A Maternally Inherited Rare Case with Chromoanagenesis-Related Complex Chromosomal Rearrangements and De Novo Microdeletions
Abstract
:1. Introduction
2. Materials and Methods
2.1. Patient and Clinical Examination
2.2. Karyotyping and FISH Analysis of Cultured Blood Lymphocytes
2.3. Chromosome Microarray Analysis of Peripheral Blood
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Pellestor, F.; Gatinois, V. Chromoanagenesis: A piece of the macroevolution scenario. Mol. Cytogenet. 2020, 13, 3. [Google Scholar] [CrossRef] [PubMed]
- Holland, A.J.; Cleveland, D.W. Chromoanagenesis and cancer: Mechanisms and consequences of localized, complex chromosomal rearrangements. Nat. Med. 2012, 18, 1630–1638. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pellestor, F.; Gaillard, J.; Schneider, A.; Puechberty, J.; Gatinois, V. Chromoanagenesis, the mechanisms of a genomic chaos. Semin. Cell Dev. Biol. 2022, 123, 90–99. [Google Scholar] [CrossRef]
- Stephens, P.J.; Greenman, C.D.; Fu, B.; Yang, F.; Bignell, G.R.; Mudie, L.J.; Pleasance, E.D.; Lau, K.W.; Beare, D.; Stebbings, L.A.; et al. Massive Genomic Rearrangement Acquired in a Single Catastrophic Event during Cancer Development. Cell 2011, 144, 27–40. [Google Scholar] [CrossRef]
- Bertelsen, B.; Nazaryan-Petersen, L.; Sun, W.; Mehrjouy, M.M.; Xie, G.; Chen, W.; Hjermind, L.E.; Taschner, P.E.M.; Tümer, Z. A germline chromothripsis event stably segregating in 11 individuals through three generations. Genet. Med. 2016, 18, 494–500. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Arya, P.; Hodge, J.C.; Matlock, P.A.; Vance, G.H.; Breman, A.M. Two Patients with Complex Rearrangements Suggestive of Germline Chromoanagenesis. Cytogenet. Genome Res. 2020, 160, 671–679. [Google Scholar] [CrossRef]
- Hattori, A.; Fukami, M. Established and Novel Mechanisms Leading to de novo Genomic Rearrangements in the Human Germline. Cytogenet. Genome Res. 2020, 160, 167–176. [Google Scholar] [CrossRef]
- Liu, P.; Erez, A.; Nagamani, S.C.S.; Dhar, S.U.; Kołodziejska, K.E.; Dharmadhikari, A.V.; Cooper, M.L.; Wiszniewska, J.; Zhang, F.; Withers, M.A.; et al. Chromosome Catastrophes Involve Replication Mechanisms Generating Complex Genomic Rearrangements. Cell 2011, 146, 889–903. [Google Scholar] [CrossRef] [Green Version]
- Shen, M.M. Chromoplexy: A New Category of Complex Rearrangements in the Cancer Genome. Cancer Cell 2013, 23, 567–569. [Google Scholar] [CrossRef] [Green Version]
- Kloosterman, W.P.; Tavakoli-Yaraki, M.; van Roosmalen, M.J.; van Binsbergen, E.; Renkens, I.; Duran, K.; Ballarati, L.; Vergult, S.; Giardino, D.; Hansson, K.; et al. Constitutional Chromothripsis Rearrangements Involve Clustered Double-Stranded DNA Breaks and Nonhomologous Repair Mechanisms. Cell Rep. 2012, 1, 648–655. [Google Scholar] [CrossRef]
- Chiang, C.; Jacobsen, J.C.; Ernst, C.; Hanscom, C.; Heilbut, A.; Blumenthal, I.; Mills, R.E.; Kirby, A.; Lindgren, A.M.; Rudiger, S.R.; et al. Complex reorganization and predominant non-homologous repair following chromosomal breakage in karyotypically balanced germline rearrangements and transgenic integration. Nat. Genet. 2012, 44, 390–397. [Google Scholar] [CrossRef]
- Nazaryan, L.; Stefanou, E.G.; Hansen, C.; Kosyakova, N.; Bak, M.; Sharkey, F.H.; Mantziou, T.; Papanastasiou, A.D.; Velissariou, V.; Liehr, T.; et al. The strength of combined cytogenetic and mate-pair sequencing techniques illustrated by a germline chromothripsis rearrangement involving FOXP2. Eur. J. Hum. Genet. 2014, 22, 338–343. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Burnside, R.D.; Harris, A.; Speyer, D.; Burgin, W.S.; Rose, D.Z.; Sanchez-Valle, A. Constitutional Chromoanagenesis of Distal 13q in a Young Adult with Recurrent Strokes. Cytogenet. Genome Res. 2016, 150, 46–51. [Google Scholar] [CrossRef] [PubMed]
- Zanardo, E.A.; Piazzon, F.B.; Dutra, R.L.; Dias, A.T.; Montenegro, M.M.; Novo-Filho, G.M.; Costa, T.V.M.M.; Nascimento, A.M.; Kim, C.A.; Kulikowski, L.D. Complex structural rearrangement features suggesting chromoanagenesis mechanism in a case of 1p36 deletion syndrome. Mol. Genet. Genom. 2014, 289, 1037–1043. [Google Scholar] [CrossRef]
- Chen, P.-Y.; Yen, J.-H.; Cheng, C.-F.; Chen, P.C.; Li, Y.-S.; Li, T.-Y.; Yeh, C.-N.; Fang, J.-S. Prenatal diagnosis of the maternal de-rivative chromosome der(15)t(y;15)(q12;p13) in a dizygotic twin pregnancy. Ci Ji Yi Xue Za Zhi 2016, 28, 176–179. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zepeda-Mendoza, C.J.; Morton, C.C. The Iceberg under Water: Unexplored Complexity of Chromoanagenesis in Congenital Disorders. Am. J. Hum. Genet. 2019, 104, 565–577. [Google Scholar] [CrossRef] [Green Version]
- Ly, P.; Cleveland, D.W. Rebuilding Chromosomes After Catastrophe: Emerging Mechanisms of Chromothripsis. Trends Cell Biol. 2017, 27, 917–930. [Google Scholar] [CrossRef]
- van Binsbergen, E.; Hochstenbach, R.; Giltay, J.; Swinkels, M. Unstable transmission of a familial complex chromosome re-arrangement. Am. J. Med. Genet. A 2012, 158A, 2888–2893. [Google Scholar] [CrossRef]
- Fukami, M.; Shima, H.; Suzuki, E.; Ogata, T.; Matsubara, K.; Kamimaki, T. Catastrophic cellular events leading to complex chromosomal rearrangements in the germline. Clin. Genet. 2017, 91, 653–660. [Google Scholar] [CrossRef]
- Kasher, P.R.; Schertz, K.E.; Thomas, M.; Jackson, A.; Annunziata, S.; Ballesta-Martinez, M.J.; Campeau, P.M.; Clayton, P.E.; Eaton, J.L.; Granata, T.; et al. Small 6q16.1 Deletions Encompassing POU3F2 Cause Susceptibility to Obesity and Variable Developmental Delay with Intellectual Disability. Am. J. Hum. Genet. 2016, 98, 363–372. [Google Scholar] [CrossRef] [Green Version]
- Okazaki, T.; Kawaguchi, T.; Saiki, Y.; Aoki, C.; Kasagi, N.; Adachi, K.; Saida, K.; Matsumoto, N.; Nanba, E.; Maegaki, Y. Clinical course of a Japanese patient with developmental delay linked to a small 6q16.1 deletion. Hum. Genome Var. 2022, 9, 14. [Google Scholar] [CrossRef] [PubMed]
- Sailer, A.W.; Sano, H.; Zeng, Z.; McDonald, T.P.; Pan, J.; Pong, S.-S.; Feighner, S.D.; Tan, C.P.; Fukami, T.; Iwaasa, H.; et al. Identification and characterization of a second melanin-concentrating hormone receptor, MCH-2R. Proc. Natl. Acad. Sci. USA 2001, 98, 7564–7569. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bonaglia, M.C.; Ciccone, R.; Gimelli, G.; Gimelli, S.; Marelli, S.; Verheij, J.; Giorda, R.; Grasso, R.; Borgatti, R.; Pagone, F.; et al. Detailed phenotype–genotype study in five patients with chromosome 6q16 deletion: Narrowing the critical region for Prader–Willi-like phenotype. Eur. J. Hum. Genet. 2008, 16, 1443–1449. [Google Scholar] [CrossRef] [PubMed]
- Blok, L.S.; Kleefstra, T.; Venselaar, H.; Maas, S.; Kroes, H.Y.; Lachmeijer, A.M.A.; van Gassen, K.L.I.; Firth, H.V.; Tomkins, S.; Bodek, S.; et al. De novo variants disturbing the transactivation capacity of pou3f3 cause a characteristic neurodevel-opmental disorder. Am. J. Hum. Genet. 2019, 105, 403–412. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Westphal, D.S.; Riedhammer, K.M.; Kovacs-Nagy, R.; Meitinger, T.; Hoefele, J.; Wagner, M. A De Novo Missense Variant in POU3F2 Identified in a Child with Global Developmental Delay. Neuropediatrics 2018, 49, 401–404. [Google Scholar] [CrossRef]
- El-Hattab, A.W.; Dai, H.; Almannai, M.; Wang, J.; Faqeih, E.A.; Al Asmari, A.; Saleh, M.A.M.; Elamin, M.A.O.; Alfadhel, M.; Alkuraya, F.S.; et al. Molecular and clinical spectra of FBXL4 deficiency. Hum. Mutat. 2017, 38, 1649–1659. [Google Scholar] [CrossRef]
- Gai, X.; Ghezzi, D.; Johnson, M.A.; Biagosch, C.A.; Shamseldin, H.E.; Haack, T.B.; Reyes, A.; Tsukikawa, M.; Sheldon, C.A.; Srinivasan, S.; et al. Mutations in FBXL4, Encoding a Mitochondrial Protein, Cause Early-Onset Mitochondrial Encephalomyopathy. Am. J. Hum. Genet. 2013, 93, 482–495. [Google Scholar] [CrossRef] [Green Version]
CMA Deletions | Gene/Region | HI Score | OMIM No. | %HI | pLI | LOEUF |
---|---|---|---|---|---|---|
6p12.1 (54906732_55533279)x1 | HCRTR2 | Not Yet Evaluated | 602393 | 38.52 | 0.01 | 0.64 |
GFRAL | Not Yet Evaluated | 617837 | 59.12 | 0 | 1.26 | |
HMGCLL1 | Not Yet Evaluated | 619050 | 31.99 | 0 | 1.07 | |
6q14.1 (76909657_77824306)x1 | RNU6-261P | −1 (Pseudogene) | - | - | - | - |
RNU6-84P | −1 (Pseudogene) | - | - | - | - | |
LOC100131680 | −1 (Pseudogene) | - | - | - | - | |
6q16.1q16.3 (98650510_100809778)x1 | POU3F2 | Not Yet Evaluated | 600494 | 15.19 | 0.92 | 0.38 |
FBXL4 | Not Yet Evaluated | 605654 | 10.28 | 0 | 0.92 | |
MIR548AI | Not Yet Evaluated | - | - | - | - | |
BDH2P1 | −1 (Pseudogene) | - | - | - | - | |
FAXC | Not Yet Evaluated | - | 21.43 | 0.93 | 0.36 | |
COQ3 | Not Yet Evaluated | 605196 | 40.91 | 0 | 1.34 | |
PNISR | Not Yet Evaluated | 616653 | 9.32 | 1 | 0.18 | |
LOC100506090 | −1 (Pseudogene) | - | - | - | - | |
LOC101927365 | −1 (Pseudogene) | - | - | - | - | |
USP45 | Not Yet Evaluated | 618439 | 45.27 | 0 | 1.06 | |
TSTD3 | Not Yet Evaluated | - | - | - | - | |
CCNC | Not Yet Evaluated | 123838 | 2.45 | 1 | 0.15 | |
RPS3P5 | −1 (Pseudogene) | - | - | - | - | |
PRDM13 | Not Yet Evaluated | 616741 | 56.21 | 0.56 | 0.46 | |
MCHR2 | Not Yet Evaluated | 606111 | 40.65 | 0 | 1.2 | |
MCHR2-AS1 | Not Yet Evaluated | - | - | - | - | |
NPM1P38 | −1 (Pseudogene) | - | - | - | - | |
LOC100420742 | −1 (Pseudogene) | - | - | - | - | |
PRDX2P4 | −1 (Pseudogene) | - | - | - | - | |
LOC100129854 | −1 (Pseudogene) | - | - | - | - |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yen, J.-H.; Chu, S.-Y.; Chen, Y.-J.; Su, Y.-C.; Chien, C.-C.; Weng, C.-Y.; Chen, P.-Y. A Maternally Inherited Rare Case with Chromoanagenesis-Related Complex Chromosomal Rearrangements and De Novo Microdeletions. Diagnostics 2022, 12, 1900. https://doi.org/10.3390/diagnostics12081900
Yen J-H, Chu S-Y, Chen Y-J, Su Y-C, Chien C-C, Weng C-Y, Chen P-Y. A Maternally Inherited Rare Case with Chromoanagenesis-Related Complex Chromosomal Rearrangements and De Novo Microdeletions. Diagnostics. 2022; 12(8):1900. https://doi.org/10.3390/diagnostics12081900
Chicago/Turabian StyleYen, Jui-Hung, Shao-Yin Chu, Yann-Jang Chen, Yi-Chieh Su, Chun-Ching Chien, Chun-Ying Weng, and Pei-Yi Chen. 2022. "A Maternally Inherited Rare Case with Chromoanagenesis-Related Complex Chromosomal Rearrangements and De Novo Microdeletions" Diagnostics 12, no. 8: 1900. https://doi.org/10.3390/diagnostics12081900
APA StyleYen, J. -H., Chu, S. -Y., Chen, Y. -J., Su, Y. -C., Chien, C. -C., Weng, C. -Y., & Chen, P. -Y. (2022). A Maternally Inherited Rare Case with Chromoanagenesis-Related Complex Chromosomal Rearrangements and De Novo Microdeletions. Diagnostics, 12(8), 1900. https://doi.org/10.3390/diagnostics12081900