Diagnosing Arterial Stiffness in Pregnancy and Its Implications in the Cardio-Renal-Metabolic Chain
Abstract
:1. Introduction
2. Physiological Modifications during Pregnancy
3. Arterial Stiffness in General Population
4. Arterial Stiffness in Normal Pregnancies
5. Complicated Pregnancies and the Interconnected Consequences
5.1. Hypertensive Disorders during Pregnancy
5.2. Obesity
5.3. Dyslipidaemia
5.4. Diabetes
5.5. Kidney disease
6. Pre-Eclampsia—A Type 5 of Cardio-Renal Syndrome
7. Arterial Stiffness in Complicated Pregnancies
8. Discussion
9. Conclusions and Future Perspectives
Author Contributions
Funding
Conflicts of Interest
References
- Barbu, E.; Popescu, M.-R.; Popescu, A.-C.; Balanescu, S.-M. Inflammation as A Precursor of Atherothrombosis, Diabetes and Early Vascular Aging. Int. J. Mol. Sci. 2022, 23, 963. [Google Scholar] [CrossRef] [PubMed]
- Vesa, C.M.; Popa, L.; Popa, A.R.; Rus, M.; Zaha, A.A.; Bungau, S.; Tit, D.M.; Corb Aron, R.A.; Zaha, D.C. Current Data Regarding the Relationship between Type 2 Diabetes Mellitus and Cardiovascular Risk Factors. Diagnostics 2020, 10, 314. [Google Scholar] [CrossRef] [PubMed]
- Whaley-Connell, A.; Sowers, J.R. Basic science: Pathophysiology: The cardiorenal metabolic syndrome. J. Am. Soc. Hypertens. 2014, 8, 604–606. [Google Scholar] [CrossRef]
- Ronco, C.; Cicoira, M.; McCullough, P.A. Cardiorenal syndrome type 1: Pathophysiological crosstalk leading to combined heart and kidney dysfunction in the setting of acutely decompensated heart failure. J. Am. Coll. Cardiol. 2012, 60, 1031–1042. [Google Scholar] [CrossRef] [PubMed]
- Ronco, C.; Haapio, M.; House, A.A.; Anavekar, N.; Bellomo, R. Cardiorenal Syndrome. J. Am. Coll. Cardiol. 2008, 52, 1527–1539. [Google Scholar] [CrossRef] [PubMed]
- Stoner, L.; Kucharska-Newton, A.; Meyer, M.L. Cardiometabolic Health and Carotid-Femoral Pulse Wave Velocity in Children: A Systematic Review and Meta-Regression. J. Pediatr. 2020, 218, 98–105.e103. [Google Scholar] [CrossRef]
- Einarson, T.R.; Acs, A.; Ludwig, C.; Panton, U.H. Prevalence of cardiovascular disease in type 2 diabetes: A systematic literature review of scientific evidence from across the world in 2007-2017. Cardiovasc. Diabetol. 2018, 17, 83. [Google Scholar] [CrossRef]
- Gheorghe, G.; Toth, P.P.; Bungau, S.; Behl, T.; Ilie, M.; Pantea Stoian, A.; Bratu, O.G.; Bacalbasa, N.; Rus, M.; Diaconu, C.C. Cardiovascular Risk and Statin Therapy Considerations in Women. Diagnostics 2020, 10, 483. [Google Scholar] [CrossRef]
- Woodward, M. Cardiovascular Disease and the Female Disadvantage. Int. J. Environ. Res. Public Health 2019, 16, 1165. [Google Scholar] [CrossRef]
- Nagraj, S.; Kennedy, S.H.; Norton, R.; Jha, V.; Praveen, D.; Hinton, L.; Hirst, J.E. Cardiometabolic Risk Factors in Pregnancy and Implications for Long-Term Health: Identifying the Research Priorities for Low-Resource Settings. Front. Cardiovasc. Med. 2020, 7, 40. [Google Scholar] [CrossRef] [Green Version]
- MacDorman, M.F.; Thoma, M.; Declercq, E.; Howell, E.A. Causes contributing to the excess maternal mortality risk for women 35 and over, United States, 2016–2017. PLoS ONE 2021, 16, e0253920. [Google Scholar] [CrossRef] [PubMed]
- Yang Yang, C.; Walsh Christine, E.; Johnson Moira, P.; Belsky Daniel, W.; Reason, M.; Curran, P.; Aiello Allison, E.; Chanti-Ketterl, M.; Harris Kathleen, M. Life-course trajectories of body mass index from adolescence to old age: Racial and educational disparities. Proc. Natl. Acad. Sci. USA 2021, 118, e2020167118. [Google Scholar] [CrossRef] [PubMed]
- Shao, H.; Chen, L.-Q.; Xu, J. Treatment of dyslipidemia in the elderly. J. Geriatr. Cardiol. 2011, 8, 55–64. [Google Scholar] [CrossRef] [PubMed]
- Chia, C.W.; Egan, J.M.; Ferrucci, L. Age-Related Changes in Glucose Metabolism, Hyperglycemia, and Cardiovascular Risk. Circ. Res. 2018, 123, 886–904. [Google Scholar] [CrossRef] [PubMed]
- Notthoff, N.; Reisch, P.; Gerstorf, D. Individual Characteristics and Physical Activity in Older Adults: A Systematic Review. Gerontology 2017, 63, 443–459. [Google Scholar] [CrossRef]
- Mikael, L.d.R.; Paiva, A.M.G.d.; Gomes, M.M.; Sousa, A.L.L.; Jardim, P.C.B.V.; Vitorino, P.V.d.O.; Euzébio, M.B.; Sousa, W.d.M.; Barroso, W.K.S. Vascular Aging and Arterial Stiffness. Arq. Bras. Cardiol. 2017, 109, 253–258. [Google Scholar] [CrossRef]
- Pinto, E. Blood pressure and ageing. Postgrad. Med. J. 2007, 83, 109–114. [Google Scholar] [CrossRef]
- Fang, Y.; Gong, A.Y.; Haller, S.T.; Dworkin, L.D.; Liu, Z.; Gong, R. The ageing kidney: Molecular mechanisms and clinical implications. Ageing Res. Rev. 2020, 63, 101151. [Google Scholar] [CrossRef]
- Glick, I.; Kadish, E.; Rottenstreich, M. Management of Pregnancy in Women of Advanced Maternal Age: Improving Outcomes for Mother and Baby. Int. J. Womens Health 2022, 13, 751–759. [Google Scholar] [CrossRef]
- Mehari, M.-a.; Maeruf, H.; Robles, C.C.; Woldemariam, S.; Adhena, T.; Mulugeta, M.; Haftu, A.; Hagose, H.; Kumsa, H. Advanced maternal age pregnancy and its adverse obstetrical and perinatal outcomes in Ayder comprehensive specialized hospital, Northern Ethiopia, 2017: A comparative cross-sectional study. BMC Pregnancy Childbirth 2020, 20, 60. [Google Scholar] [CrossRef] [Green Version]
- Tyer-Viola, L.A.; Lopez, R.P. Pregnancy with chronic illness. J Obs. Gynecol. Neonatal Nurs. 2014, 43, 25–37. [Google Scholar] [CrossRef] [PubMed]
- Abalos, E.; Cuesta, C.; Grosso, A.L.; Chou, D.; Say, L. Global and regional estimates of preeclampsia and eclampsia: A systematic review. Eur. J. Obs. Gynecol. Reprod. Biol. 2013, 170, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Abu-Raya, B.; Michalski, C.; Sadarangani, M.; Lavoie, P.M. Maternal Immunological Adaptation During Normal Pregnancy. Front. Immunol. 2020, 11, 575197. [Google Scholar] [CrossRef] [PubMed]
- Bhatia, P.; Chhabra, S. Physiological and anatomical changes of pregnancy: Implications for anaesthesia. Indian J. Anaesth. 2018, 62, 651–657. [Google Scholar] [CrossRef] [PubMed]
- Zakaria, Z.Z.; Al-Rumaihi, S.; Al-Absi, R.S.; Farah, H.; Elamin, M.; Nader, R.; Bouabidi, S.; Suleiman, S.E.; Nasr, S.; Al-Asmakh, M. Physiological Changes and Interactions Between Microbiome and the Host During Pregnancy. Front. Cell. Infect. Microbiol. 2022, 12, 824925. [Google Scholar] [CrossRef] [PubMed]
- Parikh, N.I.; Gonzalez, J.M.; Anderson, C.A.M.; Judd, S.E.; Rexrode, K.M.; Hlatky, M.A.; Gunderson, E.P.; Stuart, J.J.; Vaidya, D.; American Heart Association Council on Epidemiology and Prevention. Adverse Pregnancy Outcomes and Cardiovascular Disease Risk: Unique Opportunities for Cardiovascular Disease Prevention in Women: A Scientific Statement From the American Heart Association. Circulation 2021, 143, e902–e916. [Google Scholar] [CrossRef]
- Surico, D.; Bordino, V.; Cantaluppi, V.; Mary, D.; Gentilli, S.; Oldani, A.; Farruggio, S.; Melluzza, C.; Raina, G.; Grossini, E. Preeclampsia and intrauterine growth restriction: Role of human umbilical cord mesenchymal stem cells-trophoblast cross-talk. PLoS ONE 2019, 14, e0218437. [Google Scholar] [CrossRef]
- Fu, Q. Hemodynamic and Electrocardiographic Aspects of Uncomplicated Singleton Pregnancy. Adv. Exp. Med. Biol. 2018, 1065, 413–431. [Google Scholar] [CrossRef]
- Turi, V.; Dragan, S.; Iurciuc, M.; Moleriu, L.; Bungau, S.; Tit, D.M.; Toader, D.O.; Diaconu, C.C.; Behl, T.; Petre, I. Arterial Function in Healthy Pregnant Women vs. Non-Pregnant Women-A 10-Year Study. Diagnostics 2020, 10, 374. [Google Scholar] [CrossRef]
- Hamilton, P.K.; Lockhart, C.J.; Quinn, C.E.; McVeigh, G.E. Arterial stiffness: Clinical relevance, measurement and treatment. Clin. Sci. 2007, 113, 157–170. [Google Scholar] [CrossRef]
- Pitsavos, C.; Toutouzas, K.; Dernellis, J.; Skoumas, J.; Skoumbourdis, E.; Stefanadis, C.; Toutouzas, P. Aortic stiffness in young patients with heterozygous familial hypercholesterolemia. Am. Heart J 1998, 135, 604–608. [Google Scholar] [CrossRef]
- Prenner, S.B.; Chirinos, J.A. Arterial stiffness in diabetes mellitus. Atherosclerosis 2015, 238, 370–379. [Google Scholar] [CrossRef] [PubMed]
- Jain, S.; Khera, R.; Corrales-Medina, V.F.; Townsend, R.R.; Chirinos, J.A. Inflammation and arterial stiffness in humans. Atherosclerosis 2014, 237, 381–390. [Google Scholar] [CrossRef] [PubMed]
- Namugowa, A.; Iputo, J.; Wandabwa, J.; Meeme, A.; Buga, G.A.B. Comparison of arterial stiffness in preeclamptic and normotensive pregnant women from a semi-rural region of South Africa. Clin. Exp. Hypertens. 2017, 39, 277–283. [Google Scholar] [CrossRef] [PubMed]
- Rangaswami, J.; Naranjo, M.; McCullough, P.A. Preeclampsia as a Form of Type 5 Cardiorenal Syndrome: An Underrecognized Entity in Women’s Cardiovascular Health. Cardiorenal Med. 2018, 8, 160–172. [Google Scholar] [CrossRef]
- Saz-Lara, A.; Bruno, R.M.; Cavero-Redondo, I.; Álvarez-Bueno, C.; Notario-Pacheco, B.; Martínez-Vizcaíno, V. Association between Arterial Stiffness and Blood Pressure Progression With Incident Hypertension: A Systematic Review and Meta-Analysis. Front. Cardiovasc. Med. 2022, 9, 798934. [Google Scholar] [CrossRef]
- Mansia, G.; De Backer, G.; Dominiczak, A.; Cifkova, R.; Fagard, R.; Germano, G.; Grassi, G.; Heagerty, A.M.; Kjeldsen, S.E.; Laurent, S.; et al. 2007 ESH-ESC Guidelines for the management of arterial hypertension: The task force for the management of arterial hypertension of the European Society of Hypertension (ESH) and of the European Society of Cardiology (ESC). Blood Press 2007, 16, 135–232. [Google Scholar] [CrossRef]
- Agbaje, A.O. Arterial stiffness precedes hypertension and metabolic risks in youth: A review. J. Hypertens. 2022, 40, 1887–1896. [Google Scholar] [CrossRef]
- Motosko, C.C.; Bieber, A.K.; Pomeranz, M.K.; Stein, J.A.; Martires, K.J. Physiologic changes of pregnancy: A review of the literature. Int. J. Womens Derm. 2017, 3, 219–224. [Google Scholar] [CrossRef]
- Kumar, P.; Magon, N. Hormones in pregnancy. Niger. Med. J. 2012, 53, 179–183. [Google Scholar] [CrossRef]
- Morton, A. Physiological Changes and Cardiovascular Investigations in Pregnancy. Heart Lung Circ. 2021, 30, e6–e15. [Google Scholar] [CrossRef] [PubMed]
- Green, L.J.; Mackillop, L.H.; Salvi, D.; Pullon, R.; Loerup, L.; Tarassenko, L.; Mossop, J.; Edwards, C.; Gerry, S.; Birks, J.; et al. Gestation-Specific Vital Sign Reference Ranges in Pregnancy. Obstet. Gynecol. 2020, 135, 653–664. [Google Scholar] [CrossRef]
- Macdonald-Wallis, C.; Silverwood, R.J.; Fraser, A.; Nelson, S.M.; Tilling, K.; Lawlor, D.A.; de Stavola, B.L. Gestational-age-specific reference ranges for blood pressure in pregnancy: Findings from a prospective cohort. J. Hypertens. 2015, 33, 96–105. [Google Scholar] [CrossRef] [PubMed]
- Chapman, A.B.; Abraham, W.T.; Zamudio, S.; Coffin, C.; Merouani, A.; Young, D.; Johnson, A.; Osorio, F.; Goldberg, C.; Moore, L.G.; et al. Temporal relationships between hormonal and hemodynamic changes in early human pregnancy. Kidney Int. 1998, 54, 2056–2063. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Han, B.; Salmeron, A.G.; Bai, J.; Chen, D.B. Estrogen-Induced Uterine Vasodilation in Pregnancy and Preeclampsia. Matern. Fetal Med. 2022, 4, 52–60. [Google Scholar] [CrossRef]
- Makhoul, J.; Lechuga, T.; Day, R.; Qi, Q.; Major, C.; Hameed, A.B.; Chen, D. 78 Preeclampsia Diminishes Pregnancy-augmented Myometrial H2S Biosynthesis and Myometrial Artery Cystathionine ß-Synthase Expression in Women. Am. J. Obstet. Gynecol. 2021, 224, S54. [Google Scholar] [CrossRef]
- Loerup, L.; Pullon, R.M.; Birks, J.; Fleming, S.; Mackillop, L.H.; Gerry, S.; Watkinson, P.J. Trends of blood pressure and heart rate in normal pregnancies: A systematic review and meta-analysis. BMC Med. 2019, 17, 167. [Google Scholar] [CrossRef]
- Nama, V.; Antonios, T.F.; Onwude, J.; Manyonda, I.T. Mid-trimester blood pressure drop in normal pregnancy: Myth or reality? J. Hypertens. 2011, 29, 763–768. [Google Scholar] [CrossRef]
- Conrad, K.P.; Davison, J.M. The renal circulation in normal pregnancy and preeclampsia: Is there a place for relaxin? Am. J. Physiol.-Ren. Physiol. 2014, 306, F1121–F1135. [Google Scholar] [CrossRef]
- Odutayo, A.; Hladunewich, M. Obstetric Nephrology: Renal Hemodynamic and Metabolic Physiology in Normal Pregnancy. Clin. J. Am. Soc. Nephrol. 2012, 7, 2073. [Google Scholar] [CrossRef] [Green Version]
- LoMauro, A.; Aliverti, A. Respiratory physiology of pregnancy: Physiology masterclass. Breathe 2015, 11, 297–301. [Google Scholar] [CrossRef] [PubMed]
- Gomes, C.F.; Sousa, M.; Lourenço, I.; Martins, D.; Torres, J. Gastrointestinal diseases during pregnancy: What does the gastroenterologist need to know? Ann. Gastroenterol. 2018, 31, 385–394. [Google Scholar] [CrossRef] [PubMed]
- Patel, P.; Balanchivadze, N. Hematologic Findings in Pregnancy: A Guide for the Internist. Cureus 2021, 13, e15149. [Google Scholar] [CrossRef] [PubMed]
- Duttaroy, A.K.; Basak, S. Maternal Fatty Acid Metabolism in Pregnancy and Its Consequences in the Feto-Placental Development. Front. Physiol. 2022, 12, 787848. [Google Scholar] [CrossRef] [PubMed]
- Herrera, E. Lipid metabolism in pregnancy and its consequences in the fetus and newborn. Endocrine 2002, 19, 43–55. [Google Scholar] [CrossRef]
- Herrera, E.; Ortega-Senovilla, H. Lipid metabolism during pregnancy and its implications for fetal growth. Curr Pharm Biotechnol 2014, 15, 24–31. [Google Scholar] [CrossRef]
- Parrettini, S.; Caroli, A.; Torlone, E. Nutrition and Metabolic Adaptations in Physiological and Complicated Pregnancy: Focus on Obesity and Gestational Diabetes. Front. Endocrinol. 2020, 11, 611929. [Google Scholar] [CrossRef]
- Angueira, A.R.; Ludvik, A.E.; Reddy, T.E.; Wicksteed, B.; Lowe, W.L., Jr.; Layden, B.T. New insights into gestational glucose metabolism: Lessons learned from 21st century approaches. Diabetes 2015, 64, 327–334. [Google Scholar] [CrossRef]
- Maloberti, A.; Vallerio, P.; Triglione, N.; Occhi, L.; Panzeri, F.; Bassi, I.; Pansera, F.; Piccinelli, E.; Peretti, A.; Garatti, L.; et al. Vascular Aging and Disease of the Large Vessels: Role of Inflammation. High Blood Press Cardiovasc. Prev. 2019, 26, 175–182. [Google Scholar] [CrossRef]
- Ungvari, Z.; Tarantini, S.; Donato, A.J.; Galvan, V.; Csiszar, A. Mechanisms of Vascular Aging. Circ. Res. 2018, 123, 849–867. [Google Scholar] [CrossRef]
- Ato, D. Brachial-ankle pulse wave velocity, cardio-ankle vascular index, and prognosis. Vasc. Health Risk Manag. 2018, 14, 321–348. [Google Scholar] [CrossRef] [PubMed]
- Vlachopoulos, C.; Xaplanteris, P.; Aboyans, V.; Brodmann, M.; Cífková, R.; Cosentino, F.; De Carlo, M.; Gallino, A.; Landmesser, U.; Laurent, S.; et al. The role of vascular biomarkers for primary and secondary prevention. A position paper from the European Society of Cardiology Working Group on peripheral circulation: Endorsed by the Association for Research into Arterial Structure and Physiology (ARTERY) Society. Atherosclerosis 2015, 241, 507–532. [Google Scholar] [CrossRef] [PubMed]
- Hametner, B.; Wassertheurer, S.; Mayer, C.C.; Danninger, K.; Binder, R.K.; Weber, T. Aortic Pulse Wave Velocity Predicts Cardiovascular Events and Mortality in Patients Undergoing Coronary Angiography. Hypertension 2021, 77, 571–581. [Google Scholar] [CrossRef] [PubMed]
- Williams, B.; Mancia, G.; Spiering, W.; Agabiti Rosei, E.; Azizi, M.; Burnier, M.; Clement, D.; Coca, A.; De Simone, G.; Dominiczak, A.; et al. 2018 Practice Guidelines for the management of arterial hypertension of the European Society of Cardiology and the European Society of Hypertension: ESC/ESH Task Force for the Management of Arterial Hypertension. J. Hypertens. 2018, 36, 1953–2041. [Google Scholar] [CrossRef] [PubMed]
- Mule’, G.; Mule’, G.J.; Geraci, G.; Colletti, P.; Mazzola, G.; Colomba, C.; Cottone, S.; Cascio, A. Influence of HIV infection and antiretroviral therapy on aortic stiffness: A meta-analysis. J. Hypertens. 2018, 36, 320–332. [Google Scholar] [CrossRef]
- Miller, L.M.; Gal, A. Cardiovascular System and Lymphatic Vessels. Pathol. Basis Vet. Dis. 2017, 561–616.e1. [Google Scholar] [CrossRef]
- Foo, F.L.; McEniery, C.M.; Lees, C.; Khalil, A.; Hemodynamics, I.W.G.o.M. Assessment of arterial function in pregnancy: Recommendations of the International Working Group on Maternal Hemodynamics. Ultrasound Obstet. Gynecol. 2017, 50, 324–331. [Google Scholar] [CrossRef]
- Cocciolone, A.J.; Hawes, J.Z.; Staiculescu, M.C.; Johnson, E.O.; Murshed, M.; Wagenseil, J.E. Elastin, arterial mechanics, and cardiovascular disease. Am. J. Physiol.-Heart Circ. Physiol. 2018, 315, H189–H205. [Google Scholar] [CrossRef]
- Jackson, W.F. Myogenic Tone in Peripheral Resistance Arteries and Arterioles: The Pressure Is On! Front. Physiol. 2021, 12, 699517. [Google Scholar] [CrossRef]
- Mitchell, G.F. Arterial Stiffness and Wave Reflection: Biomarkers of Cardiovascular Risk. Artery Res. 2009, 3, 56–64. [Google Scholar] [CrossRef] [Green Version]
- Mackenzie, I.S.; Wilkinson, I.B.; Cockcroft, J.R. Assessment of arterial stiffness in clinical practice. QJM Int. J. Med. 2002, 95, 67–74. [Google Scholar] [CrossRef]
- DeLoach, S.S.; Townsend, R.R. Vascular Stiffness: Its Measurement and Significance for Epidemiologic and Outcome Studies. Clin. J. Am. Soc. Nephrol. 2008, 3, 184. [Google Scholar] [CrossRef] [PubMed]
- Elmenhorst, J.; Weberruss, H.; Mayr, M.; Pfister, K.; Oberhoffer, R. Comparison of Two Measurement Devices for Pulse Wave Velocity in Children: Which Tool Is Useful to Detect Vascular Alterations Caused by Overweight? Front. Pediatrics 2019, 7, 334. [Google Scholar] [CrossRef] [PubMed]
- Pereira, T.; Correia, C.; Cardoso, J. Novel Methods for Pulse Wave Velocity Measurement. J. Med. Biol. Eng. 2015, 35, 555–565. [Google Scholar] [CrossRef] [PubMed]
- Laurent, S.; Cockcroft, J.; Van Bortel, L.; Boutouyrie, P.; Giannattasio, C.; Hayoz, D.; Pannier, B.; Vlachopoulos, C.; Wilkinson, I.; Struijker-Boudier, H.; et al. Expert consensus document on arterial stiffness: Methodological issues and clinical applications. Eur. Heart J. 2006, 27, 2588–2605. [Google Scholar] [CrossRef]
- Pereira, T.; Maldonado, J.; Polónia, J.; Alberto Silva, J.; Morais, J.; Marques, M. [A statistical definition of aortic pulse wave velocity normality in a Portuguese population: A subanalysis of the EDIVA project]. Rev. Port. Cardiol. 2011, 30, 691–698. [Google Scholar] [CrossRef]
- Kim, J.M.; Kim, S.S.; Kim, I.J.; Kim, J.H.; Kim, B.H.; Kim, M.K.; Lee, S.H.; Lee, C.W.; Kim, M.C.; Ahn, J.H.; et al. Arterial stiffness is an independent predictor for risk of mortality in patients with type 2 diabetes mellitus: The REBOUND study. Cardiovasc. Diabetol. 2020, 19, 143. [Google Scholar] [CrossRef]
- Laurent, S.; Boutouyrie, P. Arterial Stiffness and Hypertension in the Elderly. Front. Cardiovasc. Med. 2020, 7, 544302. [Google Scholar] [CrossRef]
- Terentes-Printzios, D.; Vlachopoulos, C.; Xaplanteris, P.; Ioakeimidis, N.; Aznaouridis, K.; Baou, K.; Kardara, D.; Georgiopoulos, G.; Georgakopoulos, C.; Tousoulis, D. Cardiovascular Risk Factors Accelerate Progression of Vascular Aging in the General Population. Hypertension 2017, 70, 1057–1064. [Google Scholar] [CrossRef]
- Cameron, J.D.; Asmar, R.; Struijker-Boudier, H.; Shirai, K.; Sirenko, Y.; Kotovskaya, Y.; Topouchian, J. Current and future initiatives for vascular health management in clinical practice. Vasc. Health Risk Manag. 2013, 9, 255–264. [Google Scholar] [CrossRef] [Green Version]
- Anness, A.R.; Nath, M.; Melhuish, K.; Osman, M.W.; Webb, D.; Robinson, T.; Khalil, A.; Mousa, H.A. Arterial stiffness throughout pregnancy: Arteriograph device-specific reference ranges based on a low-risk population. J. Hypertens. 2022, 40, 870–877. [Google Scholar] [CrossRef]
- Lopes van Balen, V.A.; van Gansewinkel, T.A.G.; de Haas, S.; van Kuijk, S.M.J.; van Drongelen, J.; Ghossein-Doha, C.; Spaanderman, M.E.A. Physiological adaptation of endothelial function to pregnancy: Systematic review and meta-analysis. Ultrasound Obs. Gynecol 2017, 50, 697–708. [Google Scholar] [CrossRef] [PubMed]
- Mahendru, A.A.; Everett, T.R.; Wilkinson, I.B.; Lees, C.C.; McEniery, C.M. A longitudinal study of maternal cardiovascular function from preconception to the postpartum period. J. Hypertens. 2014, 32, 849–856. [Google Scholar] [CrossRef] [PubMed]
- Elvan-Taşpinar, A.; Franx, A.; Bots, M.L.; Koomans, H.A.; Bruinse, H.W. Arterial stiffness and fetal growth in normotensive pregnancy*. Am. J. Hypertens. 2005, 18, 337–341. [Google Scholar] [CrossRef] [PubMed]
- Flahault, A.; Oliveira Fernandes, R.; De Meulemeester, J.; Ravizzoni Dartora, D.; Cloutier, A.; Gyger, G.; El-Jalbout, R.; Bigras, J.-L.; Luu, T.M.; Nuyt, A.M. Arterial Structure and Stiffness Are Altered in Young Adults Born Preterm. Arterioscler. Thromb. Vasc. Biol. 2020, 40, 2548–2556. [Google Scholar] [CrossRef] [PubMed]
- Braunthal, S.; Brateanu, A. Hypertension in pregnancy: Pathophysiology and treatment. SAGE Open Med. 2019, 7, 2050312119843700. [Google Scholar] [CrossRef]
- ACOG Practice Bulletin No. 202: Gestational Hypertension and Preeclampsia. Obs. Gynecol. 2019, 133, 1. [CrossRef]
- MacDorman, M.F.; Declercq, E.; Cabral, H.; Morton, C. Recent Increases in the U.S. Maternal Mortality Rate: Disentangling Trends From Measurement Issues. Obs. Gynecol. 2016, 128, 447–455. [Google Scholar] [CrossRef]
- Brown, M.A.; Magee, L.A.; Kenny, L.C.; Karumanchi, S.A.; McCarthy, F.P.; Saito, S.; Hall, D.R.; Warren, C.E.; Adoyi, G.; Ishaku, S. Hypertensive Disorders of Pregnancy. Hypertension 2018, 72, 24–43. [Google Scholar] [CrossRef]
- Beech, A.; Mangos, G. Management of hypertension in pregnancy. Aust. Prescr. 2021, 44, 148–152. [Google Scholar] [CrossRef]
- Wiles, K.; Damodaram, M.; Frise, C. Severe hypertension in pregnancy. Clin. Med. 2021, 21, e451–e456. [Google Scholar] [CrossRef]
- Gestational Hypertension and Preeclampsia: ACOG Practice Bulletin Summary, Number 222. Obs. Gynecol. 2020, 135, 1492–1495. [CrossRef] [PubMed]
- Day, R.O.; Snowden, L. Where to find information about drugs. Aust. Prescr. 2016, 39, 88–95. [Google Scholar] [CrossRef] [PubMed]
- Sridharan, K.; Sequeira, R.P. Drugs for treating severe hypertension in pregnancy: A network meta-analysis and trial sequential analysis of randomized clinical trials. Br. J. Clin. Pharmacol. 2018, 84, 1906–1916. [Google Scholar] [CrossRef] [PubMed]
- Sinkey, R.G.; Battarbee, A.N.; Bello, N.A.; Ives, C.W.; Oparil, S.; Tita, A.T.N. Prevention, Diagnosis, and Management of Hypertensive Disorders of Pregnancy: A Comparison of International Guidelines. Curr. Hypertens. Rep. 2020, 22, 66. [Google Scholar] [CrossRef]
- von Versen-Höynck, F.; Häckl, S.; Selamet Tierney, E.S.; Conrad, K.P.; Baker, V.L.; Winn, V.D. Maternal Vascular Health in Pregnancy and Postpartum After Assisted Reproduction. Hypertension 2020, 75, 549–560. [Google Scholar] [CrossRef]
- Wang, Y.A.; Chughtai, A.A.; Farquhar, C.M.; Pollock, W.; Lui, K.; Sullivan, E.A. Increased incidence of gestational hypertension and preeclampsia after assisted reproductive technology treatment. Fertil. Steril. 2016, 105, 920–926.e922. [Google Scholar] [CrossRef]
- Jameson, J.L.; Fauci, A.S.; Kasper, D.L.; Hauser, S.L.; Longo, D.L.; Loscalzo, J. Obesity, Diabetes Mellitus, and Metabolic Syndrome. In Harrison’s Principles of Internal Medicine, 20e; McGraw-Hill Education: New York, NY, USA, 2018. [Google Scholar]
- Müller, M.J.; Geisler, C. Defining obesity as a disease. Eur. J. Clin. Nutr. 2017, 71, 1256–1258. [Google Scholar] [CrossRef]
- Centre for Public Health Excellence at NICE; National Collaborating Centre for Primary Care. National Institute for Health and Clinical Excellence: Guidance. In Obesity: The Prevention, Identification, Assessment and Management of Overweight and Obesity in Adults and Children; National Institute for Health and Clinical Excellence: London, UK, 2006. [Google Scholar]
- Obesity: Preventing and Managing the Global Epidemic: Report of a WHO Consultation; WHO Technical Report Series; World Health Organization: Geneva, Switzerland, 2000; Volume 894, pp. 1–253.
- Sattar, N.; Clark, P.; Holmes, A.; Lean, M.E.; Walker, I.; Greer, I.A. Antenatal waist circumference and hypertension risk. Obs. Gynecol. 2001, 97, 268–271. [Google Scholar] [CrossRef]
- Bray, G.A.; Kim, K.K.; Wilding, J.P.H.; World Obesity Federation. Obesity: A chronic relapsing progressive disease process. A position statement of the World Obesity Federation. Obes. Rev. 2017, 18, 715–723. [Google Scholar] [CrossRef] [Green Version]
- Popkin, B.M.; Adair, L.S.; Ng, S.W. Global nutrition transition and the pandemic of obesity in developing countries. Nutr. Rev. 2012, 70, 3–21. [Google Scholar] [CrossRef]
- Fitzsimons, K.J.; Modder, J.; Greer, I.A. Obesity in pregnancy: Risks and management. Obs. Med. 2009, 2, 52–62. [Google Scholar] [CrossRef] [PubMed]
- Leddy, M.A.; Power, M.L.; Schulkin, J. The impact of maternal obesity on maternal and fetal health. Rev Obs. Gynecol. 2008, 1, 170–178. [Google Scholar]
- Wolf, M.; Kettyle, E.; Sandler, L.; Ecker, J.L.; Roberts, J.; Thadhani, R. Obesity and preeclampsia: The potential role of inflammation. Obs. Gynecol. 2001, 98, 757–762. [Google Scholar] [CrossRef]
- Bodnar, L.M.; Ness, R.B.; Harger, G.F.; Roberts, J.M. Inflammation and triglycerides partially mediate the effect of prepregnancy body mass index on the risk of preeclampsia. Am. J. Epidemiol. 2005, 162, 1198–1206. [Google Scholar] [CrossRef] [PubMed]
- Getahun, D.; Ananth, C.V.; Oyelese, Y.; Chavez, M.R.; Kirby, R.S.; Smulian, J.C. Primary preeclampsia in the second pregnancy: Effects of changes in prepregnancy body mass index between pregnancies. Obs. Gynecol. 2007, 110, 1319–1325. [Google Scholar] [CrossRef] [PubMed]
- Kiel, D.W.; Dodson, E.A.; Artal, R.; Boehmer, T.K.; Leet, T.L. Gestational weight gain and pregnancy outcomes in obese women: How much is enough? Obs. Gynecol. 2007, 110, 752–758. [Google Scholar] [CrossRef]
- Cox Bauer, C.M.; Bernhard, K.A.; Greer, D.M.; Merrill, D.C. Maternal and neonatal outcomes in obese women who lose weight during pregnancy. J. Perinatol. 2016, 36, 278–283. [Google Scholar] [CrossRef]
- Thompson, A.M.; Thompson, J.A. An evaluation of whether a gestational weight gain of 5 to 9 kg for obese women optimizes maternal and neonatal health risks. BMC Pregnancy Childbirth 2019, 19, 126. [Google Scholar] [CrossRef]
- Lain, K.Y.; Catalano, P.M. Metabolic changes in pregnancy. Clin. Obs. Gynecol. 2007, 50, 938–948. [Google Scholar] [CrossRef]
- Piechota, W.; Staszewski, A. Reference ranges of lipids and apolipoproteins in pregnancy. Eur. J. Obs. Gynecol. Reprod. Biol. 1992, 45, 27–35. [Google Scholar] [CrossRef]
- Hajar Sharami, S.; Abbasi Ranjbar, Z.; Alizadeh, F.; Kazemnejad, E. The relationship of hyperlipidemia with maternal and neonatal outcomes in pregnancy: A cross-sectional study. Int. J. Reprod. Biomed. 2019, 17, 739–748. [Google Scholar] [CrossRef]
- Knopp, R.H.; Warth, M.R.; Carrol, C.J. Lipid metabolism in pregnancy. I. Changes in lipoprotein triglyceride and cholesterol in normal pregnancy and the effects of diabetes mellitus. J. Reprod. Med. 1973, 10, 95–101. [Google Scholar]
- Wiznitzer, A.; Mayer, A.; Novack, V.; Sheiner, E.; Gilutz, H.; Malhotra, A.; Novack, L. Association of lipid levels during gestation with preeclampsia and gestational diabetes mellitus: A population-based study. Am. J. Obs. Gynecol. 2009, 201, e481–e488. [Google Scholar] [CrossRef]
- Dominguez-Muñoz, J.E.; Malfertheiner, P.; Ditschuneit, H.H.; Blanco-Chavez, J.; Uhl, W.; Büchler, M.; Ditschuneit, H. Hyperlipidemia in acute pancreatitis. Relationship with etiology, onset, and severity of the disease. Int. J. Pancreatol. 1991, 10, 261–267. [Google Scholar] [CrossRef]
- Spracklen, C.N.; Smith, C.J.; Saftlas, A.F.; Robinson, J.G.; Ryckman, K.K. Maternal hyperlipidemia and the risk of preeclampsia: A meta-analysis. Am. J. Epidemiol. 2014, 180, 346–358. [Google Scholar] [CrossRef]
- Mudd, L.M.; Holzman, C.B.; Catov, J.M.; Senagore, P.K.; Evans, R.W. Maternal lipids at mid-pregnancy and the risk of preterm delivery. Acta Obstet. Gynecol. Scand. 2012, 91, 726–735. [Google Scholar] [CrossRef]
- Aminuddin, A.; Lazim, M.; Hamid, A.A.; Hui, C.K.; Mohd Yunus, M.H.; Kumar, J.; Ugusman, A. The Association between Inflammation and Pulse Wave Velocity in Dyslipidemia: An Evidence-Based Review. Mediat. Inflamm. 2020, 2020, 4732987. [Google Scholar] [CrossRef]
- Marc, M.S.; Ciuca, I.M.; Moleriu, L.; Iurciuc, S.; Manea, A.M.; Turi, V.; Damian, G.; Marian, P.; Boeriu, E. Chemical Lipid Biomarkers in Children Exposed to Second Hand Smoking. Rev. Chim. 2020, 71, 469–473. [Google Scholar] [CrossRef]
- Sánchez-Vera, I.; Bonet, B.; Viana, M.; Quintanar, A.; Martín, M.D.; Blanco, P.; Donnay, S.; Albi, M. Changes in plasma lipids and increased low-density lipoprotein susceptibility to oxidation in pregnancies complicated by gestational diabetes: Consequences of obesity. Metabolism 2007, 56, 1527–1533. [Google Scholar] [CrossRef]
- Gunderson, E.P.; Lewis, C.E.; Murtaugh, M.A.; Quesenberry, C.P.; Smith West, D.; Sidney, S. Long-term plasma lipid changes associated with a first birth: The Coronary Artery Risk Development in Young Adults study. Am. J. Epidemiol. 2004, 159, 1028–1039. [Google Scholar] [CrossRef]
- Chodick, G.; Tenne, Y.; Barer, Y.; Shalev, V.; Elchalal, U. Gestational diabetes and long-term risk for dyslipidemia: A population-based historical cohort study. BMJ Open Diabetes Res. Care 2020, 8, 4732987. [Google Scholar] [CrossRef] [Green Version]
- Wang, C.; Kong, L.; Yang, Y.; Wei, Y.; Zhu, W.; Su, R.; Lin, L.; Yang, H. Recommended reference values for serum lipids during early and middle pregnancy: A retrospective study from China. Lipids Health Dis. 2018, 17, 246. [Google Scholar] [CrossRef]
- Mecacci, F.; Lisi, F.; Vannuccini, S.; Ottanelli, S.; Rambaldi, M.P.; Serena, C.; Simeone, S.; Petraglia, F. Different Gestational Diabetes Phenotypes: Which Insulin Regimen Fits Better? Front. Endocrinol. 2021, 12, 630903. [Google Scholar] [CrossRef]
- Choudhury, A.A.; Devi Rajeswari, V. Gestational diabetes mellitus-A metabolic and reproductive disorder. Biomed. Pharmacother. 2021, 143, 112183. [Google Scholar] [CrossRef]
- Whiting, D.R.; Guariguata, L.; Weil, C.; Shaw, J. IDF Diabetes Atlas: Global estimates of the prevalence of diabetes for 2011 and 2030. Diabetes Res. Clin. Pract. 2011, 94, 311–321. [Google Scholar] [CrossRef]
- Metzger, B.E.; Lowe, L.P.; Dyer, A.R.; Trimble, E.R.; Chaovarindr, U.; Coustan, D.R.; Hadden, D.R.; McCance, D.R.; Hod, M.; McIntyre, H.D.; et al. Hyperglycemia and adverse pregnancy outcomes. N. Engl. J. Med. 2008, 358, 1991–2002. [Google Scholar] [CrossRef]
- Piccoli, G.B.; Zakharova, E.; Attini, R.; Ibarra Hernandez, M.; Orozco Guillien, A.; Alrukhaimi, M.; Liu, Z.-H.; Ashuntantang, G.; Covella, B.; Cabiddu, G.; et al. Pregnancy in Chronic Kidney Disease: Need for Higher Awareness. A Pragmatic Review Focused on What Could Be Improved in the Different CKD Stages and Phases. J. Clin. Med. 2018, 7, 415. [Google Scholar] [CrossRef]
- Kalantar-Zadeh, K.; Kramer, H.M.; Fouque, D. High-protein diet is bad for kidney health: Unleashing the taboo. Nephrol. Dial. Transpl. 2020, 35, 1–4. [Google Scholar] [CrossRef]
- Moisi, M.I.; Bungau, S.G.; Vesa, C.M.; Diaconu, C.C.; Behl, T.; Stoicescu, M.; Toma, M.M.; Bustea, C.; Sava, C.; Popescu, M.I. Framing Cause-Effect Relationship of Acute Coronary Syndrome in Patients with Chronic Kidney Disease. Diagnostics 2021, 11, 1518. [Google Scholar] [CrossRef]
- Waziri, B.; Duarte, R.; Naicker, S. Chronic Kidney Disease-Mineral and Bone Disorder (CKD-MBD): Current Perspectives. Int J Nephrol. Renov. Dis. 2019, 12, 263–276. [Google Scholar] [CrossRef]
- Kiuchi, M.G.; Mion, D., Jr. Chronic kidney disease and risk factors responsible for sudden cardiac death: A whiff of hope? Kidney Res. Clin. Pract. 2016, 35, 3–9. [Google Scholar] [CrossRef] [Green Version]
- Pun, P.H.; Smarz, T.R.; Honeycutt, E.F.; Shaw, L.K.; Al-Khatib, S.M.; Middleton, J.P. Chronic kidney disease is associated with increased risk of sudden cardiac death among patients with coronary artery disease. Kidney Int. 2009, 76, 652–658. [Google Scholar] [CrossRef]
- Barrett, P.M.; McCarthy, F.P.; Evans, M.; Kublickas, M.; Perry, I.J.; Stenvinkel, P.; Khashan, A.S.; Kublickiene, K. Hypertensive disorders of pregnancy and the risk of chronic kidney disease: A Swedish registry-based cohort study. PLoS Med. 2020, 17, e1003255. [Google Scholar] [CrossRef]
- Umesawa, M.; Kobashi, G. Epidemiology of hypertensive disorders in pregnancy: Prevalence, risk factors, predictors and prognosis. Hypertens. Res. 2017, 40, 213–220. [Google Scholar] [CrossRef]
- Poon, L.C.; Shennan, A.; Hyett, J.A.; Kapur, A.; Hadar, E.; Divakar, H.; McAuliffe, F.; da Silva Costa, F.; von Dadelszen, P.; McIntyre, H.D.; et al. The International Federation of Gynecology and Obstetrics (FIGO) initiative on pre-eclampsia: A pragmatic guide for first-trimester screening and prevention. Int. J. Gynecol. Obstet. 2019, 145, 1–33. [Google Scholar] [CrossRef]
- Hypertension in Pregnancy. Report of the American College of Obstetricians and Gynecologists’ Task Force on Hypertension in Pregnancy. Obs. Gynecol. 2013, 122, 1122–1131. [CrossRef]
- ACOG Committee Opinion No. 767 Summary: Emergent Therapy for Acute-Onset, Severe Hypertension During Pregnancy and the Postpartum Period. Obs. Gynecol. 2019, 133, 409–412. [CrossRef]
- Gathiram, P.; Moodley, J. Pre-eclampsia: Its pathogenesis and pathophysiolgy. Cardiovasc. J. Afr. 2016, 27, 71–78. [Google Scholar] [CrossRef]
- Gyselaers, W.; Thilaganathan, B. Preeclampsia: A gestational cardiorenal syndrome. J. Physiol. 2019, 597, 4695–4714. [Google Scholar] [CrossRef]
- North, R.A.; McCowan, L.M.E.; Dekker, G.A.; Poston, L.; Chan, E.H.Y.; Stewart, A.W.; Black, M.A.; Taylor, R.S.; Walker, J.J.; Baker, P.N.; et al. Clinical risk prediction for pre-eclampsia in nulliparous women: Development of model in international prospective cohort. BMJ 2011, 342, d1875. [Google Scholar] [CrossRef]
- English, F.A.; Kenny, L.C.; McCarthy, F.P. Risk factors and effective management of preeclampsia. Integr Blood Press Control 2015, 8, 7–12. [Google Scholar] [CrossRef] [Green Version]
- Mitchell, G.F.; Hwang, S.J.; Vasan, R.S.; Larson, M.G.; Pencina, M.J.; Hamburg, N.M.; Vita, J.A.; Levy, D.; Benjamin, E.J. Arterial stiffness and cardiovascular events: The Framingham Heart Study. Circulation 2010, 121, 505–511. [Google Scholar] [CrossRef]
- Vlachopoulos, C.; Aznaouridis, K.; Stefanadis, C. Prediction of cardiovascular events and all-cause mortality with arterial stiffness: A systematic review and meta-analysis. J. Am. Coll. Cardiol. 2010, 55, 1318–1327. [Google Scholar] [CrossRef]
- Li, W.F.; Huang, Y.Q.; Feng, Y.Q. Association between central haemodynamics and risk of all-cause mortality and cardiovascular disease: A systematic review and meta-analysis. J. Hum. Hypertens. 2019, 33, 531–541. [Google Scholar] [CrossRef]
- Hausvater, A.; Giannone, T.; Sandoval, Y.-H.G.; Doonan, R.J.; Antonopoulos, C.N.; Matsoukis, I.L.; Petridou, E.T.; Daskalopoulou, S.S. The association between preeclampsia and arterial stiffness. J. Hypertens. 2012, 30, 17–33. [Google Scholar] [CrossRef]
- Safar, M.E.; Asmar, R.; Benetos, A.; Blacher, J.; Boutouyrie, P.; Lacolley, P.; Laurent, S.; London, G.; Pannier, B.; Protogerou, A.; et al. Interaction Between Hypertension and Arterial Stiffness. Hypertension 2018, 72, 796–805. [Google Scholar] [CrossRef]
- Kim, H.-L.; Kim, S.-H. Pulse Wave Velocity in Atherosclerosis. Front. Cardiovasc. Med. 2019, 6, 41. [Google Scholar] [CrossRef]
- Rotariu, D.; Babes, E.E.; Tit, D.M.; Moisi, M.; Bustea, C.; Stoicescu, M.; Radu, A.-F.; Vesa, C.M.; Behl, T.; Bungau, A.F.; et al. Oxidative stress – complex pathological issues concerning the hallmark of cardiovascular and metabolic disorders. Biomed. Pharmacother. 2022, 152, 113238. [Google Scholar] [CrossRef]
- Salles, G.F.; Schlüssel, M.M.; Farias, D.R.; Franco-Sena, A.B.; Rebelo, F.; Lacerda, E.M.A.; Kac, G. Blood Pressure in Healthy Pregnancy and Factors Associated With No Mid-Trimester Blood Pressure Drop: A Prospective Cohort Study. Am. J. Hypertens. 2014, 28, 680–689. [Google Scholar] [CrossRef]
- Grindheim, G.; Estensen, M.E.; Langesaeter, E.; Rosseland, L.A.; Toska, K. Changes in blood pressure during healthy pregnancy: A longitudinal cohort study. J. Hypertens. 2012, 30, 342–350. [Google Scholar] [CrossRef]
- Turi, V.; Iurciuc, S.; Crețu, O.M.; Tit, D.M.; Bungau, S.; Apostol, A.; Moleriu, R.D.; Bustea, C.; Behl, T.; Diaconu, C.C.; et al. Arterial function in hypertensive pregnant women. Is arterial stiffness a marker for the outcomes in pregnancy? Life Sci. 2021, 264, 118723. [Google Scholar] [CrossRef]
- Mi, B.; Wen, X.; Li, S.; Liu, D.; Lei, F.; Liu, X.; Wang, D.; Li, X.; Shittu, A.A.T.; Dang, S.; et al. Parameterization of the mid-trimester drop in blood pressure trajectory during pregnancy and its utility for predicting preeclampsia. J. Hypertens. 2020, 38, 1355–1366. [Google Scholar] [CrossRef]
- Poston, L.; Caleyachetty, R.; Cnattingius, S.; Corvalán, C.; Uauy, R.; Herring, S.; Gillman, M.W. Preconceptional and maternal obesity: Epidemiology and health consequences. Lancet Diabetes Endocrinol. 2016, 4, 1025–1036. [Google Scholar] [CrossRef]
- Sundholm, J.K.M.; Litwin, L.; Rönö, K.; Koivusalo, S.B.; Eriksson, J.G.; Sarkola, T. Maternal obesity and gestational diabetes: Impact on arterial wall layer thickness and stiffness in early childhood-RADIEL study six-year follow-up. Atherosclerosis 2019, 284, 237–244. [Google Scholar] [CrossRef]
- Lekva, T.; Bollerslev, J.; Norwitz, E.R.; Aukrust, P.; Henriksen, T.; Ueland, T. Aortic Stiffness and Cardiovascular Risk in Women with Previous Gestational Diabetes Mellitus. PLoS ONE 2015, 10, e0136892. [Google Scholar] [CrossRef]
- Arca, M.; Pigna, G.; Favoccia, C. Mechanisms of diabetic dyslipidemia: Relevance for atherogenesis. Curr. Vasc. Pharm. 2012, 10, 684–686. [Google Scholar] [CrossRef]
- Stout, R.W. Insulin and atherogenesis. Eur. J. Epidemiol. 1992, 8 (Suppl. 1), 134–135. [Google Scholar] [CrossRef]
- Sokup, A.; Ruszkowska, B.; Góralczyk, B.; Góralczyk, K.; Szymański, M.; Grabiec, M.; Rość, D. Elevation of sE-Selectin Levels 2–24 Months following Gestational Diabetes Is Associated with Early Cardiometabolic Risk in Nondiabetic Women. Int. J. Endocrinol. 2012, 2012, 278050. [Google Scholar] [CrossRef]
- Fadl, H.; Magnuson, A.; Östlund, I.; Montgomery, S.; Hanson, U.; Schwarcz, E. Gestational diabetes mellitus and later cardiovascular disease: A Swedish population based case-control study. BJOG 2014, 121, 1530–1536. [Google Scholar] [CrossRef]
- Retnakaran, R.; Shah, B.R. Mild glucose intolerance in pregnancy and risk of cardiovascular disease: A population-based cohort study. Can. Med Assoc. J. 2009, 181, 371–376. [Google Scholar] [CrossRef]
- Ivan, V.S.; Albulescu, N.; Albulescu, I.R.; Apostol, A.; Buzas, R.; Schiller, A.; Timar, R.; Lighezan, D.; Ivan, M.V. Predictive Value of Several Echo Parameters for Cardiovascular Events in Hemodialysis Patients with Mid-range and Preserved Ejection Fraction Heart Failure. Rev. Chim. 2019, 70, 1479–1484. [Google Scholar] [CrossRef]
- Schechter, M.; Melzer Cohen, C.; Yanuv, I.; Rozenberg, A.; Chodick, G.; Bodegård, J.; Leiter, L.A.; Verma, S.; Lambers Heerspink, H.J.; Karasik, A.; et al. Epidemiology of the diabetes-cardio-renal spectrum: A cross-sectional report of 1.4 million adults. Cardiovasc. Diabetol. 2022, 21, 104. [Google Scholar] [CrossRef] [PubMed]
- Ishaku, S.M.; Karima, T.; Oboirien, K.A.; Innocent, A.P.; Lawal, O.; Jamilu, T.; Browne, J.L.; Gbenga, K.A.; Azubuike, O.K.; Lamaran, D.M.; et al. Metabolic syndrome following hypertensive disorders in pregnancy in a low-resource setting: A cohort study. Pregnancy Hypertens. 2021, 25, 129–135. [Google Scholar] [CrossRef]
- Moodley, S.; Arunamata, A.; Stauffer, K.J.; Nourse, S.E.; Chen, A.; Quirin, A.; Selamet Tierney, E.S. Maternal arterial stiffness and fetal cardiovascular physiology in diabetic pregnancy. Ultrasound Obstet. Gynecol. 2018, 52, 654–661. [Google Scholar] [CrossRef]
- Katsipi, I.; Stylianou, K.; Petrakis, I.; Passam, A.; Vardaki, E.; Parthenakis, F.; Makrygiannakis, A.; Daphnis, E.; Kyriazis, J. The use of pulse wave velocity in predicting pre-eclampsia in high-risk women. Hypertens. Res. 2014, 37, 733–740. [Google Scholar] [CrossRef]
- Coutinho, T. Arterial Stiffness and Its Clinical Implications in Women. Can. J. Cardiol. 2014, 30, 756–764. [Google Scholar] [CrossRef]
- Zieman, S.J.; Melenovsky, V.; Kass, D.A. Mechanisms, pathophysiology, and therapy of arterial stiffness. Arter. Thromb. Vasc. Biol. 2005, 25, 932–943. [Google Scholar] [CrossRef]
- Natoli, A.K.; Medley, T.L.; Ahimastos, A.A.; Drew, B.G.; Thearle, D.J.; Dilley, R.J.; Kingwell, B.A. Sex Steroids Modulate Human Aortic Smooth Muscle Cell Matrix Protein Deposition and Matrix Metalloproteinase Expression. Hypertension 2005, 46, 1129–1134. [Google Scholar] [CrossRef]
- Melchiorre, K.; Sharma, R.; Thilaganathan, B. Cardiac structure and function in normal pregnancy. Curr. Opin. Obs. Gynecol. 2012, 24, 413–421. [Google Scholar] [CrossRef]
- Sanghavi, M.; Rutherford, J.D. Cardiovascular Physiology of Pregnancy. Circulation 2014, 130, 1003–1008. [Google Scholar] [CrossRef]
- Salafia, C.M.; Pezzullo, J.C.; Minior, V.K.; Divon, M.Y. Placental pathology of absent and reversed end-diastolic flow in growth-restricted fetuses. Obs. Gynecol. 1997, 90, 830–836. [Google Scholar] [CrossRef]
- Zhou, Y.; Damsky, C.H.; Chiu, K.; Roberts, J.M.; Fisher, S.J. Preeclampsia is associated with abnormal expression of adhesion molecules by invasive cytotrophoblasts. J. Clin. Investig. 1993, 91, 950–960. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.; Damsky, C.H.; Fisher, S.J. Preeclampsia is associated with failure of human cytotrophoblasts to mimic a vascular adhesion phenotype. One cause of defective endovascular invasion in this syndrome? J. Clin Investig. 1997, 99, 2152–2164. [Google Scholar] [CrossRef] [PubMed]
- Leung, D.W.; Cachianes, G.; Kuang, W.J.; Goeddel, D.V.; Ferrara, N. Vascular endothelial growth factor is a secreted angiogenic mitogen. Science 1989, 246, 1306–1309. [Google Scholar] [CrossRef]
- Park, J.E.; Chen, H.H.; Winer, J.; Houck, K.A.; Ferrara, N. Placenta growth factor. Potentiation of vascular endothelial growth factor bioactivity, in vitro and in vivo, and high affinity binding to Flt-1 but not to Flk-1/KDR. J. Biol. Chem. 1994, 269, 25646–25654. [Google Scholar] [CrossRef]
- Thadhani, R.; Mutter, W.P.; Wolf, M.; Levine, R.J.; Taylor, R.N.; Sukhatme, V.P.; Ecker, J.; Karumanchi, S.A. First trimester placental growth factor and soluble fms-like tyrosine kinase 1 and risk for preeclampsia. J. Clin. Endocrinol. Metab. 2004, 89, 770–775. [Google Scholar] [CrossRef]
- Maynard, S.E.; Venkatesha, S.; Thadhani, R.; Karumanchi, S.A. Soluble Fms-like Tyrosine Kinase 1 and Endothelial Dysfunction in the Pathogenesis of Preeclampsia. Pediatric Res. 2005, 57, 1R–7R. [Google Scholar] [CrossRef]
- Levine, R.J.; Lam, C.; Qian, C.; Yu, K.F.; Maynard, S.E.; Sachs, B.P.; Sibai, B.M.; Epstein, F.H.; Romero, R.; Thadhani, R.; et al. Soluble endoglin and other circulating antiangiogenic factors in preeclampsia. N. Engl. J. Med. 2006, 355, 992–1005. [Google Scholar] [CrossRef]
- Anthoulakis, C.; Mamopoulos, A. Augmentation index and pulse wave velocity in normotensive versus preeclamptic pregnancies: A prospective case–control study using a new oscillometric method. Ann. Med. 2022, 54, 1–10. [Google Scholar] [CrossRef]
- Segers, P.; Rietzschel, E.R.; Chirinos, J.A. How to Measure Arterial Stiffness in Humans. Arterioscler. Thromb. Vasc. Biol. 2020, 40, 1034–1043. [Google Scholar] [CrossRef]
- Grotenhuis, H.B.; Westenberg, J.J.; Steendijk, P.; van der Geest, R.J.; Ottenkamp, J.; Bax, J.J.; Jukema, J.W.; de Roos, A. Validation and reproducibility of aortic pulse wave velocity as assessed with velocity-encoded MRI. J. Magn. Reson Imaging 2009, 30, 521–526. [Google Scholar] [CrossRef] [PubMed]
- van Hout, M.J.; Dekkers, I.A.; Lin, L.; Westenberg, J.J.; Schalij, M.J.; Jukema, J.W.; Widya, R.L.; Boone, S.C.; de Mutsert, R.; Rosendaal, F.R.; et al. Estimated pulse wave velocity (ePWV) as a potential gatekeeper for MRI-assessed PWV: A linear and deep neural network based approach in 2254 participants of the Netherlands Epidemiology of Obesity study. Int. J. Cardiovasc. Imaging 2022, 38, 183–193. [Google Scholar] [CrossRef] [PubMed]
- Mancia, G.; Fagard, R.; Narkiewicz, K.; Redón, J.; Zanchetti, A.; Böhm, M.; Christiaens, T.; Cifkova, R.; De Backer, G.; Dominiczak, A.; et al. 2013 ESH/ESC Guidelines for the management of arterial hypertension: The Task Force for the management of arterial hypertension of the European Society of Hypertension (ESH) and of the European Society of Cardiology (ESC). J. Hypertens. 2013, 31, 1281–1357. [Google Scholar] [CrossRef] [PubMed]
- Forrest, M.; Bourgeois, S.; Pichette, É.; Caughlin, S.; Kuate Defo, A.; Hales, L.; Labos, C.; Daskalopoulou, S.S. Arterial stiffness measurements in pregnancy as a predictive tool for hypertensive disorders of pregnancy and preeclampsia: Protocol for a systematic review and meta-analysis. Eur. J. Obstet. Gynecol. Reprod. Biol. X 2022, 13, 100141. [Google Scholar] [CrossRef] [PubMed]
- Luca, C.-T.; Crisan, S.; Cozma, D.; Negru, A.; Lazar, M.-A.; Vacarescu, C.; Trofenciuc, M.; Rachieru, C.; Craciun, L.M.; Gaita, D.; et al. Arterial Hypertension: Individual Therapeutic Approaches—From DNA Sequencing to Gender Differentiation and New Therapeutic Targets. Pharmaceutics 2021, 13, 856. [Google Scholar] [CrossRef] [PubMed]
- Orabona, R.; Sciatti, E.; Vizzardi, E.; Bonadei, I.; Prefumo, F.; Valcamonico, A.; Metra, M.; Frusca, T. Maternal endothelial function and vascular stiffness after HELLP syndrome: A case–control study. Ultrasound Obstet. Gynecol. 2017, 50, 596–602. [Google Scholar] [CrossRef]
- Riemer, M.; Schulze, S.; Wagner, L.; Richter, M.; Ayerle, G.; Simm, A.; Seeger, S.; Schwesig, R.; Tchirikov, M.; Seliger, G. Cardiovascular Risk Reduction in Women Following Hypertensive Disorders of Pregnancy-a Prospective, Randomised, Controlled Interventional Study. Geburtshilfe Frauenheilkd. 2021, 81, 966–978. [Google Scholar] [CrossRef]
- Jääskeläinen, T.; Kivelä, A.; Renlund, M.; Heinonen, S.; Aittasalo, M.; Laivuori, H.; Sarkola, T. Protocol: A randomized controlled trial to assess effectiveness of a 12-month lifestyle intervention to reduce cardiovascular disease risk in families ten years after pre-eclampsia (FINNCARE). Prev. Med. Rep. 2022, 26, 101731. [Google Scholar] [CrossRef]
- Mulder, E.; Ghossein-Doha, C.; Appelman, E.; van Kuijk, S.; Smits, L.; van der Zanden, R.; van Drongelen, J.; Spaanderman, M. Study protocol for the randomized controlled EVA (early vascular adjustments) trial: Tailored treatment of mild hypertension in pregnancy to prevent severe hypertension and preeclampsia. BMC Pregnancy Childbirth 2020, 20, 775. [Google Scholar] [CrossRef]
- Koeth, R.A.; Wang, Z.; Levison, B.S.; Buffa, J.A.; Org, E.; Sheehy, B.T.; Britt, E.B.; Fu, X.; Wu, Y.; Li, L.; et al. Intestinal microbiota metabolism of L-carnitine, a nutrient in red meat, promotes atherosclerosis. Nat. Med. 2013, 19, 576–585. [Google Scholar] [CrossRef]
- Paapstel, K.; Kals, J.; Eha, J.; Tootsi, K.; Ottas, A.; Piir, A.; Zilmer, M. Metabolomic profiles of lipid metabolism, arterial stiffness and hemodynamics in male coronary artery disease patients. IJC Metab. Endocr. 2016, 11, 13–18. [Google Scholar] [CrossRef] [Green Version]
- Aguer, C.; McCoin, C.S.; Knotts, T.A.; Thrush, A.B.; Ono-Moore, K.; McPherson, R.; Dent, R.; Hwang, D.H.; Adams, S.H.; Harper, M.E. Acylcarnitines: Potential implications for skeletal muscle insulin resistance. FASEB J. 2015, 29, 336–345. [Google Scholar] [CrossRef]
- Ha, C.Y.; Kim, J.Y.; Paik, J.K.; Kim, O.Y.; Paik, Y.-H.; Lee, E.J.; Lee, J.H. The association of specific metabolites of lipid metabolism with markers of oxidative stress, inflammation and arterial stiffness in men with newly diagnosed type 2 diabetes. Clin. Endocrinol. 2012, 76, 674–682. [Google Scholar] [CrossRef]
- Lee, M.H.; Kwon, N.; Yoon, S.R.; Kim, O.Y. Serum Phospholipid Docosahexaenoic Acid Is Inversely Associated with Arterial Stiffness in Metabolically Healthy Men. Clin. Nutr Res. 2016, 5, 190–203. [Google Scholar] [CrossRef] [PubMed]
- Anderson, S.G.; Sanders, T.A.B.; Cruickshank, J.K. Plasma Fatty Acid Composition as a Predictor of Arterial Stiffness and Mortality. Hypertension 2009, 53, 839–845. [Google Scholar] [CrossRef] [PubMed]
- Paapstel, K.; Kals, J.; Eha, J.; Tootsi, K.; Ottas, A.; Piir, A.; Jakobson, M.; Lieberg, J.; Zilmer, M. Inverse relations of serum phosphatidylcholines and lysophosphatidylcholines with vascular damage and heart rate in patients with atherosclerosis. Nutr. Metab. Cardiovasc. Dis. 2018, 28, 44–52. [Google Scholar] [CrossRef] [PubMed]
- Menni, C.; Mangino, M.; Cecelja, M.; Psatha, M.; Brosnan, M.J.; Trimmer, J.; Mohney, R.P.; Chowienczyk, P.; Padmanabhan, S.; Spector, T.D.; et al. Metabolomic study of carotid-femoral pulse-wave velocity in women. J. Hypertens. 2015, 33, 791–796, discussion 796. [Google Scholar] [CrossRef]
- Bhat, O.M.; Yuan, X.; Cain, C.; Salloum, F.N.; Li, P.-L. Medial calcification in the arterial wall of smooth muscle cell-specific Smpd1 transgenic mice: A ceramide-mediated vasculopathy. J. Cell. Mol. Med. 2020, 24, 539–553. [Google Scholar] [CrossRef]
- Jung, S.; Kim, M.; Lee, Y.J.; Lee, S.-H.; Lee, J.H. Associations between metabolomic-identified changes of biomarkers and arterial stiffness in subjects progressing to impaired fasting glucose. Clin. Endocrinol. 2015, 83, 196–204. [Google Scholar] [CrossRef]
- Li, C.; He, J.; Li, S.; Chen, W.; Bazzano, L.; Sun, X.; Shen, L.; Liang, L.; Shen, Y.; Gu, X.; et al. Novel Metabolites Are Associated With Augmentation Index and Pulse Wave Velocity: Findings From the Bogalusa Heart Study. Am. J. Hypertens. 2019, 32, 547–556. [Google Scholar] [CrossRef]
- Lin, T.J.; Hsu, B.G.; Wang, J.H.; Lai, Y.H.; Dongoran, R.A.; Liu, C.H. Serum indoxyl sulfate as a potential biomarker of aortic arterial stiffness in coronary artery disease. Nutr. Metab. Cardiovasc Dis. 2020, 30, 2320–2327. [Google Scholar] [CrossRef] [PubMed]
- Katakami, N.; Omori, K.; Taya, N.; Arakawa, S.; Takahara, M.; Matsuoka, T.-a.; Tsugawa, H.; Furuno, M.; Bamba, T.; Fukusaki, E.; et al. Plasma metabolites associated with arterial stiffness in patients with type 2 diabetes. Cardiovasc. Diabetol. 2020, 19, 75. [Google Scholar] [CrossRef] [PubMed]
- Tayama, J.; Munakata, M.; Yoshinaga, K.; Toyota, T. Higher Plasma Homocysteine Concentration Is Associated with More Advanced Systemic Arterial Stiffness and Greater Blood Pressure Response to Stress in Hypertensive Patients. Hypertens. Res. 2006, 29, 403–409. [Google Scholar] [CrossRef] [PubMed]
- Charpio, P.; Bescond, A.; Augier, T.; Chareyre, C.; Fraterno, M.; Rolland, P.-H.; Garçon, D. Hyperhomocysteinemia induces elastolysis in minipig arteries: Structural consequences, arterial site specificity and effect of captopril-hydrochlorothiazide. Matrix Biol. 1998, 17, 559–574. [Google Scholar] [CrossRef]
- Hall, W.L.; Sanders, K.A.; Sanders, T.A.; Chowienczyk, P.J. A high-fat meal enriched with eicosapentaenoic acid reduces postprandial arterial stiffness measured by digital volume pulse analysis in healthy men. J. Nutr. 2008, 138, 287–291. [Google Scholar] [CrossRef]
- Koh, A.S.; Gao, F.; Liu, J.; Fridianto, K.T.; Ching, J.; Tan, R.S.; Wong, J.I.; Chua, S.J.; Leng, S.; Zhong, L.; et al. Metabolomic profile of arterial stiffness in aged adults. Diab. Vasc. Dis. Res. 2018, 15, 74–80. [Google Scholar] [CrossRef]
- Bouzaglou, A.; Aubenas, I.; Abbou, H.; Rouanet, S.; Carbonnel, M.; Pirtea, P.; Ayoubi, J.M.B. Pregnancy at 40 years Old and Above: Obstetrical, Fetal, and Neonatal Outcomes. Is Age an Independent Risk Factor for Those Complications? Front. Med. 2020, 7, 208. [Google Scholar] [CrossRef]
- Shih, T.; Peneva, D.; Xu, X.; Sutton, A.; Triche, E.; Ehrenkranz, R.A.; Paidas, M.; Stevens, W. The Rising Burden of Preeclampsia in the United States Impacts Both Maternal and Child Health. Am. J. Perinatol. 2016, 33, 329–338. [Google Scholar] [CrossRef]
- Ortved, D.; Hawkins, T.L.-A.; Johnson, J.-A.; Hyett, J.; Metcalfe, A. Cost-effectiveness of first-trimester screening with early preventative use of aspirin in women at high risk of early-onset pre-eclampsia. Ultrasound Obstet. Gynecol. 2019, 53, 239–244. [Google Scholar] [CrossRef]
- Kaihura, C.; Savvidou, M.D.; Anderson, J.M.; McEniery, C.M.; Nicolaides, K.H. Maternal arterial stiffness in pregnancies affected by preeclampsia. Am. J. Physiol. Heart Circ. Physiol. 2009, 297, H759–H764. [Google Scholar] [CrossRef] [Green Version]
BMI (kg/mp2) | Classification |
---|---|
≤18.5 | Underweight |
18.5–24.9 | Normal/healthy/average |
25.0–29.9 | Overweight |
30–34.9 | Obese I |
35–39.9 | Obese II |
≥40 | Obese III |
Minor Risk Factors | Major Risk Factors |
---|---|
Advanced maternal age | Pre-existing chronic hypertension |
Nulliparity | Renal disease |
Family history of PE | Personal history of PE |
Short and long inter-pregnancy intervals | Autoimmune disease |
Assisted reproductive technologies | |
Obesity | |
Ethnicity |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Turi, V.-R.; Luca, C.T.; Gaita, D.; Iurciuc, S.; Petre, I.; Iurciuc, M.; Horvath, T.; Cozma, D. Diagnosing Arterial Stiffness in Pregnancy and Its Implications in the Cardio-Renal-Metabolic Chain. Diagnostics 2022, 12, 2221. https://doi.org/10.3390/diagnostics12092221
Turi V-R, Luca CT, Gaita D, Iurciuc S, Petre I, Iurciuc M, Horvath T, Cozma D. Diagnosing Arterial Stiffness in Pregnancy and Its Implications in the Cardio-Renal-Metabolic Chain. Diagnostics. 2022; 12(9):2221. https://doi.org/10.3390/diagnostics12092221
Chicago/Turabian StyleTuri, Vladiana-Romina, Constantin Tudor Luca, Dan Gaita, Stela Iurciuc, Izabella Petre, Mircea Iurciuc, Tunde Horvath, and Dragos Cozma. 2022. "Diagnosing Arterial Stiffness in Pregnancy and Its Implications in the Cardio-Renal-Metabolic Chain" Diagnostics 12, no. 9: 2221. https://doi.org/10.3390/diagnostics12092221
APA StyleTuri, V. -R., Luca, C. T., Gaita, D., Iurciuc, S., Petre, I., Iurciuc, M., Horvath, T., & Cozma, D. (2022). Diagnosing Arterial Stiffness in Pregnancy and Its Implications in the Cardio-Renal-Metabolic Chain. Diagnostics, 12(9), 2221. https://doi.org/10.3390/diagnostics12092221