New RAPMYCOI SensititreTM Antimicrobial Susceptibility Test for Atypical Rapidly Growing Mycobacteria (RGM)
Abstract
:1. Introduction
- (1)
- M. fortuitum (M. fortuitum, M. peregrinum, M. sengalense, M. porcinum, M. neworleansense, M. boenickei, M. houstonense, M. brisbanense, M. septicum, and M. setense),
- (2)
- M. chelonae/M. abscessus complex (M. chelonae, M. immunogenum, M. franklinii, M. salmoniphilum, M. abscessus subsp. abscessus, M. abscessus subsp. Massiliense, and M. abscessus subsp. bolletii),
- (3)
- M. smegmatis (M. smegmatis and M. goodii),
- (4)
- M. mucogenicum (M. mucogenicum, M. phocaicum, and M. aubagnense),
- (5)
- M. mageritense/M. wolinskyi,
- (6)
2. Materials and Methods
2.1. Bacterial Strains and Growth Conditions
2.2. Strain Identification
2.3. Molecular Determination of Antimicrobial Susceptibility to Macrolides and Aminoglycosides
- If the strain had a genotype in which C was at position 28 it meant that the tested strain was sensitive to macrolides.
- If the strain had a genotype in which T was at position 28 it meant that the tested strain was resistant to macrolides.
2.4. Phenotypic Determination of Antimicrobial Susceptibility Profile
3. Results
3.1. Mycobacterium abscessus subsp. abscessus
3.2. Mycobacterium abscessus subsp. massiliense
3.3. Mycobacterium chelonae
3.4. Mycobacterium mucogenicum
3.5. Mycobacterium fortuitum Complex
4. Discussion
- at least two NTM culture-positive sputa or one bronchial wash or lavage sample,
- a transbronchial or lung biopsy specimen with supporting mycobacterial histopathology and a positive NTM culture.
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Daley, C.L.; Iaccarino, J.M.; Lange, C.; Cambau, E.; Wallace, R.J., Jr.; Andrejak, C.; Böttger, E.C.; Brozek, J.; Griffith, D.E.; Guglielmetti, L.; et al. Treatment of nontuberculous mycobacterial pulmonary disease: An official ATS/ERS/ESCMID/IDSA clinical practice guideline. Eur. Respir. J. 2020, 56, 2000535. [Google Scholar] [CrossRef] [PubMed]
- Heifets, L. Mycobacterial infections caused by nontuberculous mycobacteria. Semin. Respir. Crit. Care Med. 2004, 25, 283–295. [Google Scholar] [CrossRef] [PubMed]
- Van Ingen, J. Diagnosis of nontuberculous mycobacterial infections. Semin. Respir. Crit. Care Med. 2013, 34, 103–109. [Google Scholar] [CrossRef] [PubMed]
- Wen, S.; Gao, X.; Zhao, W.; Huo, F.; Jiang, G.; Dong, L.; Zhao, L.; Wang, F.; Yu, X.; Huang, H. Comparison of the in vitro activity of linezolid, tedizolid, sutezolid, and delpazolid against rapidly growing mycobacteria isolated in Beijing, China. Int. J. Infect. Dis. 2021, 109, 253–260. [Google Scholar] [CrossRef] [PubMed]
- Brown-Elliott, B.A.; Philley, J.V. Rapidly Growing Mycobacteria. Microbiol. Spectr. 2017, 5, 703–723. [Google Scholar] [CrossRef] [PubMed]
- Schinsky, M.F.; Morey, R.E.; Steigerwalt, A.G.; Douglas, M.P.; Wilson, R.W.; Floyd, M.M.; Butler, W.R.; Daneshvar, M.I.; Brown-Elliott, B.A.; Wallace, R.J.; et al. Taxonomic variation in the Mycobacterium fortuitum third biovariant complex: Description of Mycobacterium boenickei sp. nov., Mycobacterium houstonense sp. nov., Mycobacterium neworleansense sp. nov. and Mycobacterium brisbanense sp. nov. and recognition of Mycobacterium porcinum from human clinical isolates. Int. J. Syst. Evol. Microbiol. 2004, 54, 1653–1667. [Google Scholar] [CrossRef] [PubMed]
- Adékambi, T.; Berger, P.; Raoult, D.; Drancourt, M. rpoB gene sequence-based characterization of emerging non-tuberculous mycobacteria with descriptions of Mycobacterium bolletii sp. nov., Mycobacterium phocaicum sp. nov. and Mycobacterium aubagnense sp. nov. Int. J. Syst. Evol. Microbiol. 2006, 56, 133–143. [Google Scholar] [CrossRef] [PubMed]
- Brown-Elliott, B.A.; Wallace, R.J., Jr. Mycobacterium: Clinical and Laboratory Characteristics of Rapidly Growing Mycobacteria. In Manual of Clinical Microbiology, 11th ed.; Jorgensen, J.H., Pfaller, M.A., Carroll, K.C., Funke, G., Landry, M.L., Richter, S.S., Warnock, D.W., Eds.; ASM Press: Washington, DC, USA, 2015; pp. 595–612. [Google Scholar]
- Brown, B.A.; Springer, B.; Steingrube, V.A.; Wilson, R.W.; Pfyffer, G.E.; Garcia, M.J.; Menendez, M.C.; Rodriguez-Salgado, B.; Jost, K.C., Jr.; Chiu, S.H.; et al. Mycobacterium wolinskyi sp. nov. and Mycobacterium goodii sp. nov., two new rapidly growing species related to Mycobacterium smegmatis and associated with human wound infections: A cooperative study from the International Working Group on Mycobacterial Taxonomy. Int. J. Syst. Bacteriol. 1999, 49, 1493–1511. [Google Scholar] [CrossRef]
- Wallace, R.J., Jr.; Brown-Elliott, B.A.; Wilson, R.W.; Mann, L.; Hall, L.; Zhang, Y.; Jost, K.C., Jr.; Brown, J.M.; Kabani, A.; Schinsky, M.F.; et al. Clinical and laboratory features of Mycobacterium porcinum. J. Clin. Microbiol. 2004, 42, 5689–5697. [Google Scholar] [CrossRef]
- Jiménez, M.S.; Campos-Herrero, M.I.; García, D.; Luquin, M.; Herrera, L.; García, M.J. Mycobacterium canariasense sp. nov. Int. J. Syst. Evol. Microbiol. 2004, 54, 1729–1734. [Google Scholar] [CrossRef]
- Whipps, C.M.; Butler, W.R.; Pourahmad, F.; Watral, V.G.; Kent, M.L. Molecular systematics support the revival of Mycobacterium salmoniphilum (ex Ross 1960) sp. nov., nom. rev., a species closely related to Mycobacterium chelonae. Int. J. Syst. Evol. Microbiol. 2007, 57, 2525–2531. [Google Scholar] [CrossRef]
- Huh, H.J.; Kim, S.Y.; Jhun, B.W.; Shin, S.J.; Koh, W.J. Recent advances in molecular diagnostics and understanding mechanisms of drug resistance in nontuberculous mycobacterial diseases. Infect. Genet. Evol. 2019, 72, 169–182. [Google Scholar] [CrossRef]
- Prevots, D.R.; Marras, T.K. Epidemiology of human pulmonary infection with nontuberculous mycobacteria: A review. Clin. Chest Med. 2015, 36, 13–34. [Google Scholar] [CrossRef]
- Larsson, L.O.; Polverino, E.; Hoefsloot, W.; Codecasa, L.R.; Diel, R.; Jenkins, S.G.; Loebinger, M.R. Pulmonary disease by non-tuberculous mycobacteria-clinical management, unmet needs and future perspectives. Expert Rev. Respir. Med. 2017, 11, 977–989. [Google Scholar] [CrossRef]
- Stout, J.E.; Koh, W.J.; Yew, W.W. Update on pulmonary disease due to non-tuberculous mycobacteria. Int. J. Infect. Dis. 2016, 45, 123–134. [Google Scholar] [CrossRef]
- Park, S.C.; Kang, M.J.; Han, C.H.; Lee, S.M.; Kim, C.J.; Lee, J.M.; Kang, Y.A. Prevalence, incidence, and mortality of nontuberculous mycobacterial infection in Korea: A nationwide population-based study. BMC Pulm. Med. 2019, 19, 140. [Google Scholar] [CrossRef]
- Namkoong, H.; Kurashima, A.; Morimoto, K.; Hoshino, Y.; Hasegawa, N.; Ato, M.; Mitarai, S. Epidemiology of Pulmonary Nontuberculous Mycobacterial Disease, Japan. Emerg. Infect. Dis. 2016, 22, 1116–1117. [Google Scholar] [CrossRef]
- Simons, S.; van Ingen, J.; Hsueh, P.R.; Van Hung, N.; Dekhuijzen, P.N.; Boeree, M.J.; van Soolingen, D. Nontuberculous mycobacteria in respiratory tract infections, eastern Asia. Emerg. Infect. Dis. 2011, 17, 343–349. [Google Scholar] [CrossRef]
- Yang, S.C.; Hsueh, P.R.; Lai, H.C.; Teng, L.J.; Huang, L.M.; Chen, J.M.; Wang, S.K.; Shie, D.C.; Ho, S.W.; Luh, K.T. High prevalence of antimicrobial resistance in rapidly growing mycobacteria in Taiwan. Antimicrob. Agents Chemother. 2003, 47, 1958–1962. [Google Scholar] [CrossRef]
- Moore, J.E.; Kruijshaar, M.E.; Ormerod, L.P.; Drobniewski, F.; Abubakar, I. Increasing reports of non-tuberculous mycobacteria in England, Wales and Northern Ireland, 1995–2006. BMC Public Health 2010, 10, 612. [Google Scholar] [CrossRef]
- Benfield, T.L.; Duhaut, P.; Sørensen, H.T.; Lescure, F.X.; Thomsen, R.W. Nontuberculous pulmonary mycobacteriosis in Denmark: Incidence and prognostic factors. Am. J. Respir. Crit. Care Med. 2010, 181, 514–521. [Google Scholar] [CrossRef]
- Czarkowski, M.P.; Cieleba, E.; Staszewska-Jakubik, E.K.B. Infectious Diseases and Poisoning in Poland 2017–2019; Bulletin of the National Institute of Public Health-National Institute of Hygiene: Warsaw, Poland, 2020. [Google Scholar]
- Jang, M.A.; Koh, W.J.; Huh, H.J.; Kim, S.Y.; Jeon, K.; Ki, C.S.; Lee, N.Y. Distribution of nontuberculous mycobacteria by multigene sequence-based typing and clinical significance of isolated strains. J. Clin. Microbiol. 2014, 52, 1207–1212. [Google Scholar] [CrossRef]
- Brown-Elliott, B.A.; Wallace, R.J., Jr. Clinical and taxonomic status of pathogenic nonpigmented or late-pigmenting rapidly growing mycobacteria. Clin. Microbiol. Rev. 2002, 15, 716–746. [Google Scholar] [CrossRef]
- Brown-Elliott, B.A.; Nash, K.A.; Wallace, R.J., Jr. Antimicrobial susceptibility testing, drug resistance mechanisms, and therapy of infections with nontuberculous mycobacteria. Clin. Microbiol. Rev. 2012, 25, 545–582. [Google Scholar] [CrossRef]
- Griffith, D.E.; Aksamit, T.; Brown-Elliott, B.A.; Catanzaro, A.; Daley, C.; Gordin, F.; Holland, S.M.; Horsburgh, R.; Huitt, G.; Iademarco, M.F.; et al. ATS Mycobacterial Diseases Subcommittee; American Thoracic Society; Infectious Disease Society of America. An official ATS/IDSA statement: Diagnosis, treatment, and prevention of nontuberculous mycobacterial diseases. Am. J. Respir. Crit. Care Med. 2007, 175, 367–416. [Google Scholar] [CrossRef]
- Brown-Elliott, B.A.; Wallace, R.J., Jr.; Petti, C.A.; Mann, L.B.; McGlasson, M.; Chihara, S.; Smith, G.L.; Painter, P.; Hail, D.; Wilson, R.; et al. Mycobacterium neoaurum and Mycobacterium bacteremicum sp. nov. as causes of mycobacteremia. J. Clin. Microbiol. 2010, 48, 4377–4385. [Google Scholar] [CrossRef]
- Raad, I.I.; Vartivarian, S.; Khan, A.; Bodey, G.P. Catheter-related infections caused by the Mycobacterium fortuitum complex: 15 cases and review. Rev. Infect. Dis. 1991, 13, 1120–1125. [Google Scholar] [CrossRef]
- Washer, L.L.; Riddell, J., IV; Rider, J.; Chenoweth, C.E. Mycobacterium neoaurum bloodstream infection: Report of 4 cases and review of the literature. Clin. Infect. Dis. 2007, 45, e10–e13. [Google Scholar] [CrossRef]
- Martínez López, A.B.; Álvarez Blanco, O.; Ruíz Serrano, M.J.; Morales San-José, M.D.; Luque de Pablos, A. Mycobacterium fortuitum as a cause of peritoneal dialysis catheter port infection. A clinical case and a review of the literature. Nefrologia 2015, 35, 584–586. [Google Scholar] [CrossRef]
- Haworth, C.S.; Banks, J.; Capstick, T.; Fisher, A.J.; Gorsuch, T.; Laurenson, I.F.; Leitch, A.; Loebinger, M.R.; Milburn, H.J.; Nightingale, M.; et al. British Thoracic Society Guideline for the management of non-tuberculous mycobacterial pulmonary disease (NTM-PD). BMJ Open Respir. Res. 2017, 4, e000242. [Google Scholar] [CrossRef]
- Markiewicz, Z.; Korsak, D.; Popowska, M. Antibiotics in the Era of Increasing Drug Resistance, 1st ed.; PWN: Warsaw, Poland, 2021; p. 43. [Google Scholar]
- Clinical and Laboratory Standards Institute. Susceptibility Testing of Mycobacteria, Nocardia spp., and Other Aerobic Actinomycetes, 3rd ed.; CLSI Standard Document M24; Clinical and Laboratory Standards Institute: Wayne, PA, USA, 2018. [Google Scholar]
- Huang, W.C.; Yu, M.C.; Huang, Y.W. Identification and drug susceptibility testing for nontuberculous mycobacteria. J. Formos. Med. Assoc. 2020, 119 (Suppl. S1), S32–S41. [Google Scholar] [CrossRef] [PubMed]
- Kotra, L.P.; Haddad, J.; Mobashery, S. Aminoglycosides: Perspectives on mechanisms of action and resistance and strategies to counter resistance. Antimicrob. Agents Chemother. 2000, 44, 3249–3256. [Google Scholar] [CrossRef] [PubMed]
- Clinical and Laboratory Standards Institute. Performance Standards for Susceptibility Testing of Mycobacteria, Nocardia spp., and Other Aerobic Actinomycetes, 1st ed.; CLSI Document M62; Clinical and Laboratory Standards Institute: Wayne, PA, USA, 2018. [Google Scholar]
- Clinical and Laboratory Standards Institute. Laboratory Detection and Identification of Mycobacteria; CLSI Guideline M48; Clinical and Laboratory Standards Institute: Wayne, PA, USA, 2018. [Google Scholar]
- Brown-Elliott, B.A.; Vasireddy, S.; Vasireddy, R.; Iakhiaeva, E.; Howard, S.T.; Nash, K.A.; Parodi, N.; Strong, A.; Gee, M.; Smith, T.; et al. Utility of sequencing the erm(41) gene in isolates of Mycobacterium abscessus subsp. abscessus with low and intermediate clarithromycin MICs. J. Clin. Microbiol. 2016, 53, 1211–1215, Erratum in J. Clin. Microbiol. 2016, 54, 1172. [Google Scholar] [CrossRef] [PubMed]
- Brown-Elliott, B.A. Laboratory diagnosis and antimicrobial susceptibility testing of nontuberculous mycobacteria. In Nontuberculous Mycobacterial Disease; Griffith, D.E., Ed.; Respiratory Medicine Humana Press: Cham, Switzerland, 2018; pp. 15–59. [Google Scholar]
- Nash, K.A.; Brown-Elliott, B.A.; Wallace, R.J., Jr. A novel gene, erm(41), confers inducible macrolide resistance to clinical isolates of Mycobacterium abscessus but is absent from Mycobacterium chelonae. Antimicrob. Agents Chemother. 2009, 53, 1367–1376. [Google Scholar] [CrossRef]
- Brown-Elliott, B.A.; Woods, G.L. Antimycobacterial Susceptibility Testing of Nontuberculous Mycobacteria. J. Clin. Microbiol. 2019, 57, e00834-19. [Google Scholar] [CrossRef]
- Bhalla, G.S.; Grover, N.; Singh, L.; Sarao, M.S.; Kalra, D.; Pandey, C. RAPMYCO: Mitigating conventional broth microdilution woes. J. Health Res. Rev. 2018, 5, 93–97. [Google Scholar]
- Sriram, R.; Sarangan, P. Antimicrobial susceptibility testing of rapidly growing mycobacteria isolated from cases of surgical site infections by microbroth dilution method at a Tertiary Care Center. J. Mar. Med. Soc. 2017, 19, 6–10. [Google Scholar] [CrossRef]
- Esteban, J.; Martín-de-Hijas, N.Z.; García-Almeida, D.; Bodas-Sánchez, A.; Gadea, I.; Fernández-Roblas, R. Prevalence of erm methylase genes in clinical isolates of non-pigmented, rapidly growing mycobacteria. Clin. Microbiol. Infect. 2009, 15, 919–923. [Google Scholar] [CrossRef]
- Dávalos, A.F.; Garcia, P.K.; Montoya-Pachongo, C.; Rengifo, A.; Guerrero, D.; Díaz-Ordoñez, L.; Díaz, G.; Ferro, B.E. Identification of Nontuberculous Mycobacteria in Drinking Water in Cali, Colombia. Int. J. Environ. Res. Public Health 2021, 18, 8451. [Google Scholar] [CrossRef]
- Faridah, S.; Siti Asma’, H.; Zeti, N.S.; Tuan Noorkorina, T.K.; Intan Baiduri, B.; Azura, H. Fatal outcome of catheter-related bloodstream infection caused by Multidrug-Resistant Mycobacterium mucogenicum. Med. J. Malays. 2021, 76, 248–250. [Google Scholar]
- Aono, A.; Morimoto, K.; Chikamatsu, K.; Yamada, H.; Igarashi, Y.; Murase, Y.; Takaki, A.; Mitarai, S. Antimicrobial susceptibility testing of Mycobacteroides (Mycobacterium) abscessus complex, Mycolicibacterium (Mycobacterium) fortuitum, and Mycobacteroides (Mycobacterium) chelonae. J. Infect. Chemother. 2019, 25, 117–123. [Google Scholar] [CrossRef]
- Lee, S.H.; Yoo, H.K.; Kim, S.H.; Koh, W.J.; Kim, C.K.; Park, Y.K.; Kim, H.J. The drug resistance profile of Mycobacterium abscessus group strains from Korea. Ann. Lab. Med. 2014, 34, 31–37. [Google Scholar] [CrossRef]
- Koh, W.J.; Jeon, K.; Lee, N.Y.; Kim, B.J.; Kook, Y.H.; Lee, S.H.; Park, Y.K.; Kim, C.K.; Shin, S.J.; Huitt, G.A.; et al. Clinical significance of differentiation of Mycobacterium massiliense from Mycobacterium abscessus. Am. J. Respir. Crit. Care Med. 2011, 183, 405–410. [Google Scholar] [CrossRef]
- Wallace, R.J., Jr.; Brown-Elliott, B.A.; Crist, C.J.; Mann, L.; Wilson, R.W. Comparison of the in vitro activity of the glycylcycline tigecycline (formerly GAR-936) with those of tetracycline, minocycline, and doxycycline against isolates of nontuberculous mycobacteria. Antimicrob. Agents Chemother. 2002, 46, 3164–3167. [Google Scholar] [CrossRef]
- Pang, H.; Li, G.; Zhao, X.; Liu, H.; Wan, K.; Yu, P. Drug Susceptibility Testing of 31 Antimicrobial Agents on Rapidly Growing Mycobacteria Isolates from China. Biomed. Res. Int. 2015, 2015, 419392. [Google Scholar] [CrossRef]
- Comba, I.Y.; Tabaja, H.; Almeida, N.E.C.; Fida, M.; Saleh, O.A. Bloodstream infections with rapidly growing nontuberculous mycobacteria. J. Clin. Tuberc. Other Mycobact. Dis. 2021, 25, 100288. [Google Scholar] [CrossRef]
Absence of Wild-Type Band | Analysed Nucleic Acid Positions | Mutation Bands Present | Mutation | Phenotypic Resistance |
---|---|---|---|---|
rrl WT | 2058–2059 | rrl MUT1 | A2058C | macrolides |
rrl MUT2 | A2058G | |||
A2058T | ||||
rrl MUT3 | A2059C | |||
rrl MUT4 | A2059G | |||
A2059T |
Absence of Wild-Type Band | Analysed Nucleic Acid Positions | Mutation Bands Present | Mutation | Phenotypic Resistance |
---|---|---|---|---|
rrs WT | 1406–1409 | rrs MUT1 | A1408G | aminoglycosides |
T1406A | ||||
C1409T |
Antimicrobial Agent | MIC (μg/mL) | Comment | ||
---|---|---|---|---|
S | I | R | ||
AMI | ≤16 | 32 | ≥64 | M. abscessus complex isolates with MIC of ≥64 μg/mL should be retested and/or the 16S rRNA gene sequenced to check for mutation |
FOX | ≤16 | 32–64 | ≥128 | |
CIP | ≤1 | 2 | ≥4 | Ciprofloxacin and levofloxacin are interchangeable, but both are less active than the newer B-methoxy-fluoroquinolones |
CLA | ≤2 | 4 | ≥8 | See text for information on the erm gene; clarithromycin and azithromycin are interchangeable clinically |
DOX | ≤1 | 2–4 | ≥8 | |
MIN | ≤1 | 2–4 | ≥8 | |
IMI | ≤4 | 8–16 | ≥32 | All isolates of M. fortuitum, M. smegmatis, and the M. mucogenicum group are presumed imipenem susceptible; imipenem MICs do not predict meropenem or ertapenem susceptibility |
LZD | ≤8 | 16 | ≥32 | |
MXF | ≤1 | 2 | ≥4 | |
TMP-SMX | ≤2/38 | ≥4/76 | MIC is 80% inhibition | |
TOB | ≤2 | 4 | ≥8 | Predominantly for M. chelonae; if MIC >4 μg/mL, the test should be repeated and/or the identification confirmed by rpoβ gene sequencing |
TGC | Insufficient data to establish breakpoints; only MIC should be reported |
M. abscessus subsp. abscessus n = 16 | M. abscessus subsp. massiliense n = 7 | M. chelonae n = 5 | M. mucogenicum n = 2 | M. fortuitum complex n = 30 | |
---|---|---|---|---|---|
ANTIBIOTIC AGENT | values in (%) | ||||
AMI | 100 (S) | 86 (S) 14 (R) | 100 (S) | 100 (S) | 100 (S) |
FOX | 100 (I) | 86 (I) 14 (S) | 80 (S) 20 (R) | 100 (S) | 67 (I) 33 (S) |
CIP | 81 (R) 19 (I) | 100 (R) | 100 (R) | 100 (S) | 97 (S) 3 (I) |
CLA | 75 (R) 25 (S) | 71 (S) 29 (R) | 100 (S) | 100 (S) | 77 (R) 23 (S) |
IMI | 100 (I) | 100 (I) | 80 (R) 20 (I) | 50 (S) 50 (I) | 63 (I) 27 (S) 10 (R) |
LZD | 75 (S) 25 (I) | 100 (S) | 100 (S) | 100 (S) | 93 (S) 7 (I) |
DOX | 100 (R) | 100 (R) | 100 (R) | 50 (S) 50 (R) | 56,6 (R) 43,3 (S) |
MIN | 100 (R) | 57 (S) 43 (R) | 100 (R) | 50 (S) 50 (I) | 56,6 (R) 43,3 (S) |
MXF | 81 (R) 19 (I) | 86 (R) 14 (I) | 80 (R) 20 (S) | 100 (S) | 100 (S) |
SXT | 100 (R) | 100 (R) | 100 (R) | 100 (S) | 70 (R) 30 (S) |
TOB | 100 (S) |
M. abscessus subsp. abscessus (n = 16) | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
AMI | FOX | CIP | CLA | DOX | IMI | LZD | MIN | MXF | TGC | SXT | |
1 | 4 (S) | 32 (I) | 2 (I) | 0.5 (S) | >16 (R) | 16 (I) | 8 (S) | >8 (R) | 4 (R) | 0.5 | >8/152 (R) |
2 | 8 (S) | 32 (I) | 4 (R) | >16 (R) | 16 (R) | 16 (I) | ≤1 (S) | >8 (R) | 2 (I) | 0.5 | 8/152 (R) |
3 | 4 (S) | 32 (I) | 4 (R) | >16 (R) | >16 (R) | 16 (I) | 16 (I) | >8 (R) | 4 (R) | 0.5 | >8/152 (R) |
4 | 2 (S) | 32 (I) | 4 (R) | >16 (R) | >16 (R) | 16 (I) | 8 (S) | >8 (R) | 4 (R) | 0.5 | >8/152 (R) |
5 | 4 (S) | 32 (I) | 4 (R) | >16 (R) | >16 (R) | 16 (I) | 8 (S) | >8 (R) | 4 (R) | 0.12 | >8/152 (R) |
6 | 2 (S) | 32 (I) | >4 (R) | >16 (R) | >16 (R) | 8 (I) | 8 (S) | >8 (R) | 8(R) | 0.5 | >8/152 (R) |
7 | 4 (S) | 32 (I) | 4 (R) | >16 (R) | >16 (R) | 16 (I) | 2 (S) | >8 (R) | 4 (R) | 0.06 | 8/152 (R) |
8 | 4 (S) | 32 (I) | 2 (I) | 2 (S) | >16 (R) | 8 (I) | 8 (S) | >8 (R) | 4 (R) | 1 | 8/152 (R) |
9 | 8 (S) | 32 (I) | 4 (R) | 1 (S) | >16 (R) | 8 (I) | 4 (S) | >8 (R) | 4 (R) | 0.25 | >8/152 (R) |
10 | 4 (S) | 32 (I) | 4 (R) | >16 (R) | >16 (R) | 8 (I) | 8 (S) | >8 (R) | 4 (R) | 0.25 | >8/152 (R) |
11 | 4 (S) | 32 (I) | >4 (R) | >16 (R) | >16 (R) | 16 (I) | 16 (I) | >8 (R) | >8(R) | 1 | >8/152 (R) |
12 | 8 (S) | 32 (I) | >4 (R) | >16 (R) | >16 (R) | 16 (I) | 16 (I) | >8 (R) | >8 (R) | 1 | >8/152 (R) |
13 | 4 (S) | 32 (I) | 2 (I) | >16 (R) | >16 (R) | 16 (I) | 2 (S) | >8 (R) | 2 (I) | 0.25 | 4/76 (R) |
14 | 4 (S) | 32 (I) | 4 (R) | >16 (R) | >16 (R) | 16 (I) | 4 (S) | >8 (R) | 2 (I) | 0.25 | >8/152 (R) |
15 | 4 (S) | 64 (I) | 4 (R) | >16 (R) | >16 (R) | 16 (I) | 16 (I) | >8 (R) | 8 (R) | 0.5 | >8/152 (R) |
16 | 4 (S) | 32 (I) | >4 (R) | 0.12 (S) | >16 (R) | 16 (I) | 4 (S) | >8 (R) | 4 (R) | 0.25 | >8/152 (R) |
M. abscessus subsp. massiliense (n = 7) | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
AMI | FOX | CIP | CLA | DOX | IMI | LZD | MIN | MXF | TGC | SXT | |
1 | 4 (S) | 32 (I) | 4 (R) | 0.25 (S) | >16 (R) | 16 (I) | 8 (S) | >8 (R) | 8 (R) | 1 | >8/152 (R) |
2 | >64 (R) | 16 (S) | 4 (R) | ≤0.06 (S) | >16 (R) | 16 (I) | 2 (S) | >8 (R) | 2 (I) | 0.12 | 8/152 (R) |
3 | 4 (S) | 32 (I) | 4(R) | 0.12 (S) | 8 (R) | 16 (I) | 8 (S) | 2 (S) | 4 (R) | 0.25 | >8/152 (R) |
4 | 8 (S) | 32 (I) | >4 (R) | 0.25 (S) | >16 (R) | 16 (I) | 8 (S) | >8 (R) | >8 (R) | 0.5 | >8/152 (R) |
5 | 4 (S) | 32 (I) | 4 (R) | >16 (R) | 16 (R) | 16 (I) | 8 (S) | 2 (S) | 8 (R) | 0.5 | 8/152 (R) |
6 | 4 (S) | 32 (I) | 4 (R) | >16 (R) | 16 (R) | 16 (I) | 8 (S) | 2 (S) | 8 (R) | 0.5 | 8/152 (R) |
7 | 8 (S) | 32 (I) | >4 (R) | 0.25 (S) | >16 (R) | 16 (I) | 8 (S) | 2 (S) | >8 (R) | 0.5 | >8/152 (R) |
M. chelone (n = 5) | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
AMI | FOX | CIP | CLA | DOX | IMI | LZD | MIN | MXF | TGC | TOB | SXT | |
1 | 16 (S) | >128 (R) | 4(R) | 0.5 (S) | >16 (R) | 16 (I) | 4 (S) | >8 (R) | 1 (S) | 0.5 | 2 (S) | 8/152 (R) |
2 | 8 (S) | 64 (I) | 4(R) | ≤0.06 (S) | >16 (R) | 32 (R) | 4 (S) | >8 (R) | 4(R) | 0.25 | ≤1 (S) | 8/152 (R) |
3 | 4 (S) | 64 (I) | 4(R) | 0.25 (S) | >16 (R) | 32 (R) | 4 (S) | >8 (R) | 4(R) | 0.5 | ≤1 (S) | >8/152 (R) |
4 | 4 (S) | 64 (I) | 4(R) | 0.25 (S) | >16 (R) | 32 (R) | 4 (S) | >8 (R) | 4(R) | 0.5 | ≤1 (S) | 8/152 (R) |
5 | 8 (S) | 64 (I) | 4(R) | 0.25 (S) | >16 (R) | 64(R) | 4 (S) | >8 (R) | 4(R) | 0.25 | ≤1 (S) | >8/152 (R) |
M. mucogenicum (n = 2) | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
AMI | FOX | CIP | CLA | DOX | IMI | LZD | MIN | MXF | TGC | SXT | |
1 | 2 (S) | 16 (S) | 0.25 (S) | 0.25 (S) | >16 (R) | 8 (I) | 2 (S) | >8 (R) | ≤0.25 (S) | 0.25 | 1/19 (S) |
2 | ≤1 (S) | 8 (S) | 0.5 (S) | 0.12 (S) | ≤0.12 (S) | 4 (S) | 2 (S) | ≤1 (S) | 0.5 (S) | 0.12 | 0.5/9.5 (S) |
M. fortuitum Complex (n = 30) | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
AMI | FOX | CIP | CLA | DOX | IMI | LZD | MIN | MXF | TGC | SXT | |
1 | ≤1 (S) | 16 (S) | 0.5 (S) | 0.5 (S) | 0.5 (S) | ≤2 (S) | 4 (S) | ≤1 (S) | ≤0.25 (S) | 0.12 | 2/38 (S) |
2 | ≤1 (S) | 16 (S) | ≤0.12 (S) | 0.12 (S) | >16 (R) | ≤2 (S) | 2 (S) | >8 (R) | ≤0.25 (S) | 0.5 | 4/76 (R) |
3 | ≤1 (S) | 32 (I) | ≤0.12 (S) | >16 (R) | >16 (R) | 4 (S) | 2 (S) | >8 (R) | ≤0.25 (S) | 0.25 | 0.5/9.5 (S) |
4 | ≤1 (S) | 16 (S) | ≤0.12 (S) | 0.12 (S) | >16(R) | 4 (S) | ≤1 (S) | >8 (R) | ≤0.25 (S) | 0.25 | 1/19 (S) |
5 | ≤1 (S) | 16 (S) | ≤0.12 (S) | >16 (R) | ≤0.12 (S) | 8 (I) | ≤1 (S) | ≤1 (S) | ≤0.25 (S) | 0.25 | 2/38 (S) |
6 | ≤1 (S) | 32 (I) | ≤0.12 (S) | >16 (R) | >16 (R) | 8 (I) | 16 (I) | >8 (R) | ≤0.25 (S) | 0.5 | 8/152 (R) |
7 | ≤1 (S) | 16 (S) | 0.25 (S) | >16 (R) | 0.5 (S) | 4 (S) | ≤1 (S) | ≤1 (S) | ≤0.25 (S) | 0.25 | 1/19 (S) |
8 | ≤1 (S) | 16 (S) | ≤0.12 (S) | 0.25 (S) | >16(R) | 4 (S) | ≤1 (S) | >8 (R) | ≤0.25 (S) | 0.25 | 1/19 (S) |
9 | ≤1 (S) | 64 (I) | 2(I) | >16 (R) | 0.5 (S) | 64(R) | 8 (S) | >8 (R) | 1 (S) | 1 | >8/152 (R) |
10 | ≤1 (S) | 64 (I) | 0.25 (S) | >16 (R) | >16 (R) | 16 (I) | 8 (S) | >8 (R) | ≤0.25 (S) | 0.25 | >8/152 (R) |
11 | 2 (S) | 64 (I) | 0.25 (S) | >16 (R) | >16 (R) | 16 (I) | 8 (S) | >8 (R) | 0.5 (S) | 0.25 | 4/76 (R) |
12 | 4 (S) | 64 (I) | 0.25 (S) | >16 (R) | 0.25 (S) | 64 (R) | 4 (S) | ≤1 (S) | ≤0.25 (S) | 0.06 | 2/38 (S) |
13 | ≤1 (S) | 32 (I) | ≤0.12 (S) | >16 (R) | ≤0.12 (S) | 4 (S) | 4 (S) | ≤1 (S) | ≤0.25 (S) | 0.03 | 0.5/9.5 (S) |
14 | ≤1 (S) | 32 (I) | 0.25 (S) | >16 (R) | >16 (R) | 8 (I) | 8 (S) | >8 (R) | ≤0.25 (S) | 0.25 | 8/152 (R) |
15 | ≤1 (S) | 32 (I) | ≤0.12 (S) | >16 (R) | >16 (R) | 8 (I) | 8 (S) | >8 (R) | ≤0.25 (S) | 0.03 | 2/38 (S) |
16 | ≤1 (S) | 8 (S) | ≤0.12 (S) | >16 (R) | 8 (R) | 4 (S) | 2 (S) | ≤1 (S) | ≤0.25 (S) | 0.12 | 4/76 (R) |
17 | ≤1 (S) | 32 (I) | 0.25 (S) | >16 (R) | >16 (R) | 8 (I) | 8 (S) | >8 (R) | ≤0.25 (S) | 0.25 | >8/152(R) |
18 | ≤1 (S) | 32 (I) | 0.25 (S) | 16 (R) | >16 (R) | 8 (I) | 8 (S) | >8 (R) | ≤0.25 (S) | 0.03 | >8/152(R) |
19 | ≤1 (S) | 32 (I) | 0.25 (S) | 16 (R) | >16 (R) | 8 (I) | 8 (S) | >8 (R) | ≤0.25 (S) | 0.06 | >8/152(R) |
20 | ≤1 (S) | 32 (I) | ≤0.12 (S) | >16 (R) | 0.25 (S) | 16 (I) | 4 (S) | ≤1 (S) | ≤0.25 (S) | 0.06 | 4/76 (R) |
21 | ≤1 (S) | 32 (I) | ≤0.12 (S) | >16 (R) | >16(R) | 8 (I) | 2 (S) | >8(R) | ≤0.25 (S) | 0.12 | 4/76 (R) |
22 | ≤1 (S) | 32 (I) | 0.25 (S) | >16 (R) | 0.5 (S) | 8 (I) | 8 (S) | ≤1 (S) | ≤0.25 (S) | 0.5 | >8/152(R) |
23 | ≤1 (S) | 32 (I) | ≤0.12 (S) | >16 (R) | 0.12 (S) | 8 (I) | 4 (S) | ≤1 (S) | ≤0.25 (S) | 0.25 | 4/76 (R) |
24 | ≤1 (S) | 32 (I) | ≤0.12 (S) | >16 (R) | 0.25 (S) | 8 (I) | 4 (S) | ≤1 (S) | ≤0.25 (S) | 0.25 | 8/152 (R) |
25 | ≤1 (S) | 16 (S) | 0.5 (S) | 1 (S) | 0.25 (S) | 8 (I) | 8 (S) | ≤1 (S) | ≤0.25 (S) | 0.25 | 4/76 (R) |
26 | ≤1 (S) | 32 (I) | ≤0.12 (S) | >16 (R) | >16 (R) | 16 (I) | 16 (I) | >8 (R) | ≤0.25 (S) | 0.25 | 4/76 (R) |
27 | ≤1 (S) | 32 (I) | 0.5 (S) | 0.25 (S) | 0.25 (S) | 32R | 8 (S) | ≤1 (S) | ≤0.25 (S) | 0.25 | 4/76 (R) |
28 | ≤1 (S) | 16 (S) | ≤0.12 (S) | >16 (R) | 0.25 (S) | 16 (I) | 4 (S) | ≤1 (S) | ≤0.25 (S) | 0.25 | 8/152 (R) |
29 | ≤1 (S) | 16 (S) | ≤0.12 (S) | 0.12 (S) | 16 (R) | 8 (I) | 8 (S) | 8 (R) | ≤0.25 (S) | 0.12 | 4/76 (R) |
30 | ≤1 (S) | 32 (I) | ≤0.12 (S) | >16(R) | >16(R) | 16 (I) | 8 (S) | >8(R) | ≤0.25 (S) | 0.06 | >8/152 (R) |
Sensitivity to Clarithromycin on Days 3–5 of Incubation | Sensitivity to Clarithromycin on Day 14 of Incubation | Genetic Mechanisms | Subspecies of M. abscessus | Phenotypic Sensitivity to Macrolides |
---|---|---|---|---|
sensitive | sensitive | non-functional erm gene (41) | M. a. massiliense | sensitive to macrolides |
sensitive | resistant | functional erm gene (41) | M. a. abscessus M. a. bolletii | inducible resistance to macrolides |
resistant | resistant | 23S point mutation in rRNA | any of the above listed | high constitutive resistance to macrolides |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Borek, A.; Zabost, A.; Głogowska, A.; Filipczak, D.; Augustynowicz-Kopeć, E. New RAPMYCOI SensititreTM Antimicrobial Susceptibility Test for Atypical Rapidly Growing Mycobacteria (RGM). Diagnostics 2022, 12, 1976. https://doi.org/10.3390/diagnostics12081976
Borek A, Zabost A, Głogowska A, Filipczak D, Augustynowicz-Kopeć E. New RAPMYCOI SensititreTM Antimicrobial Susceptibility Test for Atypical Rapidly Growing Mycobacteria (RGM). Diagnostics. 2022; 12(8):1976. https://doi.org/10.3390/diagnostics12081976
Chicago/Turabian StyleBorek, Anna, Anna Zabost, Agnieszka Głogowska, Dorota Filipczak, and Ewa Augustynowicz-Kopeć. 2022. "New RAPMYCOI SensititreTM Antimicrobial Susceptibility Test for Atypical Rapidly Growing Mycobacteria (RGM)" Diagnostics 12, no. 8: 1976. https://doi.org/10.3390/diagnostics12081976
APA StyleBorek, A., Zabost, A., Głogowska, A., Filipczak, D., & Augustynowicz-Kopeć, E. (2022). New RAPMYCOI SensititreTM Antimicrobial Susceptibility Test for Atypical Rapidly Growing Mycobacteria (RGM). Diagnostics, 12(8), 1976. https://doi.org/10.3390/diagnostics12081976