Reference Interval for the Axis-Shield Clinical Chemistry Heparin-Binding Protein Assay
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. Axis-Shield Clinical Chemistry HBP Assay
2.3. Statistical Analysis
3. Results
3.1. Reference Interval
3.2. Analytical Performance
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Singer, M.; Deutschman, C.S.; Seymour, C.W.; Shankar-Hari, M.; Annane, D.; Bauer, M.; Bellomo, R.; Bernard, G.R.; Chiche, J.D.; Coopersmith, C.M.; et al. The third international consensus definitions for sepsis and septic shock (Sepsis-3). JAMA 2016, 315, 801–810. [Google Scholar] [CrossRef]
- Fisher, J.; Linder, A. Heparin-binding protein: A key player in the pathophysiology of organ dysfunction in sepsis. J. Intern. Med. 2017, 281, 562–574. [Google Scholar] [CrossRef] [Green Version]
- Pierrakos, C.; Vincent, J.L. Sepsis biomarkers: A review. Crit. Care 2010, 14, R15. [Google Scholar] [CrossRef] [Green Version]
- Pereira, H.A. CAP37, a neutrophil-derived multifunctional inflammatory mediator. J. Leukoc. Biol. 1995, 57, 805–812. [Google Scholar] [CrossRef]
- Tapper, H.; Karlsson, A.; Mörgelin, M.; Flodgaard, H.; Herwald, H. Secretion of heparin-binding protein from human neutrophils is determined by its localization in azurophilic granules and secretory vesicles. Blood 2002, 99, 1785–1793. [Google Scholar] [CrossRef]
- Linder, A.; Soehnlein, O.; Akesson, P. Roles of heparin-binding protein in bacterial infections. J. Innate Immun. 2010, 2, 431–438. [Google Scholar] [CrossRef]
- Linder, A.; Arnold, R.; Boyd, J.H.; Zindovic, M.; Zindovic, I.; Lange, A.; Paulsson, M.; Nyberg, P.; Russell, J.A.; Pritchard, D.; et al. Heparin-binding protein measurement improves the prediction of severe infection with organ dysfunction in the emergency department. Crit. Care Med. 2015, 43, 2378–2386. [Google Scholar] [CrossRef] [Green Version]
- Zhou, Y.; Liu, Z.; Huang, J.; Li, G.; Li, F.; Cheng, Y.; Xie, X.; Zhang, J. Usefulness of the heparin-binding protein level to diagnose sepsis and septic shock according to Sepsis-3 compared with procalcitonin and C reactive protein: A prospective cohort study in China. BMJ Open 2019, 9, e026527. [Google Scholar] [CrossRef] [Green Version]
- Linder, A.; Christensson, B.; Herwald, H.; Björck, L.; Akesson, P. Heparin-binding protein: An early marker of circulatory failure in sepsis. Clin. Infect. Dis. 2009, 49, 1044–1050. [Google Scholar] [CrossRef] [Green Version]
- Chew, M.S.; Linder, A.; Santen, S.; Ersson, A.; Herwald, H.; Thorlacius, H. Increased plasma levels of heparin-binding protein in patients with shock: A prospective, cohort study. Inflamm. Res. 2012, 61, 375–379. [Google Scholar] [CrossRef]
- Linder, A.; Åkesson, P.; Inghammar, M.; Treutiger, C.J.; Linner, A.; Sunden-Cullberg, J. Elevated plasma levels of heparin-binding protein in intensive care unit patients with severe sepsis and septic shock. Crit. Care 2012, 16, R90. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lin, Q.; Shen, J.; Shen, L.; Zhang, Z.; Fu, F. Increased plasma levels of heparin-binding protein in patients with acute respiratory distress syndrome. Crit. Care 2013, 17, R155. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tverring, J.; Vaara, S.T.; Fisher, J.; Poukkanen, M.; Pettilä, V.; Linder, A.; FINNAKI Study Group. Heparin-binding protein (HBP) improves prediction of sepsis-related acute kidney injury. Ann. Intensive Care 2017, 7, 105. [Google Scholar] [CrossRef] [Green Version]
- Tydén, J.; Herwald, H.; Hultin, M.; Walldén, J.; Johansson, J. Heparin-binding protein as a biomarker of acute kidney injury in critical illness. Acta Anaesthesiol. Scand. 2017, 61, 797–803. [Google Scholar] [CrossRef] [PubMed]
- Kandil, M.; Khalil, G.; El-Attar, E.; Shehata, G.; Hassan, S. Accuracy of heparin binding protein: As a new marker in prediction of acute bacterial meningitis. Braz. J. Microbiol. 2018, 49 (Suppl. S1), 213–219. [Google Scholar] [CrossRef]
- Kahn, F.; Tverring, J.; Mellhammar, L.; Wetterberg, N.; Bläckberg, A.; Studahl, E.; Hadorn, N.; Kahn, R.; Nueesch, S.; Jent, P.; et al. Heparin-binding protein as a prognostic biomarker of sepsis and disease severity at the emergency department. Shock 2019, 52, e135–e145. [Google Scholar] [CrossRef]
- Mellhammar, L.; Thelaus, L.; Elén, S.; Fisher, J.; Linder, A. Heparin binding protein in severe COVID-19-A prospective observational cohort study. PLoS ONE 2021, 16, e0249570. [Google Scholar] [CrossRef]
- Sakamoto, S.; Putalun, W.; Vimolmangkang, S.; Phoolcharoen, W.; Shoyama, Y.; Tanaka, H.; Morimoto, S. Enzyme-linked immunosorbent assay for the quantitative/qualitative analysis of plant secondary metabolites. J. Nat. Med. 2018, 72, 32–42. [Google Scholar] [CrossRef] [Green Version]
- Axis-Shield Clinical Chemistry Heparin Binding Protein Reagent Kit. Available online: https://www.axis-shield.com//wp-content/uploads/2019/12/FHHBP101_-ASD-CC-HBP_Reagent-IFU_RPBL1302-R2.pdf (accessed on 16 February 2022).
- EP28-A3c; Defining, Establishing, and Verifying Reference Intervals in the Clinical Laboratory; Approved Guideline—Third Edition. Clinical and Laboratory Standards Institute: Wayne, PA, USA, 2010.
- Reed, A.H.; Henry, R.J.; Mason, W.B. Influence of statistical method used on the resulting estimate of normal range. Clin. Chem. 1971, 17, 275–284. [Google Scholar] [CrossRef]
- EP05-A3; Evaluation of Precision of Quantitative Measurement Procedures; Approved Guideline—Third Edition. Clinical and Laboratory Standards Institute: Wayne, PA, USA, 2014.
- Barnhart, H.X.; Barboriak, D.P. Applications of the repeatability of quantitative imaging biomarkers: A review of statistical analysis of repeat data sets. Transl. Oncol. 2009, 2, 231–235. [Google Scholar] [CrossRef] [Green Version]
- Lecler, A.; Savatovsky, J.; Balvay, D.; Zmuda, M.; Sadik, J.C.; Galatoire, O.; Charbonneau, F.; Bergès, O.; Picard, H.; Fournier, L. Repeatability of apparent diffusion coefficient and intravoxel incoherent motion parameters at 3.0 Tesla in orbital lesions. Eur. Radiol. 2017, 27, 5094–5103. [Google Scholar] [CrossRef] [PubMed]
- EP06-A; Evaluation of the Linearity of Quantitative Measurement Prodedures: A Statistical Approach; Approved Guideline. Clinical and Laboratory Standards Institute: Wayne, PA, USA, 2003.
- EP10-A3-AMD; Preliminary Evaluation of Quantitative Clinical Laboratory Measurement Procedures; Approved Guideline—Third Edition. Clinical and Laboratory Standards Institute: Wayne, PA, USA, 2014.
- Broughton, P.M. Carry-over in automatic analysers. J. Automat. Chem. 1984, 6, 94–95. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Liu, G.; He, Q.; Shen, J.; Xu, L.; Zhu, P.; Zhao, M. A Promising candidate: Heparin-binding protein steps onto the stage of sepsis prediction. J. Immunol. Res. 2019, 2019, 7515346. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, H.; Hur, M.; Struck, J.; Bergmann, A.; Di Somma, S. Circulating biologically active adrenomedullin predicts organ failure and mortality in sepsis. Ann. Lab. Med. 2019, 39, 454–463. [Google Scholar] [CrossRef]
- Kim, H.; Hur, M.; Struck, J.; Bergmann, A.; Di Somma, S. Proenkephalin predicts organ failure, renal replacement therapy, and mortality in patients with sepsis. Ann. Lab. Med. 2020, 40, 466–473. [Google Scholar] [CrossRef]
- Wu, A.H. Biological and analytical variation of clinical biomarker testing: Implications for biomarker-guided therapy. Curr. Heart Fail. Rep. 2013, 10, 434–440. [Google Scholar] [CrossRef]
- Aziz, N.; Detels, R.; Quint, J.J.; Gjertson, D.; Ryner, T.; Butch, A.W. Biological variation of immunological blood biomarkers in healthy individuals and quality goals for biomarker tests. BMC Immunol. 2019, 20, 33. [Google Scholar] [CrossRef]
- European Federation of Clinical Chemistry and Laboratory Medicine (EFLM) Biological Variation Database. Available online: https://biologicalvariation.eu (accessed on 22 July 2022).
- Park, M.; Hur, M.; Kim, H.; Lee, C.H.; Lee, J.H.; Kim, H.W.; Nam, M. Prognostic utility of procalcitonin, presepsin, and the VACO index for predicting 30-day mortality in hospitalized COVID-19 patients. Ann. Lab. Med. 2022, 42, 406–414. [Google Scholar] [CrossRef]
- Hur, M.; Kim, H.; Lee, S.; Cristofano, F.; Magrini, L.; Marino, R.; Gori, C.S.; Bongiovanni, C.; Zancla, B.; Cardelli, P.; et al. Diagnostic and prognostic utilities of multimarkers approach using procalcitonin, B-type natriuretic peptide, and neutrophil gelatinase-associated lipocalin in critically ill patients with suspected sepsis. BMC Infect. Dis. 2014, 14, 224. [Google Scholar] [CrossRef] [Green Version]
- Kim, H.; Hur, M.; Moon, H.W.; Yun, Y.M.; Di Somma, S.; GREAT Network. Multi-marker approach using procalcitonin, presepsin, galectin-3, and soluble suppression of tumorigenicity 2 for the prediction of mortality in sepsis. Ann. Intensive Care 2017, 7, 27. [Google Scholar] [CrossRef] [Green Version]
- Kjölvmark, C.; Akesson, P.; Linder, A. Elevated urine levels of heparin-binding protein in children with urinary tract infection. Pediatr. Nephrol. 2012, 27, 1301–1308. [Google Scholar] [CrossRef]
- El-Sabbagh, A.M.; Abd Elmagid, D.S. Heparin-binding protein as an immunological marker in children urinary tract infection. Egypt. J. Med. Microbiol. 2017, 26, 131–135. [Google Scholar] [CrossRef]
- Hovold, G.; Palmcrantz, V.; Kahn, F.; Egesten, A.; Påhlman, L.I. Heparin-binding protein in sputum as a marker of pulmonary inflammation, lung function, and bacterial load in children with cystic fibrosis. BMC Pulm. Med. 2018, 18, 104. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dipalo, M.; Guido, L.; Micca, G.; Pittalis, S.; Locatelli, M.; Motta, A.; Bianchi, V.; Callegari, T.; Aloe, R.; Da Rin, G.; et al. Multicenter comparison of automated procalcitonin immunoassays. Pract. Lab. Med. 2015, 2, 22–28. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fellahi, S.; Béraud, L.; Marlin, G.; Vigouroux, C.; Warszawski, J.; Capeau, J.; Bastard, J.P. Comparison of two techniques of adiponectin assay, ELISA and immunoturbidimetry: Should we move towards standardization? Diabetes Metab. 2017, 43, 395–397. [Google Scholar] [CrossRef]
Characteristic | Total | Men | Women |
---|---|---|---|
n (%) | 212 (100.0) | 93 (43.9) | 119 (56.1) |
Age (yrs), (median, range) | 45 (19–79) | 44 (19–78) | 45 (19–79) |
CBC (median, IQR) | |||
WBC (×109/L) | 6.76 (5.87–7.93) | 6.96 (5.99–8.01) | 6.61 (5.78–7.93) |
Hb (g/L) | 141 (131–149) | 150 (145–158) | 132 (128–140) |
Platelet (×109/L) | 244 (216–285) | 231 (206–279) | 249 (219–291) |
CRP (mg/dL), (median, IQR) | 0.05 (0.03–0.10) | 0.06 (0.03–0.11) | 0.04 (0.03–0.10) |
HBP (ng/mL), (median, IQR) | 23.5 (14.8–38.8) | 25.5 (15.8–44.0) | 21.1 (13.9–35.7) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yoon, S.; Hur, M.; Kim, H.; Moon, H.-W.; Yun, Y.-M. Reference Interval for the Axis-Shield Clinical Chemistry Heparin-Binding Protein Assay. Diagnostics 2022, 12, 1930. https://doi.org/10.3390/diagnostics12081930
Yoon S, Hur M, Kim H, Moon H-W, Yun Y-M. Reference Interval for the Axis-Shield Clinical Chemistry Heparin-Binding Protein Assay. Diagnostics. 2022; 12(8):1930. https://doi.org/10.3390/diagnostics12081930
Chicago/Turabian StyleYoon, Sumi, Mina Hur, Hanah Kim, Hee-Won Moon, and Yeo-Min Yun. 2022. "Reference Interval for the Axis-Shield Clinical Chemistry Heparin-Binding Protein Assay" Diagnostics 12, no. 8: 1930. https://doi.org/10.3390/diagnostics12081930
APA StyleYoon, S., Hur, M., Kim, H., Moon, H. -W., & Yun, Y. -M. (2022). Reference Interval for the Axis-Shield Clinical Chemistry Heparin-Binding Protein Assay. Diagnostics, 12(8), 1930. https://doi.org/10.3390/diagnostics12081930