Kaczirek, K.; Ba-Ssalamah, A.; Ringl, H.; Schwarz, C.; Waneck, F.; Fitschek, F.; Loewe, C.; Nolz, R. Post-hepatectomy liver failure after major hepatic surgery: Not only size matters. Eur. Radiol. 2018, 28, 4748–4756. [Google Scholar] [CrossRef] [Green Version]
- Yoon, J.H.; Lee, J.M.; Kang, H.J.; Ahn, S.J.; Yang, H.; Kim, E.; Okuaki, T.; Han, J.K. Quantitative Assessment of Liver Function by Using Gadoxetic Acid-enhanced MRI: Hepatocyte Uptake Ratio. Radiology 2019, 290, 125–133. [Google Scholar] [CrossRef] [Green Version]
- Shimamoto, D.; Nishie, A.; Asayama, Y.; Ushijima, Y.; Takayama, Y.; Fujita, N.; Shirabe, K.; Hida, T.; Kubo, Y.; Honda, H. MR Prediction of Liver Function and Pathology Using Gd-EOB-DTPA: Effect of Liver Volume Consideration. BioMed Res. Int. 2015, 2015, 141853. [Google Scholar] [CrossRef] [Green Version]
All (N = 195) | |
---|---|
Sex (M/W) | 155/40 (79%/21%) |
Age (years) | 62 (±11) |
Height (m) | 1.7 (±0.08) |
Weight (kg) | 83 (±16) |
Liver volume (mL) | 1513 (±415) |
MELD score | 9 (7–11) |
MELIF | 51 (±13) |
rrT1liver (%) | 50 (±12) |
MELD ≤ 10 (N = 132) | MELD 11–18 (N = 59) | MELD > 18 (N = 4) | |
---|---|---|---|
Sex (M/W) | 104/28 (79%/21%) | 48/11 (81%/19%) | 3/1 (75%/25%) |
Age (years) | 61 (±12) | 64 (±9.1) | 64 (±5.3) |
MELIF | 55 (±11) | 42 (±11) | 29 (±7.7) |
rrT1liver (%) | 54 (±10) | 43 (±12) | 31 (±14) |
AUC (95% CI) | p | Cut Off † | Sensitivity (%) | Specificity (%) | |
---|---|---|---|---|---|
MELIF | 0.790 (0.72 to 0.86) | <0.0001 | 56.78 | 93.22 | 51.52 |
rrT1liver | 0.755 (0.68 to 0.83) | <0.0001 | 46.93 | 66.1 | 75 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Río Bártulos, C.; Senk, K.; Bade, R.; Schumacher, M.; Plath, J.; Kaiser, N.; Wiesinger, I.; Thurn, S.; Stroszczynski, C.; El Mountassir, A.; et al. MELIF, a Fully Automated Liver Function Score Calculated from Gd-EOB-DTPA-Enhanced MR Images: Diagnostic Performance vs. the MELD Score. Diagnostics 2022, 12, 1750. https://doi.org/10.3390/diagnostics12071750
Río Bártulos C, Senk K, Bade R, Schumacher M, Plath J, Kaiser N, Wiesinger I, Thurn S, Stroszczynski C, El Mountassir A, et al. MELIF, a Fully Automated Liver Function Score Calculated from Gd-EOB-DTPA-Enhanced MR Images: Diagnostic Performance vs. the MELD Score. Diagnostics. 2022; 12(7):1750. https://doi.org/10.3390/diagnostics12071750
Chicago/Turabian StyleRío Bártulos, Carolina, Karin Senk, Ragnar Bade, Mona Schumacher, Jan Plath, Nico Kaiser, Isabel Wiesinger, Sylvia Thurn, Christian Stroszczynski, Abdelouahed El Mountassir, and et al. 2022. "MELIF, a Fully Automated Liver Function Score Calculated from Gd-EOB-DTPA-Enhanced MR Images: Diagnostic Performance vs. the MELD Score" Diagnostics 12, no. 7: 1750. https://doi.org/10.3390/diagnostics12071750
APA StyleRío Bártulos, C., Senk, K., Bade, R., Schumacher, M., Plath, J., Kaiser, N., Wiesinger, I., Thurn, S., Stroszczynski, C., El Mountassir, A., Planert, M., Woetzel, J., & Wiggermann, P. (2022). MELIF, a Fully Automated Liver Function Score Calculated from Gd-EOB-DTPA-Enhanced MR Images: Diagnostic Performance vs. the MELD Score. Diagnostics, 12(7), 1750. https://doi.org/10.3390/diagnostics12071750