Temporal Changes in Subcutaneous Fibrosis in Patients with Lower Extremity Lymphedema Following Surgery for Gynecologic Cancer: A Computed Tomography-Based Quantitative Analysis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Subjects
2.2. Lymphedema Management
2.3. CT-Based Quantitative Measurement of Lymphedema
2.4. Statistics
3. Results
3.1. Patient Characteristics
3.2. Initial CT Scan
3.3. Fibrotic Changes
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kim, K.; Choi, S.C.; Ryu, S.Y.; Kim, J.W.; Kang, S.B. Major clinical research advances in gynecologic cancer 2008. J. Gynecol. Oncol. 2008, 19, 209–217. [Google Scholar] [CrossRef]
- Kang, S.H.; Lee, D.G. Periclavicular Lymph Node Activation Maintains the Lymphatic Circulation of Upper Extremity Following Breast Cancer Surgery with Axillary Lymph Node Dissection. Lymphat. Res. Biol. 2021, 19, 256–260. [Google Scholar] [CrossRef]
- Ridner, S.; Deng, J.; Fu, M.; Radina, E.; Thiadens, S.; Weiss, J.; Dietrich, M.; Cormier, J.; Tuppo, C.; Armer, J. Symptom burden and infection occurrence among individuals with extremity lymphedema. Lymphology 2012, 45, 113–123. [Google Scholar]
- McDuff, S.G.; Mina, A.I.; Brunelle, C.L.; Salama, L.; Warren, L.E.; Abouegylah, M.; Swaroop, M.; Skolny, M.N.; Asdourian, M.; Gillespie, T.; et al. Timing of lymphedema after treatment for breast cancer: When are patients most at risk? Int. J. Radiat. Oncol. Biol. Phys. 2019, 103, 62–70. [Google Scholar] [CrossRef] [PubMed]
- Ly, C.L.; Kataru, R.P.; Mehrara, B.J. Inflammatory manifestations of lymphedema. Int. J. Mol. Sci. 2017, 18, 171. [Google Scholar] [CrossRef] [PubMed]
- Kendall, R.T.; Feghali-Bostwick, C.A. Fibroblasts in fibrosis: Novel roles and mediators. Front. Pharmacol. 2014, 5, 123. [Google Scholar] [CrossRef] [PubMed]
- Lynch, L.L.; Mendez, U.; Waller, A.B.; Gillette, A.A.; Guillory, R.J.; Goldman, J. Fibrosis worsens chronic lymphedema in rodent tissues. Am. J. Physiol. Heart Circ. Physiol. 2015, 308, H1229–H1236. [Google Scholar] [CrossRef] [PubMed]
- Kataru, R.P.; Baik, J.E.; Park, H.J.; Wiser, I.; Rehal, S.; Shin, J.Y.; Mehrara, B.J. Regulation of immune function by the lymphatic system in lymphedema. Front. Immunol. 2019, 10, 470. [Google Scholar] [CrossRef]
- Wynn, T.A.; Ramalingam, T.R. Mechanisms of fibrosis: Therapeutic translation for fibrotic disease. Nat. Med. 2012, 18, 1028–1040. [Google Scholar] [CrossRef]
- Azhar, S.H.; Lim, H.Y.; Tan, B.-K.; Angeli, V. The unresolved pathophysiology of lymphedema. Front. Physiol. 2020, 11, 137. [Google Scholar] [CrossRef]
- Yoo, J.S.; Chung, S.H.; Lim, M.C.; Kim, Y.J.; Kim, K.G.; Hwang, J.H.; Kim, Y.H. Computed tomography-based quantitative assessment of lower extremity lymphedema following treatment for gynecologic cancer. J. Gynecol. Oncol. 2017, 28, e18. [Google Scholar] [CrossRef] [PubMed]
- Lee, D.G.; Lee, S.; Kim, K.T. Computed Tomography-Based Quantitative Analysis of Fibrotic Changes in Skin and Subcutaneous Tissue in Lower Extremity Lymphedema Following Gynecologic Cancer Surgery. Lymphat. Res. Biol. 2022; ahead of print. [Google Scholar] [CrossRef]
- Schindelin, J.; Arganda-Carreras, I.; Frise, E.; Kaynig, V.; Longair, M.; Pietzsch, T.; Preibisch, S.; Rueden, C.; Saalfeld, S.; Schmid, B.; et al. Fiji: An open-source platform for biological-image analysis. Nat. Methods 2012, 9, 676–682. [Google Scholar] [CrossRef] [PubMed]
- Long, D.E.; Villasante Tezanos, A.G.; Wise, J.N.; Kern, P.A.; Bamman, M.M.; Peterson, C.A.; Dennis, R.A. A guide for using NIH Image J for single slice cross-sectional area and composition analysis of the thigh from computed tomography. PLoS ONE 2019, 14, e0211629. [Google Scholar] [CrossRef] [PubMed]
- Tucureanu, M.M.; Rebleanu, D.; Constantinescu, C.A.; Deleanu, M.; Voicu, G.; Butoi, E.; Calin, M.; Manduteanu, I. Lipopolysaccharide-induced inflammation in monocytes/macrophages is blocked by liposomal delivery of Gi-protein inhibitor. Int. J. Nanomed. 2018, 13, 63–76. [Google Scholar] [CrossRef]
- Panos, R.J.; Mortenson, R.L.; Niccoli, S.A.; King, T.E., Jr. Clinical deterioration in patients with idiopathic pulmonary fibrosis: Causes and assessment. Am. J. Med. 1990, 88, 396–404. [Google Scholar] [CrossRef]
- Van Linthout, S.; Miteva, K.; Tschöpe, C. Crosstalk between fibroblasts and inflammatory cells. Cardiovasc. Res. 2014, 102, 258–269. [Google Scholar] [CrossRef] [PubMed]
- Mack, M. Inflammation and fibrosis. Matrix Biol. 2018, 68, 106–121. [Google Scholar] [CrossRef]
- Sun, D.; Yu, Z.; Chen, J.; Wang, L.; Han, L.; Liu, N. The Value of Using a SkinFibroMeter for Diagnosis and Assessment of Secondary Lymphedema and Associated Fibrosis of Lower Limb Skin. Lymphat. Res. Biol. 2017, 15, 70–76. [Google Scholar] [CrossRef]
- Taljanovic, M.S.; Gimber, L.H.; Becker, G.W.; Latt, L.D.; Klauser, A.S.; Melville, D.M.; Gao, L.; Witte, R.S. Shear-wave elastography: Basic physics and musculoskeletal applications. Radiographics 2017, 37, 855–870. [Google Scholar] [CrossRef]
- Polat, A.V.; Ozturk, M.; Polat, A.K.; Karabacak, U.; Bekci, T.; Murat, N. Efficacy of Ultrasound and Shear Wave Elastography for the Diagnosis of Breast Cancer-Related Lymphedema. J. Ultrasound Med. 2020, 39, 795–803. [Google Scholar] [CrossRef]
- Akita, S.; Yoshida, K.; Omura, M.; Yamaji, Y.; Tezuka, T.; Tokumoto, H.; Azuma, K.; Ikehara, Y.; Yamaguchi, T.; Mitsukawa, N. Noninvasive, objective evaluation of lower extremity lymphedema severity using shear wave elastography: A preliminary study. J. Plast. Reconstr. Aesthet. Surg. 2021, 74, 3377–3385. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.Y.; Bae, H.; Ji, H.M. Computed Tomography as an Objective Measurement Tool for Secondary Lymphedema Treated With Extracorporeal Shock Wave Therapy. Ann. Rehabil. Med. 2015, 39, 488–493. [Google Scholar] [CrossRef] [PubMed]
- Shin, S.U.; Lee, W.; Park, E.-A.; Shin, C.-I.; Chung, J.W.; Park, J.H. Comparison of characteristic CT findings of lymphedema, cellulitis, and generalized edema in lower leg swelling. Int. J. Cardiovasc. Imaging 2013, 29, 135–143. [Google Scholar] [CrossRef] [PubMed]
- Dessources, K.; Aviki, E.; Leitao, M.M., Jr. Lower extremity lymphedema in patients with gynecologic malignancies. Int. J. Gynecol. Cancer 2020, 30, 252–260. [Google Scholar] [CrossRef]
- Gitas, G.; Proppe, L.; Baum, S.; Kruggel, M.; Rody, A.; Tsolakidis, D.; Zouzoulas, D.; Laganà, A.S.; Guenther, V.; Freytag, D.; et al. A risk factor analysis of complications after surgery for vulvar cancer. Arch. Gynecol. Obstet. 2021, 304, 511–519. [Google Scholar] [CrossRef]
- Mendez, U.; Stroup, E.M.; Lynch, L.L.; Waller, A.B.; Goldman, J. A chronic and latent lymphatic insufficiency follows recovery from acute lymphedema in the rat foreleg. Am. J. Physiol. Heart Circ. Physiol. 2012, 303, H1107–H1113. [Google Scholar] [CrossRef]
- Mehrara, B.J.; Park, H.J.; Kataru, R.P.; Bromberg, J.; Coriddi, M.; Baik, J.E.; Shin, J.; Li, C.; Cavalli, M.R.; Encarnacion, E.M.; et al. Pilot Study of Anti-Th2 Immunotherapy for the Treatment of Breast Cancer-Related Upper Extremity Lymphedema. Biology 2021, 10, 934. [Google Scholar] [CrossRef]
- Rockson, S.G.; Tian, W.; Jiang, X.; Kuznetsova, T.; Haddad, F.; Zampell, J.; Mehrara, B.; Sampson, J.P.; Roche, L.; Kim, J.; et al. Pilot studies demonstrate the potential benefits of antiinflammatory therapy in human lymphedema. JCI Insight 2018, 3, e123775. [Google Scholar] [CrossRef]
- Kayıran, O.; De La Cruz, C.; Tane, K.; Soran, A. Lymphedema: From diagnosis to treatment. Turk. J. Surg. 2017, 33, 51–57. [Google Scholar] [CrossRef]
- Finnane, A.; Janda, M.; Hayes, S.C. Review of the Evidence of Lymphedema Treatment Effect. Am. J. Phys. Med. Rehabil. 2015, 94, 483–498. [Google Scholar] [CrossRef]
- Kataru, R.P.; Wiser, I.; Baik, J.E.; Park, H.J.; Rehal, S.; Shin, J.Y.; Mehrara, B.J. Fibrosis and secondary lymphedema: Chicken or egg? Transl. Res. 2019, 209, 68–76. [Google Scholar] [CrossRef] [PubMed]
- Chang, D.W.; Dayan, J.; Greene, A.K.; MacDonald, J.K.; Masia, J.; Mehrara, B.; Neligan, P.C.; Nguyen, D. Surgical Treatment of Lymphedema: A Systematic Review and Meta-Analysis of Controlled Trials. Results of a Consensus Conference. Plast. Reconstr. Surg. 2021, 147, 975–993. [Google Scholar] [CrossRef] [PubMed]
- Brorson, H.; Ohlin, K.; Olsson, G.; Långström, G.; Wiklund, I.; Svensson, H. Quality of life following liposuction and conservative treatment of arm lymphedema. Lymphology 2006, 39, 8–25. [Google Scholar]
- Dionyssiou, D.; Demiri, E.; Tsimponis, A.; Sarafis, A.; Mpalaris, V.; Tatsidou, G.; Arsos, G. A randomized control study of treating secondary stage II breast cancer-related lymphoedema with free lymph node transfer. Breast Cancer Res. Treat. 2016, 156, 73–79. [Google Scholar] [CrossRef] [PubMed]
- Koshima, I.; Inagawa, K.; Urushibara, K.; Moriguchi, T. Supermicrosurgical lymphaticovenular anastomosis for the treatment of lymphedema in the upper extremities. J. Reconstr. Microsurg. 2000, 16, 437–442. [Google Scholar] [CrossRef]
- Johnstone, P.A.; Hawkins, K.; Hood, S. Role of patient adherence in maintenance of results after manipulative therapy for lymphedema. J. Soc. Integr. Oncol. 2006, 4, 125–129. [Google Scholar] [CrossRef] [PubMed]
- Brown, J.C.; Cheville, A.L.; Tchou, J.C.; Harris, S.R.; Schmitz, K.H. Prescription and adherence to lymphedema self-care modalities among women with breast cancer-related lymphedema. Support. Care Cancer—Off. J. Multinatl. Assoc. Support. Care Cancer 2014, 22, 135–143. [Google Scholar] [CrossRef]
- Ergin, G.; Şahinoğlu, E.; Karadibak, D.; Yavuzşen, T. Effect of Bandage Compliance on Upper Extremity Volume in Patients with Breast Cancer-Related Lymphedema. Lymphat. Res. Biol. 2018, 16, 553–558. [Google Scholar] [CrossRef]
Variables | No. (%) | Mean ± SD | |
---|---|---|---|
Age (years) | 57.82 ± 11.15 | ||
Body weight (kg) | 60.12 ± 7.13 | ||
Height (cm) | 156.82 ± 5.84 | ||
BMI (kg/m2) | 24.52 ± 3.54 | ||
Duration between surgery and initial CT (months) | 54.73 ± 61.15 | ||
Duration between initial and follow-up CT (months) | 29.00 ± 16.73 | ||
Cancer type | Cervical cancer | 33 (73) | |
Ovarian cancer | 4 (10) | ||
Tubal cancer | 1 (2) | ||
Endometrial cancer | 6 (13) | ||
Leiomyosarcoma | 1 (2) | ||
Affected side | Right | 23 (51) | |
Left | 22 (49) | ||
History of cellulitis | 18 (40) | ||
CTx | 21 (46) | ||
RTx | 19 (42) |
Mean ± SD | ||||
---|---|---|---|---|
Affected | Unaffected | p Value | ||
Circumference (mm) | U20 | 599.97 ± 11.04 | 551.36 ± 42.02 | 0.00 * |
U10 | 506.34 ± 61.87 | 452.73 ± 39.65 | 0.00 * | |
L10 | 397.53 ± 52.62 | 357.11 ± 31.79 | 0.00 * | |
L20 | 328.10 ± 45.20 | 286.02 ± 24.90 | 0.00 * | |
Skin & subcutaneous fibrosis (mm2) | U20 | 13,962.25 ± 3922.00 | 1667.23 ± 537.45 | 0.00 * |
U10 | 9327.51 ± 2682.11 | 1060.43 ± 304.11 | 0.00 * | |
L10 | 2575.82 ± 2289.67 | 775.05 ± 235.21 | 0.00 * | |
L20 | 2363.54 ± 1836.97 | 720.67 ± 227.54 | 0.00 * | |
Fibrosis ratio | U20 | 27.72 ± 16.80 | 16.05 ± 4.72 | 0.00 * |
U10 | 37.21 ± 21.76 | 19.76 ± 8.48 | 0.00 * | |
L10 | 49.35 ± 21.64 | 31.04 ± 11.27 | 0.00 * | |
L20 | 55.06 ± 22.53 | 35.35 ± 12.24 | 0.00 * |
Median (Q1, Q3) | |||||
---|---|---|---|---|---|
Total | Improved Group | Aggravated Group | p Value | ||
U20 | Circumference (mm) | −2.39 (−17.34, 14.41) | −12.55 (−31.35, −6.15) | 21.75 (5.8, 44.07) | 0.00 * |
S-fibrosis (mm2) | 55.75 (−485.73, 934.77) | 29.00 (−426.41, 420,12) | 412.94 (−624.08, 2676.71) | 0.29 | |
Fibrosis ratio | −2.75 (−10.0, 1.92) | −6.40 (−15.7, 1.00) | −0.90 (−6.25, 2.15) | 0.00 * | |
U10 | Circumference (mm) | −0.89 (−56.37, 1026.89) | −14.60 (−28.00, −2.85) | 12.42 (2.47, 32.55) | 0.00 * |
S-fibrosis (mm2) | 66.25 (−270.56, 656.83) | −228.71 (−693.40, 208.56) | 638.53 (21.48, 1520.50) | 0.00 * | |
Fibrosis ratio | −1.60 (−8.70, 1.90) | −1.60 (−11.2, 0.70) | −2.35 (−6.22, 2.83) | 0.24 | |
L10 | Circumference (mm) | 3.48 (−6.22, 27.88) | −0.02 (−15.23, 12.48) | 20.91 (2.97, 37.61) | 0.00 * |
S-fibrosis (mm2) | 219.32 (−122.35, 910.36) | 2.38 (−201.63, 435.24) | 806.38 (182.19, 1918.05) | 0.00 * | |
Fibrosis ratio | −4.30 (−10.8, −4.30) | −14.6 (−20.8, −5.40) | −0.80 (−5.35, 1.95) | 0.00 * | |
L20 | Circumference (mm) | 3.59 (−7.53, 19.05) | −8.90 (−14.96, −2.97) | 16.14 (5.17, 32.90) | 0.00 * |
S-fibrosis (mm2) | 263.47 (−56.37, 1026.89) | −71.42 (−947.19, 172.00) | 828.47 (263.47, 1620.94) | 0.00 * | |
Fibrosis ratio | −6.10 (−20.0, −0.10) | −12.2 (−23.5, −5.40) | −2.10 (−4.60, 1.45) | 0.00 * |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, S.; Lee, D.G.; Kim, K.T. Temporal Changes in Subcutaneous Fibrosis in Patients with Lower Extremity Lymphedema Following Surgery for Gynecologic Cancer: A Computed Tomography-Based Quantitative Analysis. Diagnostics 2022, 12, 1949. https://doi.org/10.3390/diagnostics12081949
Lee S, Lee DG, Kim KT. Temporal Changes in Subcutaneous Fibrosis in Patients with Lower Extremity Lymphedema Following Surgery for Gynecologic Cancer: A Computed Tomography-Based Quantitative Analysis. Diagnostics. 2022; 12(8):1949. https://doi.org/10.3390/diagnostics12081949
Chicago/Turabian StyleLee, Soyoung, Dong Gyu Lee, and Kyoung Tae Kim. 2022. "Temporal Changes in Subcutaneous Fibrosis in Patients with Lower Extremity Lymphedema Following Surgery for Gynecologic Cancer: A Computed Tomography-Based Quantitative Analysis" Diagnostics 12, no. 8: 1949. https://doi.org/10.3390/diagnostics12081949
APA StyleLee, S., Lee, D. G., & Kim, K. T. (2022). Temporal Changes in Subcutaneous Fibrosis in Patients with Lower Extremity Lymphedema Following Surgery for Gynecologic Cancer: A Computed Tomography-Based Quantitative Analysis. Diagnostics, 12(8), 1949. https://doi.org/10.3390/diagnostics12081949