Effects of SARS-CoV-2 on Pulmonary Function and Muscle Strength Testing in Military Subjects According to the Period of Infection: Cross-Sectional Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Pulmonary Function Testing
2.2. Six-Minute Walk TEST (6MWT)
2.3. Handgrip Test (HGT)
2.4. Minute Sit-to-Stand Test (1′STST)
2.5. Chest CT Scan
2.6. Statistical Analysis
3. Result
3.1. Subjects
3.2. Pulmonary Function Tests
3.3. Symptoms
3.4. Exercise Tests
3.5. Correlations
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
%pr | %Predicted Value |
1′STST | One Minute Sit To Stand Test |
6MWT | Six-Minute Walk Test |
ANOVA | One-Way Analysis Of Variance |
ATS | American Thoracic Society |
COVID-19 | Coronavirus Disease 2019 |
CT | Computer Tomography |
DL’co-SB | Diffusing Lung Capacity for Carbon Monoxide—Single Breath |
FEV1 | Forced Expiratory Volume in 1 s |
FVC | Forced Vital Capacity |
GG | Ground Glass |
HGT | Hand Grip Test |
HR | Heart Rate |
mMRC | modified Medical Research Council Dyspnea Scale |
PFT | Pulmonary Function Test |
RPE | Rating Of Perceived Exertion |
SARS-CoV-2 | Severe Acute Respiratory Syndrome CoronaVirus-2 |
SD | Standard Deviation |
SpO2 | Peripheral Saturation Of Oxygen |
TLC | Total Lung Capacity |
VA | Alveolar Ventilation |
WHO | World Health Organization |
References
- Wiersinga, W.J.; Rhodes, A.; Cheng, A.C.; Peacock, S.J.; Prescott, H.C. Pathophysiology, Transmission, Diagnosis, and Treatment of Coronavirus Disease 2019 (COVID-19): A Review. JAMA 2020, 324, 782–793. [Google Scholar] [CrossRef]
- Tosta, S.; Moreno, K.; Schuab, G.; Fonseca, V.; Segovia, F.M.C.; Kashima, S.; Elias, M.C.; Sampaio, S.C.; Ciccozzi, M.; Alcantara, L.C.J.; et al. Global SARS-CoV-2 Genomic Surveillance: What We Have Learned (so Far). Infect. Genet. Evol. 2023, 108, 105405. [Google Scholar] [CrossRef]
- Istituto Superiore Di Sanità—Rapporto Prevalenza. Available online: https://www.Epicentro.Iss.It/Coronavirus/Pdf/Sars-Cov-2-Monitoraggio-Varianti-Rapporti-Periodici-3-Febbraio-2023.Pdf2023 (accessed on 1 May 2023).
- Carreño, J.M.; Alshammary, H.; Tcheou, J.; Singh, G.; Raskin, A.J.; Kawabata, H.; Sominsky, L.A.; Clark, J.J.; Adelsberg, D.C.; Bielak, D.A.; et al. Activity of Convalescent and Vaccine Serum against SARS-CoV-2 Omicron. Nature 2022, 602, 682–688. [Google Scholar] [CrossRef]
- Liu, J.; Chandrashekar, A.; Sellers, D.; Barrett, J.; Jacob-Dolan, C.; Lifton, M.; McMahan, K.; Sciacca, M.; VanWyk, H.; Wu, C.; et al. Vaccines Elicit Highly Conserved Cellular Immunity to SARS-CoV-2 Omicron. Nature 2022, 603, 493–496. [Google Scholar] [CrossRef]
- Ora, J.; Calzetta, L.; Frugoni, C.; Puxeddu, E.; Rogliani, P. Expert Guidance on the Management and Challenges of Long-COVID Syndrome: A Systematic Review. Expert. Opin. Pharm. 2023, 24, 315–330. [Google Scholar] [CrossRef]
- Babouee Flury, B.; Güsewell, S.; Egger, T.; Leal, O.; Brucher, A.; Lemmenmeier, E.; Meier Kleeb, D.; Möller, J.C.; Rieder, P.; Rütti, M.; et al. Risk and Symptoms of COVID-19 in Health Professionals According to Baseline Immune Status and Booster Vaccination during the Delta and Omicron Waves in Switzerland-A Multicentre Cohort Study. PLoS Med. 2022, 19, e1004125. [Google Scholar] [CrossRef]
- Aiyegbusi, O.L.; Hughes, S.E.; Turner, G.; Rivera, S.C.; McMullan, C.; Chandan, J.S.; Haroon, S.; Price, G.; Davies, E.H.; Nirantharakumar, K.; et al. Symptoms, Complications and Management of Long COVID: A Review. J. R. Soc. Med. 2021, 114, 428–442. [Google Scholar] [CrossRef]
- Gluckman, T.J.; Bhave, N.M.; Allen, L.A.; Chung, E.H.; Spatz, E.S.; Ammirati, E.; Baggish, A.L.; Bozkurt, B.; Cornwell, W.K.; Harmon, K.G.; et al. 2022 ACC Expert Consensus Decision Pathway on Cardiovascular Sequelae of COVID-19 in Adults: Myocarditis and Other Myocardial Involvement, Post-Acute Sequelae of SARS-CoV-2 Infection, and Return to Play. J. Am. Coll. Cardiol. 2022, 79, 1717–1756. [Google Scholar] [CrossRef]
- Cavigli, L.; Fusi, C.; Focardi, M.; Mandoli, G.E.; Pastore, M.C.; Cameli, M.; Valente, S.; Zorzi, A.; Bonifazi, M.; D’Andrea, A.; et al. Post-Acute Sequelae of COVID-19: The Potential Role of Exercise Therapy in Treating Patients and Athletes Returning to Play. J. Clin. Med. 2022, 12, 288. [Google Scholar] [CrossRef]
- Carfì, A.; Bernabei, R.; Landi, F.; for the Gemelli Against COVID-19 Post-Acute Care Study Group. Persistent Symptoms in Patients After Acute COVID-19. JAMA 2020, 324, 603. [Google Scholar] [CrossRef]
- Laveneziana, P.; Sesé, L.; Gille, T. Pathophysiology of Pulmonary Function Anomalies in COVID-19 Survivors. Breathe 2021, 17, 210065. [Google Scholar] [CrossRef] [PubMed]
- Anastasio, F.; Barbuto, S.; Scarnecchia, E.; Cosma, P.; Fugagnoli, A.; Rossi, G.; Parravicini, M.; Parravicini, P. Medium-Term Impact of COVID-19 on Pulmonary Function, Functional Capacity and Quality of Life. Eur. Respir. J. 2021, 58, 2004015. [Google Scholar] [CrossRef] [PubMed]
- Cortés-Telles, A.; López-Romero, S.; Figueroa-Hurtado, E.; Pou-Aguilar, Y.N.; Wong, A.W.; Milne, K.M.; Ryerson, C.J.; Guenette, J.A. Pulmonary Function and Functional Capacity in COVID-19 Survivors with Persistent Dyspnoea. Respir. Physiol. Neurobiol. 2021, 288, 103644. [Google Scholar] [CrossRef] [PubMed]
- Lerum, T.V.; Aaløkken, T.M.; Brønstad, E.; Aarli, B.; Ikdahl, E.; Lund, K.M.A.; Durheim, M.T.; Rodriguez, J.R.; Meltzer, C.; Tonby, K.; et al. Dyspnoea, Lung Function and CT Findings 3 Months after Hospital Admission for COVID-19. Eur. Respir. J. 2021, 57, 2003448. [Google Scholar] [CrossRef]
- Ora, J.; Zerillo, B.; De Marco, P.; Manzetti, G.M.; De Guido, I.; Calzetta, L.; Rogliani, P. Effects of SARS-CoV-2 Infection on Pulmonary Function Tests and Exercise Tolerance. J. Clin. Med. 2022, 11, 4936. [Google Scholar] [CrossRef]
- Rogliani, P.; Calzetta, L.; Coppola, A.; Puxeddu, E.; Sergiacomi, G.; D’Amato, D.; Orlacchio, A. Are There Pulmonary Sequelae in Patients Recovering from COVID-19? Respir. Res. 2020, 21, 286. [Google Scholar] [CrossRef]
- Open DATA Vaccini. Available online: https://Github.Com/Italia/Covid19-Opendata-Vaccini (accessed on 19 March 2023).
- Cuschieri, S. The STROBE Guidelines. Saudi J. Anaesth. 2019, 13, 31. [Google Scholar] [CrossRef]
- von Elm, E.; Altman, D.G.; Egger, M.; Pocock, S.J.; Gøtzsche, P.C.; Vandenbroucke, J.P. STROBE Initiative The Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) Statement: Guidelines for Reporting Observational Studies. Lancet 2007, 370, 1453–1457. [Google Scholar] [CrossRef]
- Miller, M.R.; Hankinson, J.; Brusasco, V.; Burgos, F.; Casaburi, R.; Coates, A.; Crapo, R.; Enright, P.; van der Grinten, C.P.M.; Gustafsson, P.; et al. Standardisation of Spirometry. Eur. Respir. J. 2005, 26, 319–338. [Google Scholar] [CrossRef]
- Quanjer, P.H.; Tammeling, G.J.; Cotes, J.E.; Pedersen, O.F.; Peslin, R.; Yernault, J.C. Lung Volumes and Forced Ventilatory Flows. Report Working Party Standardization of Lung Function Tests, European Community for Steel and Coal. Official Statement of the European Respiratory Society. Eur. Respir. J. Suppl. 1993, 16, 5–40. [Google Scholar] [CrossRef]
- ATS Committee on Proficiency Standards for Clinical Pulmonary Function Laboratories ATS Statement: Guidelines for the Six-Minute Walk Test. Am. J. Respir. Crit. Care Med. 2002, 166, 111–117. [CrossRef] [PubMed]
- Enright, P.L.; Sherrill, D.L. Reference Equations for the Six-Minute Walk in Healthy Adults. Am. J. Respir. Crit. Care Med. 1998, 158, 1384–1387. [Google Scholar] [CrossRef] [PubMed]
- Bohannon, R.W.; Peolsson, A.; Massy-Westropp, N.; Desrosiers, J.; Bear-Lehman, J. Reference Values for Adult Grip Strength Measured with a Jamar Dynamometer: A Descriptive Meta-Analysis. Physiotherapy 2006, 92, 11–15. [Google Scholar] [CrossRef]
- Dodds, R.M.; Syddall, H.E.; Cooper, R.; Benzeval, M.; Deary, I.J.; Dennison, E.M.; Der, G.; Gale, C.R.; Inskip, H.M.; Jagger, C.; et al. Grip Strength across the Life Course: Normative Data from Twelve British Studies. PLoS ONE 2014, 9, e113637. [Google Scholar] [CrossRef] [PubMed]
- Crook, S.; Büsching, G.; Schultz, K.; Lehbert, N.; Jelusic, D.; Keusch, S.; Wittmann, M.; Schuler, M.; Radtke, T.; Frey, M.; et al. A Multicentre Validation of the 1-Min Sit-to-Stand Test in Patients with COPD. Eur. Respir. J. 2017, 49, 1601871. [Google Scholar] [CrossRef]
- Soldati, G.; Smargiassi, A.; Inchingolo, R.; Buonsenso, D.; Perrone, T.; Briganti, D.F.; Perlini, S.; Torri, E.; Mariani, A.; Mossolani, E.E.; et al. On Lung Ultrasound Patterns Specificity in the Management of COVID-19 Patients. J. Ultrasound Med. 2020, 39, 2283–2284. [Google Scholar] [CrossRef]
- Mo, X.; Jian, W.; Su, Z.; Chen, M.; Peng, H.; Peng, P.; Lei, C.; Chen, R.; Zhong, N.; Li, S. Abnormal Pulmonary Function in COVID-19 Patients at Time of Hospital Discharge. Eur. Respir. J. 2020, 55, 2001217. [Google Scholar] [CrossRef]
- Lombardi, F.; Calabrese, A.; Iovene, B.; Pierandrei, C.; Lerede, M.; Varone, F.; Richeldi, L.; Sgalla, G. Gemelli Against COVID-19 Post-Acute Care Study Group Residual Respiratory Impairment after COVID-19 Pneumonia. BMC Pulm. Med. 2021, 21, 241. [Google Scholar] [CrossRef]
- Eksombatchai, D.; Wongsinin, T.; Phongnarudech, T.; Thammavaranucupt, K.; Amornputtisathaporn, N.; Sungkanuparph, S. Pulmonary Function and Six-Minute-Walk Test in Patients after Recovery from COVID-19: A Prospective Cohort Study. PLoS ONE 2021, 16, e0257040. [Google Scholar] [CrossRef]
- Bellan, M.; Soddu, D.; Balbo, P.E.; Baricich, A.; Zeppegno, P.; Avanzi, G.C.; Baldon, G.; Bartolomei, G.; Battaglia, M.; Battistini, S.; et al. Respiratory and Psychophysical Sequelae Among Patients With COVID-19 Four Months After Hospital Discharge. JAMA Netw. Open. 2021, 4, e2036142. [Google Scholar] [CrossRef]
- Aiello, M.; Marchi, L.; Calzetta, L.; Speroni, S.; Frizzelli, A.; Ghirardini, M.; Celiberti, V.; Sverzellati, N.; Majori, M.; Mori, P.A.; et al. Coronavirus Disease 2019: COSeSco—A Risk Assessment Score to Predict the Risk of Pulmonary Sequelae in COVID-19 Patients. Respiration 2022, 101, 272–280. [Google Scholar] [CrossRef] [PubMed]
- Choi, C.W.; Sung, H.K.; Jeong, J.Y.; Lim, D.H.; Choi, J.; Kwon, H.C.; Nam, S.; Kim, Y.; Chin, B. Changing Features of Liver Injury in COVID-19 Patients: Impact of Infection with the SARS-CoV-2 Delta (B.1.617.2) Variants. Infect. Chemother. 2022, 54, 744–756. [Google Scholar] [CrossRef] [PubMed]
- Yoon, S.H.; Lee, J.H.; Kim, B.-N. Chest CT Findings in Hospitalized Patients with SARS-CoV-2: Delta versus Omicron Variants. Radiology 2023, 306, 252–260. [Google Scholar] [CrossRef] [PubMed]
- Guan, W.-J.; Ni, Z.-Y.; Hu, Y.; Liang, W.-H.; Ou, C.-Q.; He, J.-X.; Liu, L.; Shan, H.; Lei, C.-L.; Hui, D.S.C.; et al. Clinical Characteristics of Coronavirus Disease 2019 in China. N. Engl. J. Med. 2020, 382, 1708–1720. [Google Scholar] [CrossRef]
- George, P.M.; Barratt, S.L.; Condliffe, R.; Desai, S.R.; Devaraj, A.; Forrest, I.; Gibbons, M.A.; Hart, N.; Jenkins, R.G.; McAuley, D.F.; et al. Respiratory Follow-up of Patients with COVID-19 Pneumonia. Thorax 2020, 75, 1009–1016. [Google Scholar] [CrossRef]
- Barisione, G.; Brusasco, V. Lung Diffusing Capacity for Nitric Oxide and Carbon Monoxide Following Mild-to-Severe COVID-19. Physiol. Rep. 2021, 9, e14748. [Google Scholar] [CrossRef]
- Stanojevic, S.; Graham, B.L.; Cooper, B.G.; Thompson, B.R.; Carter, K.W.; Francis, R.W.; Hall, G.L.; Global Lung Function Initiative TLCO working group. Global Lung Function Initiative (GLI) TLCO Official ERS Technical Standards: Global Lung Function Initiative Reference Values for the Carbon Monoxide Transfer Factor for Caucasians. Eur. Respir. J. 2017, 50, 1700010. [Google Scholar] [CrossRef]
- Aparisi, Á.; Ladrón, R.; Ybarra-Falcón, C.; Tobar, J.; San Román, J.A. Exercise Intolerance in Post-Acute Sequelae of COVID-19 and the Value of Cardiopulmonary Exercise Testing- a Mini-Review. Front. Med. 2022, 9, 924819. [Google Scholar] [CrossRef]
- Hui, K.P.Y.; Ho, J.C.W.; Cheung, M.; Ng, K.; Ching, R.H.H.; Lai, K.; Kam, T.T.; Gu, H.; Sit, K.-Y.; Hsin, M.K.Y.; et al. SARS-CoV-2 Omicron Variant Replication in Human Bronchus and Lung Ex Vivo. Nature 2022, 603, 715–720. [Google Scholar] [CrossRef]
All Group (n = 153) | Group A (n = 79) | Group B (n = 74) | p-Value | |
---|---|---|---|---|
Female/male, n | 12/141 | 4/75 | 8/66 | ns |
Age, yrs | 47.0 ± 9.8 | 49.6 ± 9.8 | 44.2 ± 9.1 | 0.001 |
Height, cm | 169.8 ± 28.4 | 166.8 ± 38.8 | 173.0 ± 6.4 | ns |
Weight, kg | 85.2 ± 15.3 | 88.4 ± 14.8 | 81.8 ± 15.2 | 0.007 |
BMI, kg/m2 | 28.1 ± 4.4 | 28.6 ± 4.4 | 27.5 ± 4.3 | 0.095 |
Follow-up, days | 140 ± 88 | 159 ± 105 | 119 ± 66 | 0.006 |
Immunization status:
| 83 (54.2) 4 (2.6) 66 (43.1) 11 (7.1) | 76 (96.2) 3 (3.8) 0 (0.0) 0 (0.0) | 7 (9.5) 1 (1.4) 66 (89.2) 11 (14.9) | <0.0001 |
Hospitalization, n (%) | 66 (43.1) | 57 (72.2) | 9 (12.2) | <0.0001 |
Oxygen therapy, n (%) | 32 (20.9) | 28 (35.4) | 4 (5.4) | <0.0001 |
High-flow oxygen therapy or non-invasive ventilation | 8 (5.2) | 7 (8.9) | 1 (1.4) | ns |
SAH, n (%) | 26 (17.0) | 22 (27.8) | 4 (5.4) | 0.005 |
IHD, n (%) | 3 (2.0) | 2 (2.5) | 1 (1.4) | ns |
Metabolic disorders, n (%)
| 43 (28.1) 33 (21.6) 1 (0.7) 9 (5.9) | 14 (17.7) 8 (10.1) 1 (1.3) 5 (6.3) | 29 (39.2) 25 (33.8) 0 (0.0) 4 (5.4) | 0.005 |
asthma, n (%) | 11 (7.2) | 5 (6.3) | 6 (8.1) | ns |
Therapy:
| 44 (28.8) 66 (43.1) 51 (33.3) 26 (17.0) 5 (3.3) | 42 (53.2) 44 (55.7) 39 (49.4) 25 (31.2) 5 (6.3) | 4 (5.4) 22 (29.7) 12 (16.2) 1 (1.4) 0 (0.0) | <0.01 |
All Group (n = 153) | Group A (n = 79) | Group B (n = 74) | p-Value | |
---|---|---|---|---|
FEV1, l (FEV1, %pr) | 3.67 ± 0.62 (102.0 ± 13.2) | 3.61 ± 0.65 (99.8 ± 13.5) | 3.75 ± 0.57 (104.3 ± 12.6) | ns 0.04 |
FVC, l (FVC, %pr) | 4.60 ± 0.76 (104.1 ± 13.9) | 4.51 ± 0.82 (100.8 ± 14.8) | 4.70 ± 0.69 (107.4 ± 12.1) | ns 0.003 |
FEV1/FVC, % | 80.2 ± 6.2 | 80.2 ± 5.5 | 80.2 ± 7.0 | ns |
PEF l/min, | 9.8 ± 1.6 | 9.8 ± 1.6 | 9.8 ± 1.7 | ns |
DL’co-sb, %pr | 89.6 ± 15.3 | 86.7 ± 16.6 | 92.4 ± 13.4 | 0.023 |
DL’co-sb/VA, %pr | 98.5 ± 18.8 | 98.9 ± 18.1 | 98.1 ± 19.5 | ns |
6MWTD, m | 577 ± 107 | 549 ± 115 | 606 ± 90 | 0.001 |
SpO2 rest, % | 97.1 ± 1.4 | 96.9 ± 1.6 | 97.2 ± 1.1 | ns |
SpO2 nadir, % | 95.7 ± 1.6 | 95.1 ± 1.8 | 96.3 ± 1.0 | 0.001 |
HR rest, bpm | 82.9 ± 14.1 | 82.6 ± 14.4 | 83.2 ± 13.9 | ns |
HR max, bpm | 124.6 ± 17.7 | 113.1 ± 14.4 | 117.0 ± 15.1 | ns |
HG right hand, kg | 40.8 ± 9.5 | 41.6 ± 10.3 | 40.1 ± 8.6 | ns |
HG right hand, kg | 39.0 ± 9.6 | 39.3 ± 8.8 | 38.7 ± 10.3 | ns |
1′MSTS, n repetition | 34.1 ± 8.8 | 32.3 ± 8.5 | 35.4 ± 8.9 | 0.05 |
SpO2 rest, % | 97.6 ± 1.5 | 97.2 ± 1.5 | 97.8 ± 1.4 | 0.035 |
SpO2 Nadir, % | 96.9 ± 2.5 | 96.1 ± 3.5 | 97.4 ± 1.2 | 0.003 |
HR rest, bpm | 85.1 ± 16.0 | 89.0 ± 17.7 | 82.3 ± 14.1 | 0.023 |
HR max, bpm | 123.5 ± 18.7 | 122.8 ± 21.1 | 123.9 ± 17.0 | ns |
All Group (n = 153) | Group A (n = 79) | Group B (n = 74) | |
---|---|---|---|
Fever, n (%) | 89 (58) | 38 (48) | 51 (69) |
Cough, n (%) | 61 (40) | 22 (28) | 39 (53) |
Fatigue, n (%) | 46 (30) | 22 (28) | 22 (32) |
Dyspnea, n (%) | 41 (27) | 29 (37) | 12 (16) |
Headache, n (%) | 26 (17) | 8 (10) | 18 (24) |
Loss of taste, n (%) | 26 (17) | 14 (18) | 12 (16) |
Loss of smell, n (%) | 23 (15) | 14 (18) | 9 (12) |
Arthralgia/myalgia, n (%) | 25 (16) | 9 (11) | 16 (22) |
Sore throat, n (%) | 18 (12) | 4 (5) | 14 (19) |
Other symptoms, n (%) | 25 (16) | 14 (18) | 11 (15) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ora, J.; Rogliani, P.; Ferron, F.; Vignuoli, M.; Valentino, L.; Pontoni, G.; Di Ciuccio, F.; Ferrara, R.; Sciarra, T. Effects of SARS-CoV-2 on Pulmonary Function and Muscle Strength Testing in Military Subjects According to the Period of Infection: Cross-Sectional Study. Diagnostics 2023, 13, 1679. https://doi.org/10.3390/diagnostics13101679
Ora J, Rogliani P, Ferron F, Vignuoli M, Valentino L, Pontoni G, Di Ciuccio F, Ferrara R, Sciarra T. Effects of SARS-CoV-2 on Pulmonary Function and Muscle Strength Testing in Military Subjects According to the Period of Infection: Cross-Sectional Study. Diagnostics. 2023; 13(10):1679. https://doi.org/10.3390/diagnostics13101679
Chicago/Turabian StyleOra, Josuel, Paola Rogliani, Federica Ferron, Marilisa Vignuoli, Letizia Valentino, Giancarlo Pontoni, Francesca Di Ciuccio, Roberto Ferrara, and Tommaso Sciarra. 2023. "Effects of SARS-CoV-2 on Pulmonary Function and Muscle Strength Testing in Military Subjects According to the Period of Infection: Cross-Sectional Study" Diagnostics 13, no. 10: 1679. https://doi.org/10.3390/diagnostics13101679
APA StyleOra, J., Rogliani, P., Ferron, F., Vignuoli, M., Valentino, L., Pontoni, G., Di Ciuccio, F., Ferrara, R., & Sciarra, T. (2023). Effects of SARS-CoV-2 on Pulmonary Function and Muscle Strength Testing in Military Subjects According to the Period of Infection: Cross-Sectional Study. Diagnostics, 13(10), 1679. https://doi.org/10.3390/diagnostics13101679