Lowering of the Neonatal Lung Ultrasonography Score after nCPAP Positioning in Neonates over 32 Weeks of Gestational Age with Neonatal Respiratory Distress
Abstract
:1. Introduction
2. Materials and Methods
Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Reuter, S.; Moser, C.; Baack, M. Respiratory distress in the newborn. Pediatr. Rev. 2014, 35, 417–428. [Google Scholar] [CrossRef] [PubMed]
- Edwards, M.O.; Kotecha, S.J.; Kotecha, S. Respiratory distress of the term newborn infant. Paediatr. Respir. Rev. 2013, 14, 29–36. [Google Scholar] [CrossRef] [PubMed]
- Pramanik, A.K.; Rangaswamy, N.; Gates, T. Neonatal respiratory distress: A practical approach to its diagnosis and management. Pediatr. Clin. N. Am. 2015, 62, 453–469. [Google Scholar] [CrossRef] [PubMed]
- Hogden, L.; Munger, K.; Duffek, S. Neonatal Respiratory Distress. S D Med. 2021, 74, 28–35. [Google Scholar]
- Liszewski, M.C.; Stanescu, A.L.; Phillips, G.S.; Lee, E.Y. Respiratory Distress in Neonates: Underlying Causes and Current Im-aging Assessment. Radiol. Clin. N. Am. 2017, 55, 629–644. [Google Scholar] [CrossRef]
- Mahoney, A.D.; Jain, L. Respiratory Disorders in Moderately Preterm, Late Preterm, and Early Term Infants. Clin. Perinatol. 2013, 40, 665–678. [Google Scholar] [CrossRef]
- Chowdhury, O.; Wedderburn, C.J.; Duffy, D.; Greenough, A. CPAP review. Eur. J. Pediatr. 2012, 171, 1441–1448. [Google Scholar] [CrossRef]
- Behnke, J.; Lemyre, B.; Czernik, C.; Zimmer, K.-P.; Ehrhardt, H.; Waitz, M. Non-Invasive Ventilation in Neonatology. Dtsch. Arztebl. Int. 2019, 116, 177–183. [Google Scholar] [CrossRef]
- Schmölzer, G.M.; Kumar, M.; Pichler, G.; Aziz, K.; O’Reilly, M.; Cheung, P.-Y. Non-invasive versus invasive respiratory support in preterm infants at birth: Systematic review and meta-analysis. BMJ 2013, 347, f5980. [Google Scholar] [CrossRef] [Green Version]
- Jha, K.; Nassar, G.N.; Makker, K. Transient Tachypnea of the Newborn; StatPearls Publishing: Treasure Island, FL, USA, 2022. [Google Scholar]
- Alhassen, Z.; Vali, P.; Guglani, L.; Lakshminrusimha, S.; Ryan, R.M. Recent Advances in Pathophysiology and Management of Transient Tachypnea of Newborn. J. Perinatol. 2021, 41, 6–16. [Google Scholar] [CrossRef]
- Neonatal Respiratory Distress in the Community Hospital: When to Transport, When to Keep. Available online: https://www.thefreelibrary.com/Neonatal+respiratory+distress+in+the+community+hospital%3A+when+to...-a020582095 (accessed on 15 June 2022).
- Corsini, I.; Parri, N.; Ficial, B.; Dani, C. Lung ultrasound in the neonatal intensive care unit: Review of the literature and future perspectives. Pediatr. Pulmonol. 2020, 55, 1550–1562. [Google Scholar] [CrossRef] [PubMed]
- Perri, A.; Riccardi, R.; Iannotta, R.; Di Molfetta, D.V.; Arena, R.; Vento, G.; Zecca, E. Lung ultrasonography score versus chest X-ray score to predict surfactant administration in newborns with respiratory distress syndrome. Pediatr. Pulmonol. 2018, 53, 1231–1236. [Google Scholar] [CrossRef] [PubMed]
- Miller, L.E.; Stoller, J.; Fraga, M.V. Point-of-care ultrasound in the neonatal ICU. Curr. Opin. Pediatr. 2020, 32, 216–227. [Google Scholar] [CrossRef]
- Liu, J.; Copetti, R.; Sorantin, E.; Lovrenski, J.; Rodriguez-Fanjul, J.; Kurepa, D.; Feng, X.; Cattaross, L.; Zhang, H.; Yeh, T.F.; et al. Protocol and Guidelines for Point-of-Care Lung Ultrasound in Diagnosing Neonatal Pulmonary Diseases Based on International Expert Consensus. J. Vis. Exp. 2019, e58990. [Google Scholar] [CrossRef] [PubMed]
- Kurepa, D.; Zaghloul, N.; Watkins, L.; Liu, J. Neonatal lung ultrasound exam guidelines. J. Perinatol. 2017, 38, 11–22. [Google Scholar] [CrossRef] [PubMed]
- Ramaswamy, V.V.; More, K.; Roehr, C.C.; Bandiya, P.; Nangia, S. Efficacy of noninvasive respiratory support modes for primary respiratory support in preterm neonates with respiratory distress syndrome: Systematic review and network meta-analysis. Pediatr. Pulmonol. 2020, 55, 2940–2963. [Google Scholar] [CrossRef] [PubMed]
- Ma, H.-R.; Liu, J.; Yan, W.-K. Accuracy and Reliability of Lung Ultrasound to Diagnose Transient Tachypnoea of the Newborn: Evidence from a Meta-analysis and Systematic Review. Am. J. Perinatol. 2020, 39, 0973–0979. [Google Scholar] [CrossRef]
- Ruoss, J.L.; Bazacliu, C.; Cacho, N.; De Luca, D. Lung Ultrasound in the Neonatal Intensive Care Unit: Does It Impact Clinical Care? Children 2021, 8, 1098. [Google Scholar] [CrossRef]
- He, L.; Sun, Y.; Sheng, W.; Yao, Q. Diagnostic performance of lung ultrasound for transient tachypnea of the newborn: A me-ta-analysis. PLoS ONE 2021, 16, e0248827. [Google Scholar] [CrossRef]
- Li, C.-S.; Chu, S.-M.; Lien, R.; Mok, T.-Y.; Hsu, K.-H.; Lai, S.-H. Prospective investigation of serial ultrasound for transient tachypnea of the newborn. Pediatr. Neonatol. 2021, 62, 64–69. [Google Scholar] [CrossRef]
- Gregorio-Hernández, R.; Arriaga-Redondo, M.; Pérez-Pérez, A.; Ramos-Navarro, C.; Sánchez-Luna, M. Lung ultrasound in preterm infants with respiratory distress: Experience in a neonatal intensive care unit. Eur. J. Pediatr. 2020, 179, 81–89. [Google Scholar] [CrossRef] [PubMed]
- Zong, H.F.; Guo, G.; Liu, J.; Yang, C.Z.; Bao, L.L. Wet lung leading to RDS: The lung ultrasound findings and possible mecha-nisms—A pilot study from an animal mode. J. Matern.-Fetal Neonatal Med. 2021, 34, 2197–2205. [Google Scholar] [CrossRef]
- Ibrahim, M.; Omran, A.; AbdAllah, N.; El-Sharkawy, S. Lung ultrasound in early diagnosis of neonatal transient tachypnea and its differentiation from other causes of neonatal respiratory distress. J. Neonatal-Perinat. Med. 2018, 11, 281–287. [Google Scholar] [CrossRef]
- Oktem, A.; Yigit, S.; Oğuz, B.; Celik, T.; Haliloğlu, M.; Yurdakok, M. Accuracy of lung ultrasonography in the diagnosis of respiratory distress syndrome in newborns. J Matern.-Fetal Neonatal Med. 2021, 34, 281–286. [Google Scholar] [CrossRef] [PubMed]
- De Martino, L.; Yousef, N.; Ben-Ammar, R.; Raimondi, F.; Shankar-Aguilera, S.; De Luca, D. Lung Ultrasound Score Predicts Surfactant Need in Extremely Preterm Neonates. Pediatrics 2018, 142, e20180463. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brat, R.; Yousef, N.; Klifa, R.; Reynaud, S.; Aguilera, S.; De Luca, D. Lung Ultrasonography Score to Evaluate Oxygenation and Surfactant Need in Neonates Treated with Continuous Positive Airway Pressure. JAMA Pediatr. 2015, 169, e151797. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Raimondi, F.; Migliaro, F.; Corsini, I.; Meneghin, F.; Pierri, L.; Salomè, S.; Perri, A.; Aversa, S.; Nobile, S.; Lama, S.; et al. Neonatal Lung Ultrasound and Surfactant Administration: A Pragmatic, Multicenter Study. Chest 2021, 160, 2178–2186. [Google Scholar] [CrossRef]
- Poerio, A.; Galletti, S.; Baldazzi, M.; Martini, S.; Rollo, A.; Spinedi, S.; Raimondi, F.; Zompatori, M.; Corvaglia, L.; Aceti, A. Lung ultrasound features predict admission to the neonatal intensive care unit in infants with transient neonatal tachypnoea or respiratory distress syndrome born by caesarean section. Eur. J. Pediatr. 2020, 180, 869–876. [Google Scholar] [CrossRef]
- Sweet, D.G.; Carnielli, V.; Greisen, G.; Hallman, M.; Ozek, E.; Te Pas, A.; Plavka, R.; Roehr, C.C.; Saugstad, O.D.; Simeoni, U.; et al. European Consensus Guidelines on the Management of Respiratory Distress Syndrome—2019 Update. Neonatology 2019, 115, 432–450. [Google Scholar] [CrossRef] [Green Version]
- Ng, E.H.; Shah, V. Guidelines for surfactant replacement therapy in neonates. Paediatr. Child Health 2021, 26, 35–41. [Google Scholar] [CrossRef]
- Ho, J.J.; Subramaniam, P.; Davis, P.G. Continuous positive airway pressure (CPAP) for respiratory distress in preterm infants. Cochrane Database Syst Rev. 2020, 10, CD002271. [Google Scholar] [PubMed]
- Ho, J.J.; Subramaniam, P.; Sivakaanthan, A.; Davis, P.G. Early versus delayed continuous positive airway pressure (CPAP) for respiratory distress in preterm infants. Cochrane Database Syst. Rev. 2020, 10, CD002975. [Google Scholar] [CrossRef] [PubMed]
- Szymański, P.; Kruczek, P.; Hożejowski, R.; Wais, P. Modified lung ultrasound score predicts ventilation requirements in neonatal respiratory distress syndrome. BMC Pediatr. 2021, 21, 17. [Google Scholar] [CrossRef] [PubMed]
- Schneider-Kolsky, M.E.; Ayobi, Z.; Lombardo, P.; Brown, D.; Kedang, B.; Gibbs, M.E. Ultrasound exposure of the foetal chick brain: Effects on learning and memory. Int. J. Dev. Neurosci. 2009, 27, 677–683. [Google Scholar] [CrossRef]
- Komatsu, C.V.; Silva, C.C.; De Souza, L.R.M.F.; Gonçalves, L.F. Excess Radiation to Newborns Hospitalized in the Intensive Care Unit. Radiat. Prot. Dosim. 2017, 177, 331–341. [Google Scholar] [CrossRef]
- Prontera, G.; Perri, A.; Vento, G.; D’Andrea, V. Use of Wireless Ultrasound Probe in Isolated Infants: A Case Report of Two SARS-CoV-2-Positive Mothers’ Newborns. Neonatology 2022, 119, 129–132. [Google Scholar] [CrossRef]
N = 33 | |
---|---|
GA (weeks) | 35.4 (34.2–37.3) |
Birth weight (grams) | 2530 (2230–2993) |
Vaginal delivery | 11 (33.3%) |
AGA | 29 (87.9%) |
SGA | 2 (6.1%) |
LGA | 2 (6.1%) |
Female | 8 (24.2%) |
Male | 25 (75.8%) |
Antenatal steroids | 4 (12.1%) |
No antenatal steroids | 29 (87.9%) |
RDS | 20 (60.6%) |
TTN | 6 (18.2%) |
Pneumonia | 7 (21.2%) |
Exogenous surfactant | 13(39.4%) |
T0 | T1 | Z (Wilcoxon) | p-Value | |
---|---|---|---|---|
nLUS | 9 (7–12) | 7 (4–10) | −3.66 | <0.001 |
FiO2 | 30% (25–30%) | 25% (22–30%) | −7 | 0.48 |
Exogenous Surfactant (n = 13) | No Exogenous Surfactant (n = 20) | U (Mann Whitney) | p-Value | |
---|---|---|---|---|
nLUSt0-nLUSt1 | 0 (0–2) | 3 (0–6) | 67.5 | 0.02 |
nLUSt0-nLUSt1(%) | 0% (0–16%) | 28%(4–77%) | 58 | 0.007 |
LUS T0 | LUS T1 | DeltaLUS | |
---|---|---|---|
RDS | 10 (7–12) | 8 (6–11) | 1.5 (0–2.5) |
TTN | 8 (7–9) | 2 (0–2) | 5 (3.25–7) |
Pneumonia | 9 (7–10) | 9 (7–10) | 0 (0–0) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Perri, A.; Fattore, S.; D’Andrea, V.; Sbordone, A.; Patti, M.L.; Nobile, S.; Tirone, C.; Giordano, L.; Tana, M.; Priolo, F.; et al. Lowering of the Neonatal Lung Ultrasonography Score after nCPAP Positioning in Neonates over 32 Weeks of Gestational Age with Neonatal Respiratory Distress. Diagnostics 2022, 12, 1909. https://doi.org/10.3390/diagnostics12081909
Perri A, Fattore S, D’Andrea V, Sbordone A, Patti ML, Nobile S, Tirone C, Giordano L, Tana M, Priolo F, et al. Lowering of the Neonatal Lung Ultrasonography Score after nCPAP Positioning in Neonates over 32 Weeks of Gestational Age with Neonatal Respiratory Distress. Diagnostics. 2022; 12(8):1909. https://doi.org/10.3390/diagnostics12081909
Chicago/Turabian StylePerri, Alessandro, Simona Fattore, Vito D’Andrea, Annamaria Sbordone, Maria Letizia Patti, Stefano Nobile, Chiara Tirone, Lucia Giordano, Milena Tana, Francesca Priolo, and et al. 2022. "Lowering of the Neonatal Lung Ultrasonography Score after nCPAP Positioning in Neonates over 32 Weeks of Gestational Age with Neonatal Respiratory Distress" Diagnostics 12, no. 8: 1909. https://doi.org/10.3390/diagnostics12081909
APA StylePerri, A., Fattore, S., D’Andrea, V., Sbordone, A., Patti, M. L., Nobile, S., Tirone, C., Giordano, L., Tana, M., Priolo, F., Serrao, F., Riccardi, R., Prontera, G., & Vento, G. (2022). Lowering of the Neonatal Lung Ultrasonography Score after nCPAP Positioning in Neonates over 32 Weeks of Gestational Age with Neonatal Respiratory Distress. Diagnostics, 12(8), 1909. https://doi.org/10.3390/diagnostics12081909