Clinical Outcomes of Cataract Surgery in Patients with Sjögren’s Syndrome
Abstract
:1. Introduction
2. Methods
2.1. Study Design and Grouping
2.2. Preoperative and Postoperative Examinations
2.3. Surgical Procedure and Postoperative Care
2.4. Statistical Analysis
3. Results
3.1. Ocular Surface Evaluation
3.2. Refractive Outcomes
3.3. Postoperative Inflammation
4. Discussion
5. Conclusions
6. Value Statement
- Ocular surface damage associated with dry eye reduces quality of vision and triggers errors in keratometric measurements that render the calculation of intraocular lens power inaccurate.
- Ocular surface optimization is required to ensure good refractive outcomes and patient satisfaction after cataract surgery; no prior study has focused on dry eye associated with Sjögren’s syndrome (SS).
- Management of superficial punctate keratitis in patients with SS requiring cataract surgery minimizes biometric and postoperative refractive errors.
- The uncorrected distance visual acuity of patients with well-controlled SS is comparable to that of non-SS dry eye patients for 12 months after phacoemulsification.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Shiboski, C.H.; Shiboski, S.C.; Seror, R.; Criswell, L.A.; Labetoulle, M.; Lietman, T.M.; Rasmussen, A.; Scofield, H.; Vitali, C.; Bowman, S.J.; et al. 2016 American College of Rheumatology/European League Against Rheumatism classification criteria for primary Sjögren’s syndrome: A consensus and data-driven methodology involving three international patient cohorts. Ann. Rheum. Dis. 2017, 76, 9–16. [Google Scholar] [CrossRef]
- Meijer, J.M.; Meiners, P.M.; Huddleston Slater, J.J.; Spijkervet, F.K.; Kallenberg, C.G.; Vissink, A.; Bootsma, H. Health-related quality of life, employment and disability in patients with Sjögren’s syndrome. Rheumatology 2009, 48, 1077–1082. [Google Scholar] [CrossRef] [Green Version]
- Zhang, M.; Kim, E.; Akpek, E.K. Prevalence and predictors of Sjögren’s syndrome in a prospective cohort of patients with aqueous-deficient dry eye. Br. J. Ophthalmol. 2012, 96, 1498–1503. [Google Scholar]
- Goto, E.; Matsumoto, Y.; Kamoi, M.; Endo, K.; Ishida, R.; Dogru, M.; Kaido, M.; Kojima, T.; Tsubota, K. Tear evaporation rates in Sjögren syndrome and non-Sjögren dry eye patients. Am. J. Ophthalmol. 2007, 144, 81–85.e1. [Google Scholar] [CrossRef]
- Montés-Micó, R.; Alió, J.L.; Charman, W.N. Dynamic changes in the tear film in dry eyes. Investig. Ophthalmol. Vis. Sci. 2005, 46, 1615–1619. [Google Scholar] [CrossRef]
- Lombardo, M.; Lombardo, G. Wave aberration of human eyes and new descriptors of image optical quality and visual performance. J. Cataract. Refract. Surg. 2010, 36, 313–331. [Google Scholar] [CrossRef]
- Epitropoulos, A.T.; Matossian, C.; Berdy, G.J.; Malhotra, R.P.; Potvin, R. Effect of tear osmolarity on repeatability of keratometry for cataract surgery planning. J. Cataract. Refract. Surg. 2015, 41, 1672–1677. [Google Scholar] [CrossRef]
- Khanal, S.; Tomlinson, A.; Esakowitz, L.; Bhatt, P.; Jones, D.; Nabili, S.; Mukerji, S. Changes in corneal sensitivity and tear physiology after phacoemulsification. Ophthalmic. Physiol. Opt. 2008, 28, 127–134. [Google Scholar] [CrossRef]
- Cho, Y.K.; Kim, M.S. Dry eye after cataract surgery and associated intraoperative risk factors. Korean J. Ophthalmol. 2009, 23, 65–73. [Google Scholar] [CrossRef] [Green Version]
- Kohli, P.; Arya, S.K.; Raj, A.; Handa, U. Changes in ocular surface status after phacoemulsification in patients with senile cataract. Int. Ophthalmol. 2019, 39, 1345–1353. [Google Scholar] [CrossRef]
- Kemeny-Beke, A.; Szodoray, P. Ocular manifestations of rheumatic diseases. Int. Ophthalmol. 2020, 40, 503–510. [Google Scholar] [CrossRef]
- Goules, A.V.; Tzioufas, A.G.; Moutsopoulos, H.M. Classification criteria of Sjögren’s syndrome. J. Autoimmun. 2014, 48, 42–45. [Google Scholar] [CrossRef]
- Del Papa, N.; Vitali, C. Management of primary Sjögren’s syndrome: Recent developments and new classification criteria. Ther Adv. Musculoskelet. Dis. 2018, 10, 39–54. [Google Scholar] [CrossRef] [Green Version]
- Lemp, M.A.; Foulks, G.N. The definition and classification of dry eye disease. Ocul. Surf. 2007, 5, 75–92. [Google Scholar]
- Craig, J.P.; Nelson, J.D.; Azar, D.T.; Belmonte, C.; Bron, A.J.; Chauhan, S.K.; Paiva, C.S.; Gomes, J.A.; Hammitt, K.M.; Jones, L.; et al. TFOS DEWS II report executive summary. Ocul. Surf. 2017, 15, 802–812. [Google Scholar] [CrossRef]
- Bron, A.J.; Evans, V.E.; Smith, J.A. Grading of corneal and conjunctival staining in the context of other dry eye tests. Cornea 2003, 22, 640–650. [Google Scholar] [CrossRef]
- Standardization of Uveitis Nomenclature (SUN) Working Group. Standardization of uveitis nomenclature for reporting clinical data. Results of the First International Workshop. Am. J. Ophthalmol. 2005, 140, 509–516. [Google Scholar] [CrossRef]
- Trattler, W.B.; Majmudar, P.A.; Donnenfeld, E.D.; McDonald, M.B.; Stonecipher, K.G.; Goldberg, D.F. The prospective health assessment of cataract patients’ ocular surface (PHACO) study: The effect of dry eye. Clin. Ophthalmol. 2017, 11, 1423. [Google Scholar] [CrossRef] [Green Version]
- Movahedan, A.; Djalilian, A.R. Cataract surgery in the face of ocular surface disease. Curr. Opin. Ophthalmol. 2012, 23, 68–72. [Google Scholar] [CrossRef]
- Lee, S.Y.; Han, S.J.; Nam, S.M.; Yoon, S.C.; Ahn, J.M.; Kim, T.-I.; Kim, E.K.; Seo, K.Y. Analysis of tear cytokines and clinical correlations in Sjögren syndrome dry eye patients and non–Sjögren syndrome dry eye patients. Am. J. Ophthalmol. 2013, 156, 247–253. [Google Scholar] [CrossRef]
- Akpek, E.K.; Wu, H.Y.; Karakus, S.; Zhang, Q.; Masli, S. Differential diagnosis of Sjögren versus non-Sjögren dry eye through tear film biomarkers. Cornea 2020, 39, 991–997. [Google Scholar] [CrossRef]
- Li, X.-M.; Hu, L.; Hu, J.; Wang, W. Investigation of dry eye disease and analysis of the pathogenic factors in patients after cataract surgery. Cornea 2007, 26, S16–S20. [Google Scholar] [CrossRef]
- Cetinkaya, S.; Mestan, E.; Acir, N.O.; Cetinkaya, Y.F.; Dadaci, Z.; Yener, H.I. The course of dry eye after phacoemulsification surgery. BMC Ophthalmol. 2015, 15, 1–5. [Google Scholar] [CrossRef] [Green Version]
- Mathers, W.D. Why the eye becomes dry: A cornea and lacrimal gland feedback model. CLAO J. 2000, 26, 159–165. [Google Scholar]
- Dartt, D.A. Dysfunctional neural regulation of lacrimal gland secretion and its role in the pathogenesis of dry eye syndromes. Ocul. Surf. 2004, 2, 76–91. [Google Scholar] [CrossRef]
- Jones, D.T.; Monroy, D.; Ji, Z.; Atherton, S.S.; Pflugfelder, S.C. Sjögren’s syndrome: Cytokine and Epstein-Barr viral gene expression within the conjunctival epithelium. Invest. Ophthalmol. Vis. Sci. 1994, 35, 3493–3504. [Google Scholar]
- Belmonte, C.; Acosta, M.C.; Gallar, J. Neural basis of sensation in intact and injured corneas. Exp. Eye Res. 2004, 78, 513–525. [Google Scholar] [CrossRef]
- Mehravaran, S.; Asgari, S.; Bigdeli, S.; Shahnazi, A.; Hashemi, H. Keratometry with five different techniques: A study of device repeatability and inter-device agreement. Int. Ophthalmol. 2014, 34, 869–875. [Google Scholar] [CrossRef]
- Elbaz, U.; Barkana, Y.; Gerber, Y.; Avni, I.; Zadok, D. Comparison of different techniques of anterior chamber depth and keratometric measurements. Am. J. Ophthalmol. 2007, 143, 48–53. [Google Scholar] [CrossRef]
- Park, J.-H.; Kang, S.Y.; Kim, H.-M.; Song, J.-S. Differences in corneal astigmatism between partial coherence interferometry biometry and automated keratometry and relation to topographic pattern. J. Cataract. Refract. Surg. 2011, 37, 1694–1698. [Google Scholar] [CrossRef]
- Hsieh, Y.-T.; Wang, I.-J. Intraocular lens power measured by partial coherence interferometry. Optom. Vis. Sci. 2012, 89, 1697–1701. [Google Scholar] [CrossRef]
- Hovanesian, J.A.; Berdy, G.J.; Epitropoulos, A.; Holladay, J.T. Effect of cyclosporine 0.09% treatment on accuracy of preoperative biometry and higher order aberrations in dry eye patients undergoing cataract surgery. Clin. Ophthalmol. 2021, 15, 3679. [Google Scholar] [CrossRef]
- Miljanović, B.; Dana, R.; Sullivan, D.A.; Schaumberg, D.A. Impact of dry eye syndrome on vision-related quality of life. Am. J. Ophthalmol. 2007, 143, 409–415.e2. [Google Scholar] [CrossRef] [Green Version]
- Goto, E.; Yagi, Y.; Matsumoto, Y.; Tsubota, K. Impaired functional visual acuity of dry eye patients. Am. J. Ophthalmol. 2002, 133, 181–186. [Google Scholar] [CrossRef]
- Koh, S. Mechanisms of visual disturbance in dry eye. Cornea 2016, 35, S83–S88. [Google Scholar] [CrossRef]
- Kaido, M.; Matsumoto, Y.; Shigeno, Y.; Ishida, R.; Dogru, M.; Tsubota, K. Corneal fluorescein staining correlates with visual function in dry eye patients. Invest. Ophthalmol. Vis. Sci. 2011, 52, 9516–9522. [Google Scholar] [CrossRef]
- Villarreal-Gonzalez, A.J.; Jocelyn Rivera-Alvarado, I.; Rodriguez-Gutierrez, L.A.; Rodriguez-Garcia, A. Analysis of ocular surface damage and visual impact in patients with primary and secondary Sjögren syndrome. Rheumatol. Int. 2020, 40, 1249–1257. [Google Scholar] [CrossRef]
- Aghaei, H.; Kheirkhah, A.; Es’ Haghi, A.; Aghamirsalim, M.R.; Asgari, S. Disruption of blood-aqueous barrier in dry eye disease. Ocul Surf. 2021, 19, 266–269. [Google Scholar] [CrossRef]
Sjögren Group | Dry Eye Group | Control Group | p-Value | |
---|---|---|---|---|
Number (Patients [eyes]) | 26 (50) | 30 (58) | 31 (59) | |
Age (years, Mean ± SD) | 68.38 ± 8.80 | 68.03 ± 7.01 | 67.54 ± 6.61 | 0.840 a |
Sex (Female/Male) | 26/0 | 23/7 | 25/6 | <0.001 b |
Side (Right/Left) | 25/25 | 29/29 | 29/30 | 0.995 b |
Sjögren Group | Dry Eye Group | Control Group | p-Value a | ||||
---|---|---|---|---|---|---|---|
Mean ± SD | p-Value b | Mean ± SD | p-Value b | Mean ± SD | p-Value b | ||
Preoperative | 1.38 ± 0.83 | 0.59 ± 0.53 | 0.14 ± 0.39 | <0.001 | |||
Postop. Week 1 | 2.43 ± 1.46 | <0.001 | 0.93 ± 0.65 | 0.001 | 0.46 ± 0.62 | 0.001 | <0.001 |
Postop. Month 1 | 1.86 ± 1.37 | 0.002 | 0.38 ± 0.62 | 0.063 | 0.15 ± 0.36 | 0.617 | <0.001 |
Postop. Month 3 | 1.34 ± 1.14 | 0.922 | 0.45 ± 0.57 | 0.117 | 0.16 ± 0.37 | 0.564 | <0.001 |
Postop. Month 6 | 1.12 ± 1.06 | 0.111 | 0.36 ± 0.52 | 0.019 | 0.07 ± 0.26 | 0.366 | <0.001 |
Postop. Month 12 | 1.22 ± 1.17 | 0.214 | 0.29 ± 0.46 | <0.001 | 0.16 ± 0.42 | >0.999 | <0.001 |
Sjögren Group | Dry Eye Group | Control Group | |
---|---|---|---|
Mean K (D, Mean ± SD) | |||
IOLMaster | 44.69 ± 1.12 | 44.51 ± 1.48 | 44.35 ± 1.25 |
ARK | 44.57 ± 1.18 | 44.32 ± 1.44 | 44.19 ± 1.22 |
p-value a | <0.001 | <0.001 | <0.001 |
r (p-value) | 0.990 (<0.001) | 0.995 (<0.001) | 0.992 (<0.001) |
Sjögren Group | Dry Eye Group | Control Group | p-Value a | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Mean ± SD | p-Value b | Mean ± SD | p-Value b | Mean ± SD | p-Value b | ||||||
M | US + ARK | M | US + ARK | M | US + ARK | M | US + ARK | ||||
Target refraction (D) | −0.31 ± 0.19 | −0.31 ± 0.17 | 0.489 | −0.37 ± 0.19 | −0.29 ± 0.21 | <0.001 | −0.37 ± 0.25 | −0.32 ± 0.25 | 0.022 | 0.615 | 0.474 |
MAE Month 1 (D) | 0.30 ± 0.26 | 0.31 ± 0.27 | 0.709 | 0.36 ± 0.22 | 0.30 ± 0.22 | 0.029 | 0.34 ± 0.30 | 0.31 ± 0.29 | 0.201 | 0.856 | 0.984 |
MAE Month 3 (D) | 0.35 ± 0.30 | 0.35 ± 0.33 | 0.654 | 0.33 ± 0.23 | 0.33 ± 0.23 | 0.901 | 0.36 ± 0.31 | 0.33 ± 0.29 | 0.109 | 0.530 | 0.765 |
MAE Month 6 (D) | 0.38 ± 0.32 | 0.37 ± 0.36 | 0.856 | 0.39 ± 0.24 | 0.39 ± 0.24 | 0.912 | 0.39 ± 0.31 | 0.34 ± 0.28 | 0.032 | 0.682 | 0.746 |
MAE Month 12 (D) | 0.42 ± 0.37 | 0.39 ± 0.36 | 0.416 | 0.40 ± 0.27 | 0.39 ± 0.28 | 0.595 | 0.41 ± 0.32 | 0.36 ± 0.31 | 0.019 | 0.988 | 0.728 |
Mean ± SD | p-Value a | p-Value a | |||||
---|---|---|---|---|---|---|---|
Sjögren Group | Dry Eye Group | Control Group | S vs. D | S vs. C | D vs. C | ||
Preoperative | 0.43 ± 0.33 | 0.34 ± 0.19 | 0.43 ± 0.31 | 0.109 | 0.330 | >0.999 | 0.217 |
Postop. Week 1 | 0.11 ± 0.09 | 0.10 ± 0.09 | 0.09 ± 0.10 | 0.555 | >0.999 | >0.999 | 0.845 |
Postop. Month 1 | 0.11 ± 0.09 | 0.08 ± 0.08 | 0.07 ± 0.08 | 0.170 | >0.999 | 0.182 | >0.999 |
Postop. Month 3 | 0.09 ± 0.10 | 0.08 ± 0.06 | 0.05 ± 0.06 | 0.017 | >0.999 | 0.034 | 0.179 |
Postop. Month 6 | 0.09 ± 0.09 | 0.07 ± 0.06 | 0.05 ± 0.05 | 0.046 | 0.422 | 0.047 | 0.757 |
Postop. Month 12 | 0.11 ± 0.09 | 0.07 ± 0.06 | 0.05 ± 0.06 | 0.007 | 0.311 | 0.009 | 0.342 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, D.; Kim, C.; Lee, K.; Chung, J.K. Clinical Outcomes of Cataract Surgery in Patients with Sjögren’s Syndrome. Diagnostics 2023, 13, 57. https://doi.org/10.3390/diagnostics13010057
Lee D, Kim C, Lee K, Chung JK. Clinical Outcomes of Cataract Surgery in Patients with Sjögren’s Syndrome. Diagnostics. 2023; 13(1):57. https://doi.org/10.3390/diagnostics13010057
Chicago/Turabian StyleLee, Donghyeon, Charm Kim, Kyeongjoo Lee, and Jin Kwon Chung. 2023. "Clinical Outcomes of Cataract Surgery in Patients with Sjögren’s Syndrome" Diagnostics 13, no. 1: 57. https://doi.org/10.3390/diagnostics13010057
APA StyleLee, D., Kim, C., Lee, K., & Chung, J. K. (2023). Clinical Outcomes of Cataract Surgery in Patients with Sjögren’s Syndrome. Diagnostics, 13(1), 57. https://doi.org/10.3390/diagnostics13010057