Analysis of Temperatures Generated during Conventional Laser Irradiation of Root Canals—A Finite Element Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Obtaining the Virtual 3D Model of the Maxillary First Molar
2.2. Simulation of the Rotary Instrumentation of the Palatal Root Canal
2.3. Assignation of Physical Characteristics
2.4. Simulation of Conventional Laser Irradiation
- The sectors inside the root canal are 1 mm high and would be covered in 0.5 s. The heat flux, defined in Ansys, will act on each sector for 0.5 s.
- The diode laser operates with a power of 1 W during irradiation protocol. This power will be related to the surface of each sector, successively.
2.5. Calculation of Heat Flux
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Masilionyte, M.; Gutknecht, N. Outcome of 940-nm diode laser-assisted endodontic treatment of teeth with apical periodontitis: A retrospective study of clinical cases. Laser Dent. Sci. 2018, 2, 169–179. [Google Scholar] [CrossRef]
- Josic, U.; Mazzitelli, C.; Maravic, T.; Fidler, A.; Breschi, L.; Mazzoni, A. Biofilm in Endodontics: In Vitro Cultivation Possibilities, Sonic-, Ultrasonic—and Laser—Assisted Removal Techniques and Evaluation of the Cleaning Efficacy. Polymers 2022, 14, 1334. [Google Scholar] [CrossRef] [PubMed]
- Nasher, R.; Hilgers, R.D.; Gutknecht, N. Debris and Smear Layer Removal in Curved Root Canals Using the Dual Wavelength Er,Cr:YSGG/Diode 940 nm Laser and the XP-Endoshaper and Finisher Technique. Photobiomodul. Photomed. Laser Surg. 2020, 38, 174–180. [Google Scholar] [CrossRef]
- Nisar, P.; Katge, F.; Bhanushali, P. Comparative in vitro evaluation of remaining dentine thickness following instrumentation with hand and rotary endodontic files during pulpectomy in primary molars: A systematic review. Eur. Arch. Paediatr. Dent. 2023, 24, 15–32. [Google Scholar] [CrossRef] [PubMed]
- Elgendy, A.Y. Comparative Assessment of The Fracture Resistance of Teeth Instrumented by Two Different Nickel Titanium Rotary Systems. Oral Health Dent. Sci. 2022, 6, 1–5. [Google Scholar] [CrossRef]
- Nassar, S.; Shetty, H.K.; Nair, P.M.S.; Gowri, S.; Jayaprakash, K. Comparative Evaluation of Fracture Resistance of Endodontically Treated Bicuspids Instrumented with Hand Files, TruNatomy, ProTaper Next, ProTaper Gold, and WaveOne—An In vitro Study. J. Pharm. Bioallied Sci. 2022, 14, S600–S604. [Google Scholar] [CrossRef] [PubMed]
- Gambarini, G.; Miccoli, G.; D’Angelo, M.; Seracchiani, M.; Obino, F.V.; Reda, R.; Testarelli, L. The relevance of operative torque and torsional resistance of nickel-titanium rotary instruments: A preliminary clinical investigation. Saudi Endod. J. 2020, 10, 260–264. [Google Scholar]
- Coluzzi, D.J.; Parke, S.P.A. Lasers in Dentistry–Current Concepts; Springer International Publishing AG: Cham, Switzerland, 2017. [Google Scholar] [CrossRef]
- Haapasalo, M.; Shen, Y.; Wang, Z.; Gao, Y. Irrigation in endodontics. Br. Dent. J. 2014, 216, 299–303. [Google Scholar] [CrossRef] [PubMed]
- Schulte-Lünzum, R.; Gutknecht, N.; Conrads, G.; Franzen, R. The Impact of a 940 nm Diode Laser with Radial Firing Tip and Bare End Fiber Tip on Enterococcus faecalis in the Root Canal Wall Dentin of Bovine Teeth: An In Vitro Study. Photomed. Laser Surg. 2017, 35, 357–363. [Google Scholar] [CrossRef]
- Beer, F.; Buchmair, A.; Wernisch, J.; Georgopoulos, A.; Moritz, A. Comparison of two diode lasers on bactericidity in root canals—An in vitro study. Lasers Med. Sci. 2012, 27, 361–364. [Google Scholar] [CrossRef] [PubMed]
- Berutti, E.; Marini, R.; Angeretti, A. Penetration ability of different irrigants into dentinal tubules. J. Endod. 1997, 23, 725–727. [Google Scholar] [CrossRef]
- Dai, S.; Xiao, G.; Dong, N. Bactericidal effect of a diode laser on Enterococcus faecalis in human primary teeth—An in vitro study. BMC Oral Health 2018, 18, 154. [Google Scholar] [CrossRef] [PubMed]
- Lagemann, M.; George, R.; Chai, L.; Walsh, L.J. Activation of ethylenediaminetetraacetic acid by a 940 nm diode laser for enhanced removal of smear layer. Aust. Endod. J. 2014, 40, 72–75. [Google Scholar] [CrossRef] [PubMed]
- Gutknecht, N.; Nuebler-Moritz, M.; Burghardt, S.F.; Lampert, F. The efficiency of root canal disinfection using a holmium:yttrium-aluminum-garnet laser in vitro. J. Clin. Laser Med. Surg. 1997, 15, 75–78. [Google Scholar] [CrossRef] [PubMed]
- Gutknecht, N.; Moritz, A.; Conrads, G.; Sievert, T.; Lampert, F. Bactericidal effect of the Nd:YAG laser in in vitro root canals. J. Clin. Laser Med. Surg. 1996, 14, 77–80. [Google Scholar] [CrossRef] [PubMed]
- Hardee, M.W.; Miserendino, L.J.; Kos, W.; Walia, H. Evaluation of the antibacterial effects of intracanal Nd:YAG laser irradiation. J. Endod. 1994, 20, 377–380. [Google Scholar] [CrossRef] [PubMed]
- Pirnat, S.; Lukac, M.; Alojz, I. Study of the direct bactericidal effect of Nd:YAG and diode laser parameters used in endodontics on pigmented and nonpigmented bacteria. Lasers Med. Sci. 2011, 26, 755–761. [Google Scholar] [CrossRef]
- Olivi, G.; De Moor, R.; Divito, E. Lasers in Endodontics—Scientific Background and Clinical Applications; Springer International Publishing: Cham, Switzerland, 2016. [Google Scholar]
- George, R.; Walsh, L.J. Apical extrusion of root canal irrigants when using Er:YAG and Er,Cr:YSGG lasers with optical fibers: An in vitro dye study. J. Endod. 2008, 34, 706–708. [Google Scholar] [CrossRef] [PubMed]
- George, R.; Meyers, I.A.; Walsh, L.J. Laser activation of endodontic irrigants with improved conical laser fiber tips for removing smear layer in the apical third of the root canal. J. Endod. 2008, 34, 1524–1527. [Google Scholar] [CrossRef]
- Vidas, J.; Snjaric, D.; Braut, A. Comparison of apical irrigant solution extrusion among conventional and laser-activated endodontic irrigation. Lasers Med. Sci. 2020, 35, 205–211. [Google Scholar] [CrossRef] [PubMed]
- Morsy, D.A.; Negm, M.; Diab, A.; Ahmed, G. Postoperative pain and antibacterial effect of 980 nm diode laser versus conventional endodontic treatment in necrotic teeth with chronic periapical lesions: A randomized control trial. F1000Research 2018, 7, 1795. [Google Scholar] [CrossRef]
- Wang, X.; Sun, Y.; Kimura, Y.; Kinoshita, J.; Ishizaki, N.T.; Matsumoto, K. Effects of diode laser irradiation on smear layer removal from root canal walls and apical leakage after obturation. Lasers Med. Sci. 2005, 20, 99–103. [Google Scholar] [CrossRef] [PubMed]
- Haidary, D.; Franzen, R.; Gutknecht, N. Root Surface Temperature Changes During Root Canal Laser Irradiation with Dual Wavelength Laser (940 and 2780 nm): A Preliminary Study. Photomed. Laser Surg. 2016, 34, 336–344. [Google Scholar] [CrossRef]
- Franzen, R.; Rashidisangsary, B.; Ozturan, S.; Vanweersch, L.; Gutknecht, N. Intrapulpal temperature changes during root surface irradiation with dual-wavelength laser (2780 and 940 nm): In vitro study. J. Biomed. Opt. 2015, 20, 018002. [Google Scholar] [CrossRef]
- de Freitas, P.M. Lasers in Dentistry Guide for Clinical Practice; Wiley Blackwell: Hoboken, NJ, USA, 2015. [Google Scholar]
- Nageswar, R. Advanced Endodontics, 1st ed.; Jaypee Brothers Medical Publishers: London, UK, 2009. [Google Scholar]
- Castellucci, A. Endodontics; Il Tridente: Venice, Italy, 2004. [Google Scholar]
- Periodontal Ligament. Available online: https://www.sciencedirect.com/topics/immunology-and-microbiology/periodontal-ligament (accessed on 26 January 2023).
- Cen, R.; Wang, R.; Cheung, G.S.P. Periodontal Blood Flow Protects the Alveolar Bone from Thermal Injury during Thermoplasticized Obturation: A Finite Element Analysis Study. J. Endod. 2018, 44, 139–144. [Google Scholar] [CrossRef]
- Lin, M.; Xu, F.; Lu, T.J.; Bai, B.F. A review of heat transfer in human tooth—experimental characterization and mathematical modeling. Dent. Mater. 2010, 26, 501–513. [Google Scholar] [CrossRef]
- Gutknecht, N.; Franzen, R.; Meister, J.; Vanweersch, L.; Mir, M. Temperature evolution on human teeth root surface after diode laser assisted endodontic treatment. Lasers Med. Sci. 2005, 20, 99–103. [Google Scholar] [CrossRef] [PubMed]
- Gentile, M.; Straughan, B. Bidispersive thermal convection. Int. J. Heat Mass Transfer. 2017, 114, 837–840. [Google Scholar] [CrossRef]
- Richard, J.A.; Stevens, M.; Erwin, P. The unifying theory of scaling in thermal convection: The updated prefactors. J. Fluid Mech. 2013, 730, 295–308. [Google Scholar]
- Shishkina, O.; Stevens, R.J.A.M.; Grossmann, S.; Lohse, D. Boundary layer structure in turbulent thermal convection and its consequences for the required numerical resolution. New J. Physics 2010, 12, 075022. [Google Scholar] [CrossRef]
- Anagnostaki, E.; Mylona, V.; Parker, S.; Lynch, E.; Grootveld, M. Systematic Review on the Role of Lasers in Endodontic Therapy: Valuable Adjunct Treatment? Dent. J. 2020, 8, 63. [Google Scholar] [CrossRef] [PubMed]
- Sippus, J.; Gutknecht, N. Deep disinfection and tubular smear layer removal with Er:YAG using photon-induced photoacoustic streaming (PIPS) contra laser-activated irrigation (LAI) technics. Laser Dent. Sci. 2019, 3, 37–42. [Google Scholar] [CrossRef]
- Katalinić, I.; Budimir, A.; Bošnjak, Z.; Jakovljević, S.; Anić, I. The photo-activated and photo-thermal effect of the 445/970 nm diode laser on the mixed biofilm inside root canals of human teeth in vitro: A pilot study. Photodiagnosis Photodyn. Ther. 2019, 26, 277–283. [Google Scholar] [CrossRef] [PubMed]
- Silva, L.A.B.D.; Lopes, Z.M.S.; Sá, R.C.; Novaes Júnior, A.B.; Romualdo, P.C.; Lucisano, M.P.; Nelson-Filho, P.; Silva, R.A.B.D. Comparison of apical periodontitis repair in endodontic treatment with calcium hydroxide-dressing and aPDT. Braz. Oral Res. 2019, 33, e092. [Google Scholar] [CrossRef] [PubMed]
- Sood, N.; Malhotra, J.P.S. Evaluation of antimicrobial efficacy of diode lasers—An invitro study. Int. J. Res. Health Allied Sci. 2019, 5, 111–113. [Google Scholar]
- Mitic, D.; Cetenovic, B.; Jovanovic, I.; Gjorgievska, E.; Popović, B.; Marković, D. Diode Laser Irradiation in Endodontic Therapy through Cycles—In vitro Study. Balk. J. Dent. Med. 2017, 21, 108–111. [Google Scholar] [CrossRef]
- Saydjari, Y.; Kuypers, T.; Gutknecht, N. Laser Application in Dentistry: Irradiation Effects of Nd:YAG 1064 nm and Diode 810 nm and 980 nm in Infected Root Canals-A Literature Overview. Biomed Res. Int. 2016, 2016, 8421656. [Google Scholar] [CrossRef]
- Gutknecht, N.; Al-Karadaghi, T.S.; Al-Maliky, M.A.; Conrads, G.; Franzen, R. The Bactericidal Effect of 2780 and 940 nm Laser Irradiation on Enterococcus faecalis in Bovine Root Dentin Slices of Different Thicknesses. Photomed. Laser Surg. 2016, 34, 11–16. [Google Scholar] [CrossRef] [PubMed]
- Chiniforush, N.; Pourhajibagher, M.; Shahabi, S.; Bahador, A. Clinical Approach of High Technology Techniques for Control and Elimination of Endodontic Microbiota. J. Lasers Med. Sci. 2015, 6, 139–150. [Google Scholar] [CrossRef] [PubMed]
- Al-Zand, S.A.; Al-Maliky, M.A.; Mahmood, A.S.; Al-Karadaghy, T.S. Temperature elevation investigations on the external root surface during irradiation with 940 nm diode laser in root canal treatment. Saudi Endod. J. 2018, 8, 253. [Google Scholar] [CrossRef]
- Al-Karadaghi, T.S.; Gutknecht, N.; Jawad, H.A.; Vanweersch, L.; Franzen, R. Evaluation of Temperature Elevation During Root Canal Treatment with Dual Wavelength Laser: 2780 nm Er,Cr:YSGG and 940 nm Diode. Photomed. Laser Surg. 2015, 33, 460–466. [Google Scholar] [CrossRef]
- Falkenstein, F.; Gutknecht, N.; Franzen, R. Analysis of laser transmission and thermal effects on the inner root surface during periodontal treatment with a 940-nm diode laser in an in vitro pocket model. J. Biomed. Opt. 2014, 19, 128002. [Google Scholar] [CrossRef] [PubMed]
- Strakas, D.; Franzen, R.; Kallis, A.; Vanweersch, L.; Gutknecht, N. A comparative study of temperature elevation on human teeth root surfaces during Nd:YAG laser irradiation in root canals. Lasers Med. Sci. 2013, 28, 1441–1444. [Google Scholar] [CrossRef]
- Pradhan, S.; Karnik, R.R. Temperature Rise on External Root Surface during Laser Endodontic Therapy using 940 nm Diode Laser: An in vitro Study. IIJOLD 2011, 1, 29–35. [Google Scholar] [CrossRef]
- Hmud, R.; Kahler, W.A.; Walsh, L.J. Temperature changes accompanying near infrared diode laser endodontic treatment of wet canals. J. Endod. 2010, 36, 908–911. [Google Scholar] [CrossRef] [PubMed]
- Zhu, L.; Tolba, M.; Arola, D.; Salloum, M.; Meza, F. Evaluation of effectiveness of Er,Cr:YSGG laser for root canal disinfection: Theoretical simulation of temperature elevations in root dentin. J. Biomech. Eng. 2009, 131, 071004. [Google Scholar] [CrossRef] [PubMed]
- Abad-Gallegos, M.; Arnabat-Dominguez, J.; Espana-Tost, A.; Berini-Aytes, L.; Gay-Escoda, C. In vitro evaluation of the temperature increment at the external root surface after Er,Cr:YSGG laser irradiation of the root canal. Med. Oral Patol. Oral Cir. Bucal. 2009, 14, e658–e662. [Google Scholar] [CrossRef]
- Alfredo, E.M.M.; Sousa-Neto, M.D.; Brugnera-Junior, A.; Silva-Sousa, Y.T.C. Temperature variation at the external root surface during 980-nm diode laser irradiation in the root canal. J. Dent. 2008, 36, 529–534. [Google Scholar] [CrossRef]
- Zhou, X.; Chen, Y.; Wei, X.; Liu, L.; Zhang, F.; Shi, Y.; Wu, W. Heat transfers to periodontal tissues and gutta-percha during thermoplasticized root canal obturation in a finite element analysis model. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endod. 2010, 110, 257–263. [Google Scholar] [CrossRef]
- Kanumuru, N.R.; Subbaiah, R. Bacterial Efficacy of Ca(oH)2 Against E. faecalis Compared with three Dental Lasers on Root Canal Dentin- An Invitro Study. J. Clin. Diagn Res. 2014, 8, ZC135–ZC137. [Google Scholar] [CrossRef]
Virtual Model Component | Tissue | Density [kg/m3] | Thermal Conductivity [W/m·°C] | Mass Heat Capacity [J/kg·°C] |
---|---|---|---|---|
Enamel structure | Enamel | 2958 | 0.93 | 710 |
Dentine structure | Dentine | 2140 | 0.58 | 1590 |
Periodontal ligament structure | Periodontal ligament | 1100 | 0.58 | 4820 |
Alveolar bone structure | Alveolar bone | 2310 | 1 | 2650 |
Tips Positions | Irradiated Sector | Duration of Action [s] |
---|---|---|
1 | Sector 1 | 0–0.5 |
2 | Sector 1 | 0.5–1 |
3 | Sector 1 | 1–1.5 |
4 | Sector 1 | 1.5–2 |
5 | Sector 2 | 2–2.5 |
6 | Sector 3 | 2.5–3 |
7 | Sector 4 | 3–3.5 |
8 | Sector 5 | 3.5–4 |
9 | Sector 6 | 4–4.5 |
10 | Sector 7 | 4.5–5 |
11 | Sector 8 | 5–5.5 |
12 | Sector 9 | 5.5–6 |
13 | Sector 10 | 6–6.5 |
14 | Sector 11 | 6.5–7 |
Duration of Action [s] | Type of Action |
---|---|
0.0–7.0 | Laser irradiation |
7.0–17.0 | Pause |
17.0–24.0 | Laser irradiation |
24.0–34.0 | Pause |
34.0–41.0 | Laser irradiation |
Sector | Sector Area [mm2] | The Value of the Heat Flux [W/m2] | Duration of Treatment Cycle [s] |
---|---|---|---|
1 | 0.96463 | 1,036,667 | 0–0.5 |
1 | 0.96463 | 1,036,667 | 0.5–1 |
1 | 0.96463 | 1,036,667 | 1–1.5 |
1 | 0.96463 | 1,036,667 | 1.5–2 |
2 | 1.63 | 613,496.9 | 2–2.5 |
3 | 1.81 | 552,486.2 | 2.5–3 |
4 | 2.12 | 471,698.1 | 3–3.5 |
5 | 2.28 | 438,596.5 | 3.5–4 |
6 | 2.43 | 411,522.6 | 4–4.5 |
7 | 2.6 | 384,615.4 | 4.5–5 |
8 | 2.75 | 363,636.4 | 5–5.5 |
9 | 2.91 | 343,642.6 | 5.5–6 |
10 | 3.07 | 325,732.9 | 6–6.5 |
11 | 3.22 | 310,559 | 6.5–7 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Stănuși, A.Ș.; Popa, D.L.; Ionescu, M.; Cumpătă, C.N.; Petrescu, G.S.; Ţuculină, M.J.; Dăguci, C.; Diaconu, O.A.; Gheorghiță, L.M.; Stănuşi, A. Analysis of Temperatures Generated during Conventional Laser Irradiation of Root Canals—A Finite Element Study. Diagnostics 2023, 13, 1757. https://doi.org/10.3390/diagnostics13101757
Stănuși AȘ, Popa DL, Ionescu M, Cumpătă CN, Petrescu GS, Ţuculină MJ, Dăguci C, Diaconu OA, Gheorghiță LM, Stănuşi A. Analysis of Temperatures Generated during Conventional Laser Irradiation of Root Canals—A Finite Element Study. Diagnostics. 2023; 13(10):1757. https://doi.org/10.3390/diagnostics13101757
Chicago/Turabian StyleStănuși, Adrian Ștefan, Dragoş Laurenţiu Popa, Mihaela Ionescu, Cristian Niky Cumpătă, Gabriel Sebastian Petrescu, Mihaela Jana Ţuculină, Constantin Dăguci, Oana Andreea Diaconu, Lelia Mihaela Gheorghiță, and Andreea Stănuşi. 2023. "Analysis of Temperatures Generated during Conventional Laser Irradiation of Root Canals—A Finite Element Study" Diagnostics 13, no. 10: 1757. https://doi.org/10.3390/diagnostics13101757
APA StyleStănuși, A. Ș., Popa, D. L., Ionescu, M., Cumpătă, C. N., Petrescu, G. S., Ţuculină, M. J., Dăguci, C., Diaconu, O. A., Gheorghiță, L. M., & Stănuşi, A. (2023). Analysis of Temperatures Generated during Conventional Laser Irradiation of Root Canals—A Finite Element Study. Diagnostics, 13(10), 1757. https://doi.org/10.3390/diagnostics13101757