Assessment of Left Atrial Structure and Function by Echocardiography in Atrial Fibrillation
Abstract
:1. Introduction
2. LA Structure and Function in AF
2.1. LA Structural Assessment in AF
2.2. LA Function Assessment in AF
3. Echocardiographic Assessment of LA Structure and Function in AF
3.1. Real-Time Three-Dimensional Echocardiography
3.2. Speckle Tracking Echocardiography
3.2.1. Two-Dimensional Speckle Tracking Echocardiography
3.2.2. Three-Dimensional Speckle Tracking Echocardiography
4. LA Structure and Function to Predict the Occurrence of AF
5. LA Structure and Function to Predict the Recurrence of AF after Catheter Ablation
6. LA Structure and Function to Predict the Risk of Other Cardiovascular Diseases in AF
6.1. Ischemic Stroke
6.2. Heart Failure or Cardiovascular Death
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Hindricks, G.; Potpara, T.; Dagres, N.; Arbelo, E.; Bax, J.J.; Blomström-Lundqvist, C.; Boriani, G.; Castella, M.; Dan, G.A.; Dilaveris, P.E.; et al. 2020 ESC Guidelines for the diagnosis and management of atrial fibrillation developed in collaboration with the European Association for Cardio-Thoracic Surgery (EACTS): The Task Force for the diagnosis and management of atrial fibrillation of the European Society of Cardiology (ESC) Developed with the special contribution of the European Heart Rhythm Association (EHRA) of the ESC. Eur. Heart J. 2021, 42, 373–498. [Google Scholar] [CrossRef] [PubMed]
- Chao, T.F.; Liu, C.J.; Tuan, T.C.; Chen, T.J.; Hsieh, M.H.; Lip, G.Y.H.; Chen, S.A. Lifetime Risks, Projected Numbers, and Adverse Outcomes in Asian Patients With Atrial Fibrillation: A Report From the Taiwan Nationwide AF Cohort Study. Chest 2018, 153, 453–466. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sørensen, E.; Myrstad, M.; Solberg, M.G.; Øie, E.; Tveit, A.; Aarønæs, M. Left atrial function in male veteran endurance athletes with paroxysmal atrial fibrillation. Eur. Heart J. Cardiovasc. Imaging 2021, 23, 137–146. [Google Scholar] [CrossRef] [PubMed]
- Ma, J.; Chen, Q.; Ma, S. Left atrial fibrosis in atrial fibrillation: Mechanisms, clinical evaluation and management. J. Cell Mol. Med. 2021, 25, 2764–2775. [Google Scholar] [CrossRef] [PubMed]
- Iwasaki, Y.K.; Nishida, K.; Kato, T.; Nattel, S. Atrial fibrillation pathophysiology: Implications for management. Circulation 2011, 124, 2264–2274. [Google Scholar] [CrossRef] [Green Version]
- Leong, D.P.; Dokainish, H. Left atrial volume and function in patients with atrial fibrillation. Curr. Opin. Cardiol. 2014, 29, 437–444. [Google Scholar] [CrossRef]
- Chugh, S.S.; Havmoeller, R.; Narayanan, K.; Singh, D.; Rienstra, M.; Benjamin, E.J.; Gillum, R.F.; Kim, Y.H.; McAnulty, J.H., Jr.; Zheng, Z.J.; et al. Worldwide epidemiology of atrial fibrillation: A Global Burden of Disease 2010 Study. Circulation 2014, 129, 837–847. [Google Scholar] [CrossRef] [Green Version]
- Guglielmo, M.; Baggiano, A.; Muscogiuri, G.; Fusini, L.; Andreini, D.; Mushtaq, S.; Conte, E.; Annoni, A.; Formenti, A.; Mancini, E.M.; et al. Multimodality imaging of left atrium in patients with atrial fibrillation. J. Cardiovasc. Comput. Tomogr. 2019, 13, 340–346. [Google Scholar] [CrossRef]
- Benjamin, E.J.; Muntner, P.; Alonso, A.; Bittencourt, M.S.; Callaway, C.W.; Carson, A.P.; Chamberlain, A.M.; Chang, A.R.; Cheng, S.; Das, S.R.; et al. Heart Disease and Stroke Statistics-2019 Update: A Report From the American Heart Association. Circulation 2019, 139, e56–e528. [Google Scholar] [CrossRef]
- Staerk, L.; Sherer, J.A.; Ko, D.; Benjamin, E.J.; Helm, R.H. Atrial Fibrillation: Epidemiology, Pathophysiology, and Clinical Outcomes. Circ. Res. 2017, 120, 1501–1517. [Google Scholar] [CrossRef] [Green Version]
- Miyasaka, Y.; Barnes, M.E.; Gersh, B.J.; Cha, S.S.; Bailey, K.R.; Abhayaratna, W.P.; Seward, J.B.; Tsang, T.S. Secular trends in incidence of atrial fibrillation in Olmsted County, Minnesota, 1980 to 2000, and implications on the projections for future prevalence. Circulation 2006, 114, 119–125. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Walters, T.E.; Ellims, A.H.; Kalman, J.M. The role of left atrial imaging in the management of atrial fibrillation. Prog Cardiovasc. Dis 2015, 58, 136–151. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Tse, V.C.; Au-Doung, L.W.; Wong, I.C.K.; Chan, E.W. The impact of ischaemic stroke on atrial fibrillation-related healthcare cost: A systematic review. Europace 2017, 19, 937–947. [Google Scholar] [CrossRef] [PubMed]
- Arnăutu, S.F.; Morariu, V.I.; Arnăutu, D.A.; Tomescu, M.C.; Dan, T.F.; Dragos Jianu, C. Left Atrial Strain Helps Identifying the Cardioembolic Risk in Transient Ischemic Attacks Patients with Silent Paroxysmal Atrial Fibrillation. Ther. Clin. Risk. Manag. 2022, 18, 213–222. [Google Scholar] [CrossRef]
- Thomas, L.; Abhayaratna, W.P. Left Atrial Reverse Remodeling: Mechanisms, Evaluation, and Clinical Significance. JACC Cardiovasc. Imaging 2017, 10, 65–77. [Google Scholar] [CrossRef]
- Zhang, Q.; Yip, G.W.; Yu, C.M. Approaching regional left atrial function by tissue Doppler velocity and strain imaging. Europace 2008, 10, iii62–iii69. [Google Scholar] [CrossRef]
- Di Salvo, G.; Caso, P.; Lo Piccolo, R.; Fusco, A.; Martiniello, A.R.; Russo, M.G.; D’Onofrio, A.; Severino, S.; Calabró, P.; Pacileo, G.; et al. Atrial myocardial deformation properties predict maintenance of sinus rhythm after external cardioversion of recent-onset lone atrial fibrillation: A color Doppler myocardial imaging and transthoracic and transesophageal echocardiographic study. Circulation 2005, 112, 387–395. [Google Scholar] [CrossRef] [Green Version]
- MA, X.X. Application of echocardiography in left atrial remodeling. Chin. J. Med. Imaging Technol. 2015, 31, 1915–1918. [Google Scholar] [CrossRef]
- Zhuang, J.; Wang, Y.; Tang, K.; Li, X.; Peng, W.; Liang, C.; Xu, Y. Association between left atrial size and atrial fibrillation recurrence after single circumferential pulmonary vein isolation: A systematic review and meta-analysis of observational studies. Europace 2012, 14, 638–645. [Google Scholar] [CrossRef]
- Delgado, V.; Di Biase, L.; Leung, M.; Romero, J.; Tops, L.F.; Casadei, B.; Marrouche, N.; Bax, J.J. Structure and Function of the Left Atrium and Left Atrial Appendage: AF and Stroke Implications. J. Am. Coll. Cardiol. 2017, 70, 3157–3172. [Google Scholar] [CrossRef]
- Chen, C.M.; Liu, Y.C.; Chen, C.C.; Wen, M.S.; Hung, C.F.; Wan, Y.L. Radiation dose exposure of patients undergoing 320-row cardiac CT for assessing coronary angiography and global left ventricular function. Int. J. Cardiovasc. Imaging 2012, 28, 1–5. [Google Scholar] [CrossRef] [PubMed]
- Chinnaiyan, K.M.; Bilolikar, A.N.; Walsh, E.; Wood, D.; DePetris, A.; Gentry, R.; Boura, J.; Abbara, S.; Al-Mallah, M.; Bis, K.; et al. CT dose reduction using prospectively triggered or fast-pitch spiral technique employed in cardiothoracic imaging (the CT dose study). J. Cardiovasc. Comput. Tomogr. 2014, 8, 205–214. [Google Scholar] [CrossRef] [PubMed]
- To, A.C.; Flamm, S.D.; Marwick, T.H.; Klein, A.L. Clinical utility of multimodality LA imaging: Assessment of size, function, and structure. JACC Cardiovasc. Imaging 2011, 4, 788–798. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aquaro, G.D.; Di Bella, G.; Castelletti, S.; Maestrini, V.; Festa, P.; Ait-Ali, L.; Masci, P.G.; Monti, L.; di Giovine, G.; De Lazzari, M.; et al. Clinical recommendations of cardiac magnetic resonance, Part I: Ischemic and valvular heart disease: A position paper of the working group ’Applicazioni della Risonanza Magnetica’ of the Italian Society of Cardiology. J. Cardiovasc. Med. 2017, 18, 197–208. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pontone, G.; Di Bella, G.; Castelletti, S.; Maestrini, V.; Festa, P.; Ait-Ali, L.; Masci, P.G.; Monti, L.; di Giovine, G.; De Lazzari, M.; et al. Clinical recommendations of cardiac magnetic resonance, Part II: Inflammatory and congenital heart disease, cardiomyopathies and cardiac tumors: A position paper of the working group ’Applicazioni della Risonanza Magnetica’ of the Italian Society of Cardiology. J. Cardiovasc. Med. 2017, 18, 209–222. [Google Scholar] [CrossRef]
- Aquaro, G.D.; Camastra, G.; Monti, L.; Lombardi, M.; Pepe, A.; Castelletti, S.; Maestrini, V.; Todiere, G.; Masci, P.; di Giovine, G.; et al. Reference values of cardiac volumes, dimensions, and new functional parameters by MR: A multicenter, multivendor study. J. Magn. Reson. Imaging 2017, 45, 1055–1067. [Google Scholar] [CrossRef]
- Hoit, B.D. Assessment of Left Atrial Function by Echocardiography: Novel Insights. Curr. Cardiol. Rep. 2018, 20, 96. [Google Scholar] [CrossRef]
- Kallergis, E.M.; Manios, E.G.; Kanoupakis, E.M.; Mavrakis, H.E.; Arfanakis, D.A.; Maliaraki, N.E.; Lathourakis, C.E.; Chlouverakis, G.I.; Vardas, P.E. Extracellular matrix alterations in patients with paroxysmal and persistent atrial fibrillation: Biochemical assessment of collagen type-I turnover. J. Am. Coll. Cardiol. 2008, 52, 211–215. [Google Scholar] [CrossRef] [Green Version]
- Yoshihara, F.; Nishikimi, T.; Sasako, Y.; Hino, J.; Kobayashi, J.; Minatoya, K.; Bando, K.; Kosakai, Y.; Horio, T.; Suga, S.; et al. Plasma atrial natriuretic peptide concentration inversely correlates with left atrial collagen volume fraction in patients with atrial fibrillation: Plasma ANP as a possible biochemical marker to predict the outcome of the maze procedure. J. Am. Coll. Cardiol. 2002, 39, 288–294. [Google Scholar] [CrossRef] [Green Version]
- Olsen, F.J.; Johansen, N.D.; Skaarup, K.G.; Lassen, M.C.H.; Ravnkilde, K.; Schnohr, P.; Jensen, G.B.; Marott, J.L.; Søgaard, P.; Møgelvang, R.; et al. Changes in left atrial structure and function over a decade in the general population. Eur. Heart J. Cardiovasc. Imaging 2021, 23, 124–136. [Google Scholar] [CrossRef]
- Abhayaratna, W.P.; Seward, J.B.; Appleton, C.P.; Douglas, P.S.; Oh, J.K.; Tajik, A.J.; Tsang, T.S. Left atrial size: Physiologic determinants and clinical applications. J. Am. Coll. Cardiol. 2006, 47, 2357–2363. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lang, R.M.; Badano, L.P.; Mor-Avi, V.; Afilalo, J.; Armstrong, A.; Ernande, L.; Flachskampf, F.A.; Foster, E.; Goldstein, S.A.; Kuznetsova, T.; et al. Recommendations for cardiac chamber quantification by echocardiography in adults: An update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. J. Am. Soc. Echocardiogr. 2015, 28, 1–39.e14. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rossi, V.A.; Krizanovic-Grgic, I.; Steffel, J.; Hofer, D.; Wolber, T.; Brunckhorst, C.B.; Ruschitzka, F.; Duru, F.; Breitenstein, A.; Saguner, A.M. Predictors of left atrial fibrosis in patients with atrial fibrillation referred for catheter ablation. Cardiol. J. 2022, 29, 413–422. [Google Scholar] [CrossRef]
- Lee, D.K.; Shim, J.; Choi, J.I.; Kim, Y.H.; Oh, Y.W.; Hwang, S.H. Left Atrial Fibrosis Assessed with Cardiac MRI in Patients with Paroxysmal and Those with Persistent Atrial Fibrillation. Radiology 2019, 292, 575–582. [Google Scholar] [CrossRef]
- Wang, G.D.; Shen, L.H.; Wang, L.; Li, H.W.; Zhang, Y.C.; Chen, H. Relationship between integrated backscatter and atrial fibrosis in patients with and without atrial fibrillation who are undergoing coronary bypass surgery. Clin. Cardiol. 2009, 32, E56–E61. [Google Scholar] [CrossRef] [PubMed]
- Kuppahally, S.S.; Akoum, N.; Burgon, N.S.; Badger, T.J.; Kholmovski, E.G.; Vijayakumar, S.; Rao, S.N.; Blauer, J.; Fish, E.N.; Dibella, E.V.; et al. Left atrial strain and strain rate in patients with paroxysmal and persistent atrial fibrillation: Relationship to left atrial structural remodeling detected by delayed-enhancement MRI. Circ. Cardiovasc. Imaging 2010, 3, 231–239. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Marrouche, N.F.; Wilber, D.; Hindricks, G.; Jais, P.; Akoum, N.; Marchlinski, F.; Kholmovski, E.; Burgon, N.; Hu, N.; Mont, L.; et al. Association of atrial tissue fibrosis identified by delayed enhancement MRI and atrial fibrillation catheter ablation: The DECAAF study. JAMA 2014, 311, 498–506. [Google Scholar] [CrossRef]
- Moreno-Ruiz, L.A.; Madrid-Miller, A.; Martínez-Flores, J.E.; González-Hermosillo, J.A.; Arenas-Fonseca, J.; Zamorano-Velázquez, N.; Mendoza-Pérez, B. Left atrial longitudinal strain by speckle tracking as independent predictor of recurrence after electrical cardioversion in persistent and long standing persistent non-valvular atrial fibrillation. Int. J. Cardiovasc. Imaging 2019, 35, 1587–1596. [Google Scholar] [CrossRef] [Green Version]
- Katbeh, A.; De Potter, T.; Geelen, P.; Di Gioia, G.; Kodeboina, M.; Balogh, Z.; Albano, M.; Vanderheyden, M.; Bartunek, J.; Barbato, E.; et al. Heart failure with preserved ejection fraction or non-cardiac dyspnea in paroxysmal atrial fibrillation: The role of left atrial strain. Int. J. Cardiol 2021, 323, 161–167. [Google Scholar] [CrossRef]
- Shen, Y.Z.; Du, X.; Cai, H. Echcardiography on Left Atrial Function in Atrial Fibrillation. Adv. Cardiovas. Dis. 2021, 42, 332–336. [Google Scholar] [CrossRef]
- Olsen, F.J.; Bertelsen, L.; de Knegt, M.C.; Christensen, T.E.; Vejlstrup, N.; Svendsen, J.H.; Jensen, J.S.; Biering-Sørensen, T. Multimodality Cardiac Imaging for the Assessment of Left Atrial Function and the Association With Atrial Arrhythmias. Circ. Cardiovasc. Imaging 2016, 9, e004947. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Triposkiadis, F.; Xanthopoulos, A.; Parissis, J. Risk in atrial fibrillation: Left atrial function matters. Eur. J. Heart Fail 2019, 21, 1584–1585. [Google Scholar] [CrossRef] [PubMed]
- Hoit, B.D. Left atrial size and function: Role in prognosis. J. Am. Coll. Cardiol. 2014, 63, 493–505. [Google Scholar] [CrossRef] [PubMed]
- Wijffels, M.C.; Kirchhof, C.J.; Dorland, R.; Allessie, M.A. Atrial fibrillation begets atrial fibrillation. A study in awake chronically instrumented goats. Circulation 1995, 92, 1954–1968. [Google Scholar] [CrossRef] [PubMed]
- Kojima, T.; Kawasaki, M.; Tanaka, R.; Ono, K.; Hirose, T.; Iwama, M.; Watanabe, T.; Noda, T.; Watanabe, S.; Takemura, G.; et al. Left atrial global and regional function in patients with paroxysmal atrial fibrillation has already been impaired before enlargement of left atrium: Velocity vector imaging echocardiography study. Eur. Heart J. Cardiovasc. Imaging 2012, 13, 227–234. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Eshoo, S.; Boyd, A.C.; Ross, D.L.; Marwick, T.H.; Thomas, L. Strain rate evaluation of phasic atrial function in hypertension. Heart 2009, 95, 1184–1191. [Google Scholar] [CrossRef]
- Oka, T.; Tanaka, K.; Ninomiya, Y.; Hirao, Y.; Tanaka, N.; Okada, M.; Inoue, H.; Takayasu, K.; Kitagaki, R.; Koyama, Y.; et al. Impact of baseline left atrial function on long-term outcome after catheter ablation for paroxysmal atrial fibrillation. J. Cardiol. 2020, 75, 352–359. [Google Scholar] [CrossRef]
- Kusunose, K.; Takahashi, H.; Nishio, S.; Hirata, Y.; Zheng, R.; Ise, T.; Yamaguchi, K.; Yagi, S.; Fukuda, D.; Yamada, H.; et al. Predictive value of left atrial function for latent paroxysmal atrial fibrillation as the cause of embolic stroke of undetermined source. J. Cardiol. 2021, 78, 355–361. [Google Scholar] [CrossRef] [PubMed]
- Leung, M.; Abou, R.; van Rosendael, P.J.; van der Bijl, P.; van Wijngaarden, S.E.; Regeer, M.V.; Podlesnikar, T.; Ajmone Marsan, N.; Leung, D.Y.; Delgado, V.; et al. Relation of Echocardiographic Markers of Left Atrial Fibrosis to Atrial Fibrillation Burden. Am. J. Cardiol. 2018, 122, 584–591. [Google Scholar] [CrossRef]
- Sugeng, L.; Mor-Avi, V.; Weinert, L.; Niel, J.; Ebner, C.; Steringer-Mascherbauer, R.; Schmidt, F.; Galuschky, C.; Schummers, G.; Lang, R.M.; et al. Quantitative assessment of left ventricular size and function: Side-by-side comparison of real-time three-dimensional echocardiography and computed tomography with magnetic resonance reference. Circulation 2006, 114, 654–661. [Google Scholar] [CrossRef] [Green Version]
- Mor-Avi, V.; Yodwut, C.; Jenkins, C.; Kühl, H.; Nesser, H.J.; Marwick, T.H.; Franke, A.; Weinert, L.; Niel, J.; Steringer-Mascherbauer, R.; et al. Real-time 3D echocardiographic quantification of left atrial volume: Multicenter study for validation with CMR. JACC Cardiovasc. Imaging 2012, 5, 769–777. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Salerno, M.; Sharif, B.; Arheden, H.; Kumar, A.; Axel, L.; Li, D.; Neubauer, S. Recent Advances in Cardiovascular Magnetic Resonance: Techniques and Applications. Circ. Cardiovasc. Imaging 2017, 10, e003951. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dorosz, J.L.; Lezotte, D.C.; Weitzenkamp, D.A.; Allen, L.A.; Salcedo, E.E. Performance of 3-dimensional echocardiography in measuring left ventricular volumes and ejection fraction: A systematic review and meta-analysis. J. Am. Coll. Cardiol. 2012, 59, 1799–1808. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Saraiva, R.M.; Pacheco, N.P.; Pereira, T.; Costa, A.R.; Holanda, M.T.; Sangenis, L.H.C.; Mendes, F.; Sousa, A.S.; Hasslocher-Moreno, A.M.; Xavier, S.S.; et al. Left Atrial Structure and Function Predictors of New-Onset Atrial Fibrillation in Patients with Chagas Disease. J. Am. Soc. Echocardiogr. 2020, 33, 1363–1374.e1. [Google Scholar] [CrossRef]
- Caselli, S.; Canali, E.; Foschi, M.L.; Santini, D.; Di Angelantonio, E.; Pandian, N.G.; De Castro, S. Long-term prognostic significance of three-dimensional echocardiographic parameters of the left ventricle and left atrium. Eur. J. Echocardiogr. 2010, 11, 250–256. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wu, V.C.; Takeuchi, M.; Kuwaki, H.; Iwataki, M.; Nagata, Y.; Otani, K.; Haruki, N.; Yoshitani, H.; Tamura, M.; Abe, H.; et al. Prognostic value of LA volumes assessed by transthoracic 3D echocardiography: Comparison with 2D echocardiography. JACC Cardiovasc. Imaging 2013, 6, 1025–1035. [Google Scholar] [CrossRef] [Green Version]
- Russo, C.; Jin, Z.; Homma, S.; Rundek, T.; Elkind, M.S.V.; Sacco, R.L.; Di Tullio, M.R. LA Phasic Volumes and Reservoir Function in the Elderly by Real-Time 3D Echocardiography: Normal Values, Prognostic Significance, and Clinical Correlates. JACC Cardiovasc. Imaging 2017, 10, 976–985. [Google Scholar] [CrossRef]
- Berglund, F.; Piña, P.; Herrera, C.J. Right ventricle in heart failure with preserved ejection fraction. Heart (British Cardiac Society) 2020, 106, 1798–1804. [Google Scholar] [CrossRef]
- Ikonomidis, I.; Aboyans, V.; Blacher, J.; Brodmann, M.; Brutsaert, D.L.; Chirinos, J.A.; De Carlo, M.; Delgado, V.; Lancellotti, P.; Lekakis, J.; et al. The role of ventricular–arterial coupling in cardiac disease and heart failure: Assessment, clinical implications and therapeutic interventions. A consensus document of the European Society of Cardiology Working Group on Aorta & Peripheral Vascular Diseases, European Association of Cardiovascular Imaging, and Heart Failure Association. Eur. J. Heart Fail. 2019, 21, 402–424. [Google Scholar] [CrossRef] [Green Version]
- Hassanin, M.; Ong, G.; Connelly, K.A. Right Ventricle Longitudinal Strain: A New Tool in Functional Tricuspid Regurgitation Prognostication. Can. J. Cardiol. 2021, 37, 945–948. [Google Scholar] [CrossRef]
- Cameli, M.; Righini, F.M.; Lisi, M.; Mondillo, S. Right ventricular strain as a novel approach to analyze right ventricular performance in patients with heart failure. Heart Fail. Rev. 2013, 19, 603–610. [Google Scholar] [CrossRef] [PubMed]
- Mandoli, G.E.; Borrelli, C.; Cameli, M.; Mondillo, S.; Ghiadoni, L.; Taddei, C.; Passino, C.; Emdin, M.; Giannoni, A. Speckle tracking echocardiography in heart failure development and progression in patients with apneas. Heart Fail. Rev. 2021. online ahead of print. [Google Scholar] [CrossRef] [PubMed]
- Saad, A.K.; Aladio, J.M.; Yamasato, F.; Volberg, V.I.; Gonzalez Ballerga, E.; Sordá, J.A.; Daruich, J.; Perez de la Hoz, R.A. Analysis of The Left Atrial Function Using Two-Dimensional Strain in Patients with Recent Diagnosis of Hereditary Hemochromatosis. Curr. Probl. Cardiol. 2022, 47, 100903. [Google Scholar] [CrossRef] [PubMed]
- Badano, L.P.; Kolias, T.J.; Muraru, D.; Abraham, T.P.; Aurigemma, G.; Edvardsen, T.; D’Hooge, J.; Donal, E.; Fraser, A.G.; Marwick, T.; et al. Standardization of left atrial, right ventricular, and right atrial deformation imaging using two-dimensional speckle tracking echocardiography: A consensus document of the EACVI/ASE/Industry Task Force to standardize deformation imaging. Eur. Heart J. Cardiovasc. Imaging 2018, 19, 591–600. [Google Scholar] [CrossRef] [PubMed]
- Bao, L.; Cheng, L.; Gao, X.; Yan, F.; Fan, H.; Shan, Y.; Li, Y.; Shi, H.; Huang, G.; Bao, L. Left atrial morpho-functional remodeling in atrial fibrillation assessed by three dimensional speckle tracking echocardiography and its value in atrial fibrillation screening. Cardiovasc. Ultrasound 2022, 20, 13. [Google Scholar] [CrossRef] [PubMed]
- Mochizuki, A.; Yuda, S.; Fujito, T.; Kawamukai, M.; Muranaka, A.; Nagahara, D.; Shimoshige, S.; Hashimoto, A.; Miura, T. Left atrial strain assessed by three-dimensional speckle tracking echocardiography predicts atrial fibrillation recurrence after catheter ablation in patients with paroxysmal atrial fibrillation. J. Echocardiogr. 2017, 15, 79–87. [Google Scholar] [CrossRef]
- Mochizuki, A.; Yuda, S.; Oi, Y.; Kawamukai, M.; Nishida, J.; Kouzu, H.; Muranaka, A.; Kokubu, N.; Shimoshige, S.; Hashimoto, A.; et al. Assessment of left atrial deformation and synchrony by three-dimensional speckle-tracking echocardiography: Comparative studies in healthy subjects and patients with atrial fibrillation. J. Am. Soc. Echocardiogr. 2013, 26, 165–174. [Google Scholar] [CrossRef]
- Amzulescu, M.S.; De Craene, M.; Langet, H.; Pasquet, A.; Vancraeynest, D.; Pouleur, A.C.; Vanoverschelde, J.L.; Gerber, B.L. Myocardial strain imaging: Review of general principles, validation, and sources of discrepancies. Eur. Heart J. Cardiovasc. Imaging 2019, 20, 605–619. [Google Scholar] [CrossRef] [Green Version]
- Bruun Pedersen, K.; Madsen, C.; Sandgaard, N.C.F.; Hey, T.M.; Diederichsen, A.C.P.; Bak, S.; Brandes, A. Left atrial volume index and left ventricular global longitudinal strain predict new-onset atrial fibrillation in patients with transient ischemic attack. Int. J. Cardiovasc. Imaging 2019, 35, 1277–1286. [Google Scholar] [CrossRef]
- Benchimol-Barbosa, P.R. Predictors of mortality in Chagas’ disease: The impact of atrial fibrillation and oral transmission on infected population. Int. J. Cardiol. 2009, 133, 275–277. [Google Scholar] [CrossRef]
- Rojas, L.Z.; Glisic, M.; Pletsch-Borba, L.; Echeverría, L.E.; Bramer, W.M.; Bano, A.; Stringa, N.; Zaciragic, A.; Kraja, B.; Asllanaj, E.; et al. Electrocardiographic abnormalities in Chagas disease in the general population: A systematic review and meta-analysis. PLoS Negl. Trop. Dis. 2018, 12, e0006567. [Google Scholar] [CrossRef] [PubMed]
- Hirose, T.; Kawasaki, M.; Tanaka, R.; Ono, K.; Watanabe, T.; Iwama, M.; Noda, T.; Watanabe, S.; Takemura, G.; Minatoguchi, S. Left atrial function assessed by speckle tracking echocardiography as a predictor of new-onset non-valvular atrial fibrillation: Results from a prospective study in 580 adults. Eur. Heart J. Cardiovasc. Imaging 2012, 13, 243–250. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Park, J.J.; Park, J.H.; Hwang, I.C.; Park, J.B.; Cho, G.Y.; Marwick, T.H. Left Atrial Strain as a Predictor of New-Onset Atrial Fibrillation in Patients With Heart Failure. JACC Cardiovasc. Imaging 2020, 13, 2071–2081. [Google Scholar] [CrossRef] [PubMed]
- Jasic-Szpak, E.; Marwick, T.H.; Donal, E.; Przewlocka-Kosmala, M.; Huynh, Q.; Gozdzik, A.; Woznicka, A.K.; Jankowska, E.A.; Ponikowski, P.; Kosmala, W. Prediction of AF in Heart Failure With Preserved Ejection Fraction: Incremental Value of Left Atrial Strain. JACC Cardiovasc. Imaging 2021, 14, 131–144. [Google Scholar] [CrossRef]
- Furukawa, A.; Ishii, K.; Hyodo, E.; Shibamoto, M.; Komasa, A.; Nagai, T.; Tada, E.; Seino, Y.; Yoshikawa, J. Three-Dimensional Speckle Tracking Imaging for Assessing Left Atrial Function in Hypertensive Patients With Paroxysmal Atrial Fibrillation. Int. Heart J. 2016, 57, 705–711. [Google Scholar] [CrossRef] [Green Version]
- Steger, C.; Pratter, A.; Martinek-Bregel, M.; Avanzini, M.; Valentin, A.; Slany, J.; Stöllberger, C. Stroke patients with atrial fibrillation have a worse prognosis than patients without: Data from the Austrian Stroke registry. Eur. Heart J. 2004, 25, 1734–1740. [Google Scholar] [CrossRef]
- Glotzer, T.V.; Hellkamp, A.S.; Zimmerman, J.; Sweeney, M.O.; Yee, R.; Marinchak, R.; Cook, J.; Paraschos, A.; Love, J.; Radoslovich, G.; et al. Atrial high rate episodes detected by pacemaker diagnostics predict death and stroke: Report of the Atrial Diagnostics Ancillary Study of the MOde Selection Trial (MOST). Circulation 2003, 107, 1614–1619. [Google Scholar] [CrossRef]
- Pagola, J.; Juega, J.; Francisco-Pascual, J.; Bustamante, A.; Penalba, A.; Pala, E.; Rodriguez, M.; De Lera-Alfonso, M.; Arenillas, J.F.; Cabezas, J.A.; et al. Predicting Atrial Fibrillation with High Risk of Embolization with Atrial Strain and NT-proBNP. Transl. Stroke Res. 2021, 12, 735–741. [Google Scholar] [CrossRef]
- Hakalahti, A.; Biancari, F.; Nielsen, J.C.; Raatikainen, M.J. Radiofrequency ablation vs. antiarrhythmic drug therapy as first line treatment of symptomatic atrial fibrillation: Systematic review and meta-analysis. Europace 2015, 17, 370–378. [Google Scholar] [CrossRef]
- Nielsen, A.B.; Skaarup, K.G.; Djernæs, K.; Hauser, R.; San José Estépar, R.; Sørensen, S.K.; Ruwald, M.H.; Hansen, M.L.; Worck, R.H.; Johannessen, A.; et al. Left atrial contractile strain predicts recurrence of atrial tachyarrhythmia after catheter ablation. Int. J. Cardiol. 2022, 358, 51–57. [Google Scholar] [CrossRef]
- Koca, H.; Demirtas, A.O.; Kaypaklı, O.; Icen, Y.K.; Sahin, D.Y.; Koca, F.; Koseoglu, Z.; Baykan, A.O.; Guler, E.C.; Demirtas, D.; et al. Decreased left atrial global longitudinal strain predicts the risk of atrial fibrillation recurrence after cryoablation in paroxysmal atrial fibrillation. J. Interv. Card Electrophysiol. 2020, 58, 51–59. [Google Scholar] [CrossRef] [PubMed]
- Wynn, G.J.; Das, M.; Bonnett, L.J.; Gupta, D. Quality-of-life benefits of catheter ablation of persistent atrial fibrillation: A reanalysis of data from the SARA study. Europace 2015, 17, 222–224. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- January, C.T.; Wann, L.S.; Calkins, H.; Chen, L.Y.; Cigarroa, J.E.; Cleveland, J.C., Jr.; Ellinor, P.T.; Ezekowitz, M.D.; Field, M.E.; Furie, K.L.; et al. 2019 AHA/ACC/HRS Focused Update of the 2014 AHA/ACC/HRS Guideline for the Management of Patients With Atrial Fibrillation: A Report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines and the Heart Rhythm Society in Collaboration With the Society of Thoracic Surgeons. Circulation 2019, 140, e125–e151. [Google Scholar] [CrossRef] [PubMed]
- Cosedis Nielsen, J.; Johannessen, A.; Raatikainen, P.; Hindricks, G.; Walfridsson, H.; Kongstad, O.; Pehrson, S.; Englund, A.; Hartikainen, J.; Mortensen, L.S.; et al. Radiofrequency ablation as initial therapy in paroxysmal atrial fibrillation. N. Engl. J. Med. 2012, 367, 1587–1595. [Google Scholar] [CrossRef] [Green Version]
- Gerstenfeld, E.P.; Duggirala, S. Atrial fibrillation ablation: Indications, emerging techniques, and follow-up. Prog. Cardiovasc. Dis. 2015, 58, 202–212. [Google Scholar] [CrossRef]
- Prystowsky, E.N.; Padanilam, B.J.; Fogel, R.I. Treatment of Atrial Fibrillation. JAMA 2015, 314, 278–288. [Google Scholar] [CrossRef]
- Matei, L.L.; Ghilencea, L.N.; Bejan, G.C.; Stoica, S.; Dragoi-Galrinho, R.; Siliste, C.; Vinereanu, D. Minimum Left Atrial Volume Evaluated by 3D Echocardiography Predicts Atrial Fibrillation Recurrences After a First Radiofrequency Catheter Ablation for Paroxysmal Episodes. Maedica 2021, 16, 345–352. [Google Scholar] [CrossRef]
- Liżewska-Springer, A.; Dąbrowska-Kugacka, A.; Lewicka, E.; Drelich, Ł.; Królak, T.; Raczak, G. Echocardiographic predictors of atrial fibrillation recurrence after catheter ablation: A literature review. Cardiol. J. 2020, 27, 848–856. [Google Scholar] [CrossRef] [Green Version]
- Sarvari, S.I.; Haugaa, K.H.; Stokke, T.M.; Ansari, H.Z.; Leren, I.S.; Hegbom, F.; Smiseth, O.A.; Edvardsen, T. Strain echocardiographic assessment of left atrial function predicts recurrence of atrial fibrillation. Eur. Heart J. Cardiovasc. Imaging 2016, 17, 660–667. [Google Scholar] [CrossRef]
- Yasuda, R.; Murata, M.; Roberts, R.; Tokuda, H.; Minakata, Y.; Suzuki, K.; Tsuruta, H.; Kimura, T.; Nishiyama, N.; Fukumoto, K.; et al. Left atrial strain is a powerful predictor of atrial fibrillation recurrence after catheter ablation: Study of a heterogeneous population with sinus rhythm or atrial fibrillation. Eur. Heart J. Cardiovasc. Imaging 2015, 16, 1008–1014. [Google Scholar] [CrossRef]
- Montserrat, S.; Gabrielli, L.; Borras, R.; Poyatos, S.; Berruezo, A.; Bijnens, B.; Brugada, J.; Mont, L.; Sitges, M. Left atrial size and function by three-dimensional echocardiography to predict arrhythmia recurrence after first and repeated ablation of atrial fibrillation. Eur. Heart J. Cardiovasc. Imaging 2014, 15, 515–522. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, Z.; Xu, M.; Zhang, C.; Liu, H.; Shao, X.; Wang, Y.; Yang, L.; Yang, J. A predictive model using left atrial function and B-type natriuretic peptide level in predicting the recurrence of early persistent atrial fibrillation after radiofrequency ablation. Clin. Cardiol. 2021, 44, 407–414. [Google Scholar] [CrossRef] [PubMed]
- Gupta, D.K.; Shah, A.M.; Giugliano, R.P.; Ruff, C.T.; Antman, E.M.; Grip, L.T.; Deenadayalu, N.; Hoffman, E.; Patel, I.; Shi, M.; et al. Left atrial structure and function in atrial fibrillation: ENGAGE AF-TIMI 48. Eur. Heart J. 2014, 35, 1457–1465. [Google Scholar] [CrossRef] [PubMed]
- Wolf, P.A.; Abbott, R.D.; Kannel, W.B. Atrial fibrillation as an independent risk factor for stroke: The Framingham Study. Stroke 1991, 22, 983–988. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lip, G.Y.; Nieuwlaat, R.; Pisters, R.; Lane, D.A.; Crijns, H.J. Refining clinical risk stratification for predicting stroke and thromboembolism in atrial fibrillation using a novel risk factor-based approach: The euro heart survey on atrial fibrillation. Chest 2010, 137, 263–272. [Google Scholar] [CrossRef] [PubMed]
- Avgil Tsadok, M.; Berliner Senderey, A.; Reges, O.; Leibowitz, M.; Leventer-Roberts, M.; Hoshen, M.; Haim, M. Comparison of Stroke Risk Stratification Scores for Atrial Fibrillation. Am. J. Cardiol. 2019, 123, 1828–1834. [Google Scholar] [CrossRef]
- Habibi, M.; Lima, J.A.C.; Gucuk Ipek, E.; Zimmerman, S.L.; Zipunnikov, V.; Spragg, D.; Ashikaga, H.; Rickard, J.; Marine, J.E.; Berger, R.D.; et al. The association of baseline left atrial structure and function measured with cardiac magnetic resonance and pulmonary vein isolation outcome in patients with drug-refractory atrial fibrillation. Heart Rhythm 2016, 13, 1037–1044. [Google Scholar] [CrossRef]
- Leung, M.; van Rosendael, P.J.; Abou, R.; Ajmone Marsan, N.; Leung, D.Y.; Delgado, V.; Bax, J.J. Left atrial function to identify patients with atrial fibrillation at high risk of stroke: New insights from a large registry. Eur. Heart J. 2018, 39, 1416–1425. [Google Scholar] [CrossRef] [Green Version]
- Obokata, M.; Negishi, K.; Kurosawa, K.; Tateno, R.; Tange, S.; Arai, M.; Amano, M.; Kurabayashi, M. Left atrial strain provides incremental value for embolism risk stratification over CHA₂DS₂-VASc score and indicates prognostic impact in patients with atrial fibrillation. J. Am. Soc. Echocardiogr. 2014, 27, 709–716.e704. [Google Scholar] [CrossRef]
- Liao, J.N.; Chao, T.F.; Kuo, J.Y.; Sung, K.T.; Tsai, J.P.; Lo, C.I.; Lai, Y.H.; Su, C.H.; Hung, C.L.; Yeh, H.I. Global Left Atrial Longitudinal Strain Using 3-Beat Method Improves Risk Prediction of Stroke Over Conventional Echocardiography in Atrial Fibrillation. Circ. Cardiovasc. Imaging 2020, 13, e010287. [Google Scholar] [CrossRef]
- Liao, J.N.; Chao, T.F.; Hung, C.L.; Chen, S.A. The decrease in peak atrial longitudinal strain in patients with atrial fibrillation as a practical parameter for stroke risk stratification. Heart Rhythm 2021, 18, 538–544. [Google Scholar] [CrossRef] [PubMed]
- Santhanakrishnan, R.; Wang, N.; Larson, M.G.; Magnani, J.W.; McManus, D.D.; Lubitz, S.A.; Ellinor, P.T.; Cheng, S.; Vasan, R.S.; Lee, D.S.; et al. Atrial Fibrillation Begets Heart Failure and Vice Versa: Temporal Associations and Differences in Preserved Versus Reduced Ejection Fraction. Circulation 2016, 133, 484–492. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wen, S.; Pislaru, S.V.; Lin, G.; Scott, C.G.; Lee, A.T.; Asirvatham, S.J.; Pellikka, P.A.; Kane, G.C.; Pislaru, C. Association of Postprocedural Left Atrial Volume and Reservoir Function with Outcomes in Patients with Atrial Fibrillation Undergoing Catheter Ablation. J. Am. Soc. Echocardiogr. 2022. online ahead of print. [Google Scholar] [CrossRef]
- Inciardi, R.M.; Giugliano, R.P.; Claggett, B.; Gupta, D.K.; Chandra, A.; Ruff, C.T.; Antman, E.M.; Mercuri, M.F.; Grosso, M.A.; Braunwald, E.; et al. Left atrial structure and function and the risk of death or heart failure in atrial fibrillation. Eur. J. Heart Fail. 2019, 21, 1571–1579. [Google Scholar] [CrossRef]
- Mathias, A.; Moss, A.J.; McNitt, S.; Zareba, W.; Goldenberg, I.; Solomon, S.D.; Kutyifa, V. Clinical Implications of Complete Left-Sided Reverse Remodeling With Cardiac Resynchronization Therapy: A MADIT-CRT Substudy. J. Am. Coll. Cardiol. 2016, 68, 1268–1276. [Google Scholar] [CrossRef]
- Park, J.H.; Hwang, I.C.; Park, J.J.; Park, J.B.; Cho, G.Y. Prognostic power of left atrial strain in patients with acute heart failure. Eur. Heart J. Cardiovasc. Imaging 2021, 22, 210–219. [Google Scholar] [CrossRef] [PubMed]
- Moon, M.-G.; Hwang, I.-C.; Lee, H.-J.; Kim, S.-H.; Yoon, Y.E.; Park, J.-B.; Lee, S.-P.; Kim, H.-K.; Kim, Y.-J.; Cho, G.-Y. Reverse Remodeling Assessed by Left Atrial and Ventricular Strain Reflects Treatment Response to Sacubitril/Valsartan. JACC. Cardiovasc. Imaging 2022. online ahead of print. [Google Scholar] [CrossRef]
Abbreviation | Full Name | Calculations |
---|---|---|
LAV | Left atrium volume | Maximum LAV and minimum LAV are measured using the modified Simpson biplane method at the end-systolic frame preceding mitral valve opening and the end-diastolic frame preceding mitral valve closure, respectively |
LAVi | Left atrium volume index | Maximum LAVi and minimum LAVi are measured using the modified Simpson biplane method at the end-systolic frame preceding mitral valve opening and the end-diastolic frame preceding mitral valve closure, respectively, and indexed to body surface area |
LAEi | Left atrium expansion index | (Maximum LAV–Minimum LAV)/Minimum LAV |
Total LAEF | Total left atrium emptying fraction | (Maximum LAV–Minimum LAV)/Maximum LAV |
Active LAEF | Active left atrium emptying fraction | (LAVpreA–Minimum LAV)/LAVpreA |
Positive LAEF | Positive left atrium emptying fraction | (Maximum LAV–LAVpreA)/Maximum LAV |
LASr (PALS) | Peak left atrium global longitudinal strain during reservoir phase (peak left atrium longitudinal strain) | The difference of the strain value at mitral valve opening minus ventricular end-diastole (the peak value of longitudinal strain during LV systole) |
LASct (PACS) | Peak left atrium global longitudinal strain during contraction phase (peak left atrial contractile strain) | The difference of the strain value at the ventricular end-diastole minus onset of atrial contraction (the value of strain at the onset of P-wave in electrocardiogram) |
LAScd | Peak left atrium global longitudinal strain during the conduit phase | The difference of the strain value at the onset of atrial contraction minus mitral valve opening (LASct minus LASr) |
LASrc | Peak left atrium global circumferential strain during reservoir phase | The peak value of circumferential strain during LV systole |
LASctc | Peak left atrium global circumferential strain during contraction phase | The difference of the strain value at the ventricular end-diastole minus onset of atrial contraction |
LAScdc | Peak left atrium global circumferential strain during conduit phase | The difference of the strain value at the onset of atrial contraction minus mitral valve opening (LASctc minus LASrc) |
LASR | Left atrium longitudinal strain rate | LASR: LASR ≈ (V2 − V1)/d, where V2 and V1 are instantaneous velocities measured in two regions of interest, and d is the distance between the two regions of interest; LASRs (Left atrium longitudinal systolic strain rate): the peak positive longitudinal strain rate during LV systole in strain rate curve; LASRe (Left atrium longitudinal early diastolic strain rate): the negative strain rate during early diastole in strain rate curve; LASRa (Left atrium longitudinal late diastolic strain rate): the negative strain rate during late diastole in strain rate curve |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ji, M.; He, L.; Gao, L.; Lin, Y.; Xie, M.; Li, Y. Assessment of Left Atrial Structure and Function by Echocardiography in Atrial Fibrillation. Diagnostics 2022, 12, 1898. https://doi.org/10.3390/diagnostics12081898
Ji M, He L, Gao L, Lin Y, Xie M, Li Y. Assessment of Left Atrial Structure and Function by Echocardiography in Atrial Fibrillation. Diagnostics. 2022; 12(8):1898. https://doi.org/10.3390/diagnostics12081898
Chicago/Turabian StyleJi, Mengmeng, Lin He, Lang Gao, Yixia Lin, Mingxing Xie, and Yuman Li. 2022. "Assessment of Left Atrial Structure and Function by Echocardiography in Atrial Fibrillation" Diagnostics 12, no. 8: 1898. https://doi.org/10.3390/diagnostics12081898
APA StyleJi, M., He, L., Gao, L., Lin, Y., Xie, M., & Li, Y. (2022). Assessment of Left Atrial Structure and Function by Echocardiography in Atrial Fibrillation. Diagnostics, 12(8), 1898. https://doi.org/10.3390/diagnostics12081898