The RALE Score Versus the CT Severity Score in Invasively Ventilated COVID-19 Patients—A Retrospective Study Comparing Their Prognostic Capacities
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Inclusion and Exclusion Criteria
2.3. Data Collection
2.4. Imaging Scores
2.5. Outcomes
2.6. Power Calculation
2.7. Statistical Analysis
3. Results
3.1. Patients
3.2. Imaging Scores
3.3. Prognostic Capacity for ICU Death
3.4. Sensitivity Analyses
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Valk, C.M.A.; Zimatore, C.; Mazzinari, G.; Pierrakos, C.; Sivakorn, C.; Dechsanga, J.; Grasso, S.; Beenen, L.; Bos, L.D.J.; Paulus, F.; et al. The Prognostic Capacity of the Radiographic Assessment for Lung Edema Score in Patients With COVID-19 Acute Respiratory Distress Syndrome—An International Multicenter Observational Study. Front. Med. 2022, 8. [Google Scholar] [CrossRef]
- Treanor, L.; Islam, N.; Ebrahimzadeh, S.; McInnes, M.D.F. Role of Imaging in Diagnosing COVID-19. Radiology 2021, 299, E289. [Google Scholar] [CrossRef]
- Schalekamp, S.; Bleeker-Rovers, C.P.; Beenen, L.F.M.; Quarles van Ufford, H.M.E.; Gietema, H.A.; Stöger, J.L.; Harris, V.; Reijers, M.H.E.; Rahamat-Langendoen, J.; Korevaar, D.A.; et al. Chest CT in the Emergency Department for Diagnosis of COVID-19 Pneumonia: Dutch Experience. Radiology 2021, 298, E98–E106. [Google Scholar] [CrossRef]
- Warren, M.A.; Zhao, Z.; Koyama, T.; Bastarache, J.A.; Shaver, C.M.; Semler, M.W.; Rice, T.W.; Matthay, M.A.; Calfee, C.S.; Ware, L.B. Severity scoring of lung oedema on the chest radiograph is associated with clinical outcomes in ARDS. Thorax 2018, 73, 840–846. [Google Scholar] [CrossRef]
- Ebrahimian, S.; Homayounieh, F.; Rockenbach, M.; Putha, P.; Raj, T.; Dayan, I.; Bizzo, B.C.; Buch, V.; Wu, D.; Kim, K.; et al. Artificial intelligence matches subjective severity assessment of pneumonia for prediction of patient outcome and need for mechanical ventilation: A cohort study. Sci. Rep. 2021, 11, 858. [Google Scholar] [CrossRef]
- Zimatore, C.; Pisani, L.; Lippolis, V.; Calfee, C.S.; Ware, L.B.; Algera, A.G.; Smit, M.; Grasso, S.; Schultz, M.J. The radiographic assessment of lung edema (RALE) score has excellent diagnostic accuracy for ARDS. Eur. Respir. J. 2019, 54 (Suppl. 63), OA3299. [Google Scholar]
- Zimatore, C.; Pisani, L.; Lippolis, V.; Warren, M.A.; Calfee, C.S.; Ware, L.B.; Algera, A.G.; Smit, M.R.; Grasso, S.; Schultz, M.J. Accuracy of the Radiographic Assessment of Lung Edema Score for the Diagnosis of ARDS. Front. Physiol. 2021, 12, 672823. [Google Scholar] [CrossRef]
- Jabaudon, M.; Audard, J.; Pereira, B.; Jaber, S.; Lefrant, J.Y.; Blondonnet, R.; Godet, T.; Futier, E.; Lambert, C.; Bazin, J.E.; et al. Early Changes Over Time in the Radiographic Assessment of Lung Edema Score Are Associated With Survival in ARDS. Chest 2020, 158, 2394–2403. [Google Scholar] [CrossRef]
- Kotok, D.; Yang, L.; Evankovich, J.W.; Bain, W.; Dunlap, D.G.; Shah, F.; Zhang, Y.; Manatakis, D.V.; Benos, P.V.; Barbash, I.J.; et al. The evolution of radiographic edema in ARDS and its association with clinical outcomes: A prospective cohort study in adult patients. J. Crit. Care 2020, 56, 222–228. [Google Scholar] [CrossRef]
- Al-Yousif, N.; Komanduri, S.; Qurashi, H.; Korzhuk, A.; Lawal, H.O.; Abourizk, N.; Schaefer, C.; Mitchell, K.J.; Dietz, C.M.; Hughes, E.K.; et al. Radiographic Assessment of Lung Edema (RALE) Scores are Highly Reproducible and Prognostic of Clinical Outcomes for Inpatients with COVID-19. medRxiv 2022. Available online: https://www.medrxiv.org/content/10.1101/2022.06.10.22276249v1 (accessed on 1 July 2022).
- Available online: https://radiologyassistant.nl/chest/covid-19/covid19-imaging-findings (accessed on 2 February 2022).
- Chang, Y.C.; Yu, C.J.; Chang, S.C.; Galvin, J.R.; Liu, H.M.; Hsiao, C.H.; Kuo, P.H.; Chen, K.Y.; Franks, T.J.; Huang, K.M.; et al. Pulmonary sequelae in convalescent patients after severe acute respiratory syndrome: Evaluation with thin-section CT1. Radiology 2005, 236, 1067–1075. [Google Scholar] [CrossRef]
- Francone, M.; Iafrate, F.; Masci, G.M.; Coco, S.; Cilia, F.; Manganaro, L.; Panebianco, V.; Andreoli, C.; Colaiacomo, M.C.; Zingaropoli, M.A.; et al. Chest CT score in COVID-19 patients: Correlation with disease severity and short-term prognosis. Eur. Radiol. 2020, 30, 6808–6817. [Google Scholar] [CrossRef]
- Lieveld, A.W.E.; Azijli, K.; Teunissen, B.P.; van Haaften, R.M.; Kootte, R.S.; van den Berk, I.A.H.; van der Horst, S.F.B.; de Gans, C.; van de Ven, P.M.; Nanayakkara, P.W.B. Chest CT in COVID-19 at the ED: Validation of the COVID-19 Reporting and Data System (CO-RADS) and CT Severity Score: A Prospective, Multicenter, Observational Study. Chest 2021, 159, 1126–1135. [Google Scholar] [CrossRef]
- Li, K.; Fang, Y.; Li, W.; Pan, C.; Qin, P.; Zhong, Y.; Liu, X.; Huang, M.; Liao, Y.; Li, S. CT image visual quantitative evaluation and clinical classification of coronavirus disease (COVID-19). Eur. Radiol. 2020, 30, 4407–4416. [Google Scholar] [CrossRef]
- Botta, M.; Tsonas, A.M.; Pillay, J.; Boers, L.S.; Algera, A.G.; Bos, L.D.J.; Dongelmans, D.A.; Hollmann, M.W.; Horn, J.; Vlaar, A.P.J.; et al. Ventilation Management and Clinical Outcome in Invasively Ventilated COVID–19 Patients (PRoVENT–COVID)—a national, multicentre, observational cohort study. Lancet Respir Med. 2021, 9, 139–148. [Google Scholar] [CrossRef]
- DeLong, E.R.; DeLong, D.M.; Clarke-Pearson, D.L. Comparing the Areas under Two or More Correlated Receiver Operating Characteristic Curves: A Nonparametric Approach. Biometrics 1988, 44, 837–845. [Google Scholar] [CrossRef]
- Yang, R.; Li, X.; Liu, H.; Zhen, Y.; Zhang, X.; Xiong, Q.; Luo, Y.; Gao, C.; Zeng, W. Chest CT Severity Score: An Imaging Tool for Assessing Severe COVID-19. Radiol. Cardiothorac. Imaging 2020, 2, e200047. [Google Scholar] [CrossRef]
- Heldeweg, M.L.A.; Lopez Matta, J.E.; Haaksma, M.E.; Smit, J.M.; Elzo Kraemer, C.V.; de Grooth, H.J.; de Jonge, E.; Meijboom, L.J.; Heunks, L.M.A.; van Westerloo, D.J.; et al. Lung ultrasound and computed tomography to monitor COVID-19 pneumonia in critically ill patients: A two-center prospective cohort study. Intensive Care Med. Exp. 2021, 9, 1. [Google Scholar] [CrossRef]
- Pan, F.; Ye, T.; Sun, P.; Gui, S.; Liang, B.; Li, L.; Zheng, D.; Wang, J.; Hesketh, R.L.; Yang, L.; et al. Time Course of Lung Changes at Chest CT during Recovery from Coronavirus Disease 2019 (COVID-19). Radiology 2020, 295, 715–721. [Google Scholar] [CrossRef]
- Pierrakos, C.; Lieveld, A.; Pisani, L.; Smit, M.R.; Heldeweg, M.; Hagens, L.A.; Smit, J.; Haaksma, M.; Veldhuis, L.; Schmidt, R.W.; et al. A Lower Global Lung Ultrasound Score Is Associated with Higher Likelihood of Successful Extubation in Invasively Ventilated COVID-19 Patients. Am. J. Trop. Med. Hyg. 2021, 105, 1490–1497. [Google Scholar] [CrossRef] [PubMed]
- Herrmann, J.; Adam, E.H.; Notz, Q.; Helmer, P.; Sonntagbauer, M.; Ungemach-Papenberg, P.; Sanns, A.; Zausig, Y.; Steinfeldt, T.; Torje, I.; et al. COVID-19 Induced Acute Respiratory Distress Syndrome—A Multicenter Observational Study. Front. Med. 2020, 7, 599533. [Google Scholar] [CrossRef]
- Mushtaq, J.; Pennella, R.; Lavalle, S.; Colarieti, A.; Steidler, S.; Martinenghi, C.M.A.; Palumbo, D.; Esposito, A.; Rovere-Querini, P.; Tresoldi, M.; et al. Initial chest radiographs and artificial intelligence (AI) predict clinical outcomes in COVID-19 patients: Analysis of 697 Italian patients. Eur. Radiol. 2021, 31, 1770–1779. [Google Scholar] [CrossRef] [PubMed]
- Sensusiati, A.D.; Amin, M.; Nasronudin, N.; Rosyid, A.N.; Ramadhan, N.A.; Lathifah, R.; Puspitasari, E.; Wahyuningtyas, R.I.; Soebakti, E. Age, neutrophil lymphocyte ratio, and radiographic assessment of the quantity of lung edema (RALE) score to predict in-hospital mortality in COVID-19 patients: A retrospective study. F1000Research 2020, 9, 1286. [Google Scholar] [CrossRef] [PubMed]
- Au-Yong, I.; Higashi, Y.; Giannotti, E.; Fogarty, A.; Morling, J.R.; Grainge, M.; Race, A.; Juurlink, I.; Simmonds, M.; Briggs, S.; et al. Chest Radiograph Scoring Alone or Combined with Other Risk Scores for Predicting Outcomes in COVID-19. Radiology 2022, 302, 460–469. [Google Scholar] [CrossRef]
- Safont, B.; Tarraso, J.; Rodriguez-Borja, E.; Fernández-Fabrellas, E.; Sancho-Chust, J.N.; Molina, V.; Lopez-Ramirez, C.; Lope-Martinez, A.; Cabanes, L.; Andreu, A.L.; et al. Lung Function, Radiological Findings and Biomarkers of Fibrogenesis in a Cohort of COVID-19 Patients Six Months After Hospital Discharge. Arch. Bronconeumol. 2022, 58, 142–149. [Google Scholar] [CrossRef]
- Barbieri, D.; Giuliani, E.; Del Prete, A.; Losi, A.; Villani, M.; Barbieri, A. How Artificial Intelligence and New Technologies Can Help the Management of the COVID-19 Pandemic. Int. J. Environ. Res. Public Health 2021, 18, 7648. [Google Scholar] [CrossRef]
- Kim, Y.G.; Kim, K.; Wu, D.; Ren, H.; Tak, W.Y.; Park, S.Y.; Lee, Y.R.; Kang, M.K.; Park, J.G.; Kim, B.S.; et al. Deep Learning-Based Four-Region Lung Segmentation in Chest Radiography for COVID-19 Diagnosis. Diagnostics 2022, 12, 101. [Google Scholar] [CrossRef]
- Gupta, A.; Madhavan, M.V.; Sehgal, K.; Nair, N.; Mahajan, S.; Sehrawat, T.S.; Bikdeli, B.; Ahluwalia, N.; Ausiello, J.C.; Wan, E.Y.; et al. Extrapulmonary manifestations of COVID-19. Nat. Med. 2020, 26, 1017–1032. [Google Scholar] [CrossRef]
- Behzad, S.; Aghaghazvini, L.; Radmard, A.R.; Gholamrezanezhad, A. Extrapulmonary manifestations of COVID-19: Radiologic and clinical overview. Clin. Imaging 2020, 66, 35–41. [Google Scholar] [CrossRef]
- AlSamman, M.; Caggiula, A.; Ganguli, S.; Misak, M.; Pourmand, A. Non-respiratory presentations of COVID-19, a clinical review. Am. J. Emerg. Med. 2020, 38, 2444–2454. [Google Scholar] [CrossRef]
- Satturwar, S.; Fowkes, M.; Farver, C.; Wilson, A.M.; Eccher, A.; Girolami, I.; Pujadas, E.; Bryce, C.; Salem, F.; El Jamal, S.M.; et al. Postmortem Findings Associated With SARS-CoV-2: Systematic Review and Meta-analysis. Am. J. Surg. Pathol. 2021, 45, 587–603. [Google Scholar] [CrossRef]
- Nahum, J.; Morichau-Beauchant, T.; Daviaud, F.; Echegut, P.; Fichet, J.; Maillet, J.M.; Thierry, S. Venous Thrombosis Among Critically Ill Patients With Coronavirus Disease 2019 (COVID-19). JAMA Netw. Open 2020, 3, e2010478. [Google Scholar] [CrossRef] [PubMed]
- Tavazzi, G.; Civardi, L.; Caneva, L.; Mongodi, S.; Mojoli, F. Thrombotic events in SARS-CoV-2 patients: An urgent call for ultrasound screening. Intensive Care Med. 2020, 46, 1121–1123. [Google Scholar] [CrossRef] [PubMed]
- Grasselli, G.; Scaravilli, V.; Mangioni, D.; Scudeller, L.; Alagna, L.; Bartoletti, M.; Bellani, G.; Biagioni, E.; Bonfanti, P.; Bottino, N.; et al. Hospital-Acquired Infections in Critically Ill Patients With COVID-19. Chest 2021, 160, 454–465. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.H.; Yaron, D.; Piraino, A.S.; Kapelusznik, L. Bacterial and fungal growth in sputum cultures from 165 COVID-19 pneumonia patients requiring intubation: Evidence for antimicrobial resistance development and analysis of risk factors. Ann. Clin. Microbiol. Antimicrob. 2021, 20, 69. [Google Scholar] [CrossRef]
- Palanidurai, S.; Phua, J.; Chan, Y.H.; Mukhopadhyay, A. P/FP ratio: Incorporation of PEEP into the PaO(2)/FiO(2) ratio for prognostication and classification of acute respiratory distress syndrome. Ann. Intensive Care 2021, 11, 124. [Google Scholar] [CrossRef]
- Sun, J.; Yu, D.; Yoo, K.; Choi, R.; Lu, X.; Standiford, T.; Cohen, G.; Marchetti, N.; Agosto, O.; Kumaran, M.; et al. Sextus chest radiograph severity score correlates to clinical outcomes in patients with COVID-19: A cross-sectional study. Medicine 2021, 100, e27663. [Google Scholar] [CrossRef] [PubMed]
- Zeng, F.; Cai, Y.; Guo, Y.; Chen, W.; Lin, M.; Zheng, J.; Zeng, H.; Wang, S.; Qin, G. The diagnostic value of chest X-ray in coronavirus disease 2019: A comparative study of X-ray and CT. Sci. Prog. 2021, 104, 368504211016204. [Google Scholar] [CrossRef]
- Cozzi, D.; Albanesi, M.; Cavigli, E.; Moroni, C.; Bindi, A.; Luvarà, S.; Lucarini, S.; Busoni, S.; Mazzoni, L.N.; Miele, V. Chest X-ray in new Coronavirus Disease 2019 (COVID-19) infection: Findings and correlation with clinical outcome. Radiol. Med. 2020, 125, 730–737. [Google Scholar] [CrossRef]
Overall n = 82 | Alive * n = 35 | Dead n = 47 | p-Value | SMD | |
---|---|---|---|---|---|
demographics | |||||
Age, years (median [IQR]) | 65 [60–72] | 65 [59–72] | 65 [60–72] | 0.669 | 0.174 |
Male gender, n (%) | 60 (73.2) | 24 (68.6) | 36 (76.6) | 0.576 | 0.181 |
Body mass index, kg∙m2 (median [IQR]) | |||||
severity and comorbidities | |||||
APACHE II (median [IQR]) | 12.0 [10.0–20.0] | 12.0 [10.0–15.5] | 13.0 [10.0–20.0] | 0.289 | 0.245 |
Comorbidities, yes, n (%) | 46 (56.1) | 20 (57.1) | 26 (55.3) | 1.000 | |
Arterial hypertension, n (%) | 41 (50.0) | 24 (68.6) | 17 (36.2) | 0.007 | |
Heart failure, n (%) | 4 (4.9) | 2 (5.7) | 2 (4.3) | 1.000 | |
Diabetes mellitus, n (%) | 32 (39.0) | 15 (42.9) | 17 (36.2) | 0.700 | |
Chronic kidney disease, n (%) | 15 (18.3) | 5 (14.3) | 10 (21.3) | 0.602 | |
Liver cirrhosis, n (%) | 0 (0.0) | 0 (0.0) | 0 (0.0) | NA | |
Chronic obstructive pulmonary disease, n (%) | 5 (6.1) | 3 (8.6) | 2 (4.3) | 0.733 | |
Active hematological malignancy, n (%) | 4 (4.9) | 1 (2.9) | 3 (6.4) | 0.830 | |
Active solid tumor malignancy, n (%) | 3 (3.7) | 2 (5.7) | 1 (2.1) | 0.794 | |
Metastatic cancer, n (%) | 1 (1.2) | 0 (0.0) | 1 (2.1) | 1.000 | |
Neuromuscular disease, n (%) | 2 (2.4) | 1 (2.9) | 1 (2.1) | 1.000 | |
Immunosuppression, n (%) | 1 (1.2) | 0 (0.0) | 1 (2.1) | 1.000 | |
Cardiovascular disease, n (%) | 14 (17.1) | 6 (17.1) | 8 (17.0) | 1.000 | |
AIDS, n (%) | 0 (0.0) | 0 (0.0) | 0 (0.0) | NA | |
Asthma, n (%) | 3 (3.7) | 2 (5.7) | 1 (2.1) | 0.794 | |
Obstructive sleep apnea, n (%) | 2 (2.4) | 0 (0.0) | 2 (4.3) | 0.609 | |
Other, n (%) | 35 (42.7) | 16 (45.7) | 19 (40.4) | 0.800 | |
outcomes | |||||
Successful extubation, n (%) | 35 (43.2) | 33 (97.1) | 2 (4.3) | <0.001 | |
RALE score (median [IQR]) | 25 [18–38] | 22 [15–37] | 26 [19–39] | 0.343 | 0.187 |
CT severity score (median [IQR]) | 20 [17–22] | 18 [16–21] | 21 [18–23] | 0.022 | 0.545 |
Intubation time-days (median [IQR]) | 10 [6–28] | 9 [5–23] | 40 [36–43] | 0.117 | 1.638 |
ICU length of stay-days (median [IQR]) | 12 [7–26] | 12 [7–26] | - | - | - |
Hospital length of stay-days (median [IQR]) | 28 [16–53] | 28 [16–53] | - | - | - |
Overall | Alive * | Dead | p-Value | SMD | |
---|---|---|---|---|---|
n = 82 | n = 35 | n = 47 | |||
Ventilation mode, n (%) | 0.587 | 0.326 | |||
Pressure controlled | 26 (33.3) | 8 (25.0) | 18 (39.1) | ||
Pressure support | 12 (15.4) | 6 (18.8) | 6 (13.0) | ||
Volume controlled | 2 (2.5) | 1 (2.9) | 1 (2.1) | ||
ASV/Intellivent | 10 (12.8) | 5 (15.6) | 5 (10.9) | ||
Spontaneous | 30 (38.5) | 13 (40.6) | 17 (37.0) | ||
PEEP, cmH2O (median [IQR]) | 10 [9–12] | 10 [9–12] | 10 [8–12] | 0.969 | 0.035 |
FiO2, % (median [IQR]) | 65 [50–80] | 61 [50–80] | 70 [50–85] | 0.368 | 0.234 |
Tidal expiratory volume set, ml (median [IQR]) | 458 [379–518] | 435 [356–508] | 466 [399–582] | 0.155 | 0.381 |
Respiratory rate, breaths/min (median [IQR]) | 24 [20–29] | 25 [21–29] | 21.30 [19–28] | 0.122 | 0.337 |
Peak pressure, cmH2O (median [IQR]) | 24 [19–31] | 24 [20–31] | 23 [19–29] | 0.509 | 0.201 |
SpO2, % (median [IQR]) | 92 [90–94] | 93 [91–94] | 92 [90–95] | 0.856 | 0.025 |
etCO2, kPa (median [IQR]) | 5.2 [4.2–6.1] | 5.1 [3.9–5.6] | 5.4 [4.4–6.2] | 0.159 | 0.175 |
pH (median [IQR]) | 7.38 [7.32–7.44] | 7.40 [7.33–7.45] | 7.37 [7.31–7.42] | 0.358 | 0.251 |
PaO2, kpa (median [IQR]) | 9.5 [8.3–10.5] | 9.6 [8.2–10.6] | 9.3 [8.4–10.5] | 0.914 | 0.125 |
PaO2/FiO2 (median [IQR]) | 113 [88–151] | 119 [92–154] | 109 [86–142] | 0.583 | 0.149 |
PaCO2, kpa (median [IQR]) | 6.1 [5.3–7.6] | 5.7 [5.3–7.4] | 6.2 [5.5–7.9] | 0.381 | 0.218 |
RALE Score | CTSS | |||
---|---|---|---|---|
Outcome | OR [95%CI] Univariable Estimate | OR [95%CI] Adjusted Estimate | OR [95%CI] Univariable Estimate | OR [95%CI] Adjusted Estimate |
Primary | ||||
ICU mortality | 1.34 [0.67–2.69] | 1.35 [0.64–2.84] | 1.99 [1.11–3.54] | 2.31 [1.22–4.38] |
Sensitivity analyses | ||||
Splines fitted model | 2.97 [0.75–11.7] | 1.67 [0.41–6.84] | 2.98 [0.75–11.78] | 2.31 [1.22–4.38] |
Model with added PEEP | 1.89 [0.81–4.38] | 1.99 [1.025–3.87] | ||
Only CXRs of the first 3 days | 0.89 [0.39–2.03] | 0.92 [0.39–2.16] | 1.82 [0.91–3.63] | 2.23 [0.99–4.98] |
Secondary | ||||
28-day mortality | 1.04 [0.52–2.05] | 1.02 [0.50–2.10] | 1.79 [1.01–3.16] | 1.96 [1.07–3.58] |
Hospital mortality | 1.21 [0.60–2.44] | 1.19 [0.57–2.50] | 1.70 [0.97–2.97] | 1.94 [1.06–3.58] |
90-day mortality | 1.13 [0.58–2.26] | 1.10 [0.53–2.29] | 1.76 [1.01–3.10] | 1.98 [1.10–3.65] |
Adjusted β linear coefficient [95%CI] | Adjusted β linear coefficient [95%CI] | |||
Duration of ventilation in survivors | - | 0.40 [−0.04–0.86] p = 0.075 $ | - | 1.57 [0.10–3.03] p = 0.03 $ |
ICU length of stay in survivors | - | 0.30 [−0.20–0.81] p = 0.232 $ | - | 1.48 [−0.12–3.09] p = 0.070 $ |
Outcome | AUC of Univariate ROC for RALE | AUC of Univariate ROC for CTSS | Comparison between AUCs(De Long Test) | AUC of Adjusted Logistic Regression Model for RALE * | AUC of Adjusted Logistic Regression Model for CTSS * | Comparison between AUCs (De Long) | R2 from the Adjusted Linear Model with RALE | R2 from the Adjusted Linear Model with CTSS |
---|---|---|---|---|---|---|---|---|
Primary | ||||||||
ICU mortality | 0.50 [0.44–0.56] | 0.64 [0.57–0.69] | p = 0.001 | 0.55 [0.43–0.56] | 0.66 [0.60–0.72] | p = 0.006 | – | – |
Sensitivity analyses | ||||||||
Splines fitted model | 0.53 [0.47–0.58] | 0.56 [0.50–0.62] | p = 0.411 | 0.54 [0.47–0.58] | 0.62 [0.57–0.68] | p = 0.005 | ||
Only 3 days after ICU admission | 0.66 [0.59–0.72] | 0.60 [0.54–0.67] | p = 0.283 | 0.60 [0.49–0.61] | 0.61 [0.60–0.72 | p = 0.776 | ||
Secondary | ||||||||
28-day mortality | 0.66 [0.61–0.71] | 0.64 [0.58–0.69] | p = 0.445 | 0.53 [0.48–0.59] | 0.65 [0.60–0.70] | p = 0.004 | – | – |
Hospital mortality | 0.58 [0.53–0.64] | 0.61 [0.55–0.61] | p = 0.507 | 0.48 [0.42–0.54] | 0.64 [0.58–0.64] | p < 0.001 | – | – |
90-day mortality | 0.57 [0.52–0.63] | 0.63 [0.54–0.65] | p = 0.258 | 0.51 [0.45–0.57] | 0.64 [0.59–0.70] | p < 0.001 | – | – |
Duration of ventilation in survivors | – | – | – | – | – | – | 0.136 | 0.186 |
ICU length of stay in survivors | – | – | – | – | – | – | 0.066 | 0.034 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Valk, C.M.; Zimatore, C.; Mazzinari, G.; Pierrakos, C.; Sivakorn, C.; Dechsanga, J.; Grasso, S.; Beenen, L.; Bos, L.D.J.; Paulus, F.; et al. The RALE Score Versus the CT Severity Score in Invasively Ventilated COVID-19 Patients—A Retrospective Study Comparing Their Prognostic Capacities. Diagnostics 2022, 12, 2072. https://doi.org/10.3390/diagnostics12092072
Valk CM, Zimatore C, Mazzinari G, Pierrakos C, Sivakorn C, Dechsanga J, Grasso S, Beenen L, Bos LDJ, Paulus F, et al. The RALE Score Versus the CT Severity Score in Invasively Ventilated COVID-19 Patients—A Retrospective Study Comparing Their Prognostic Capacities. Diagnostics. 2022; 12(9):2072. https://doi.org/10.3390/diagnostics12092072
Chicago/Turabian StyleValk, Christel M., Claudio Zimatore, Guido Mazzinari, Charalampos Pierrakos, Chaisith Sivakorn, Jutamas Dechsanga, Salvatore Grasso, Ludo Beenen, Lieuwe D. J. Bos, Frederique Paulus, and et al. 2022. "The RALE Score Versus the CT Severity Score in Invasively Ventilated COVID-19 Patients—A Retrospective Study Comparing Their Prognostic Capacities" Diagnostics 12, no. 9: 2072. https://doi.org/10.3390/diagnostics12092072
APA StyleValk, C. M., Zimatore, C., Mazzinari, G., Pierrakos, C., Sivakorn, C., Dechsanga, J., Grasso, S., Beenen, L., Bos, L. D. J., Paulus, F., Schultz, M. J., & Pisani, L. (2022). The RALE Score Versus the CT Severity Score in Invasively Ventilated COVID-19 Patients—A Retrospective Study Comparing Their Prognostic Capacities. Diagnostics, 12(9), 2072. https://doi.org/10.3390/diagnostics12092072