Lot-to-Lot Variance in Immunoassays—Causes, Consequences, and Solutions
Abstract
:1. Introduction
2. Why LTLV Occurs?
2.1. Quality Fluctuation of Raw Materials
2.1.1. Antigens
2.1.2. Enzymes
2.1.3. Antibodies
2.1.4. Antibody and Antigen Conjugates (Enzyme, Biotin, Fluor, etc.)
2.1.5. Kit Controls and Calibrators
2.1.6. Buffer/Ultrapure Water
2.1.7. Others (Containers, Microtiter Plates, etc.)
2.2. Deviation in the Production Process
2.2.1. People/Men
2.2.2. Products/Materials
2.2.3. Procedures/Methods
2.2.4. Equipment and Premises/Machines and Environment
2.3. Unstable Analyte Epitope
2.3.1. Proteinase Cleavage of the Analyte
2.3.2. Glycosylation
3. How to Minimize LTLV?
3.1. Antigen Design
3.2. Critical Quality Attributes of Antigen and Antibody
3.2.1. Minimize Antigen and Antibody Aggregation
3.2.2. Regularly Monitor the pI of Antigen and Antibody
3.2.3. Accurate Quantification of Antigen and Antibody
3.2.4. Purity Determination of Antigen and Antibody
3.2.5. Homogeneity Determination of Antigen and Antibody
3.2.6. Maximize the Antigen and Antibody Storage Stability
3.2.7. Oriented Conjugation on Antigen and Antibody
3.3. Kit Control and QC-Panel
3.4. Consistent Preparation Parameters for Buffer and Solution
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Thompson, S.; Chesher, D. Lot-to-Lot Variation. Clin. Biochem. Rev. 2018, 39, 51–60. [Google Scholar] [PubMed]
- Don-Wauchope, A.C. Lot change for reagents and calibrators. Clin. Biochem. 2016, 49, 1211–1212. [Google Scholar] [CrossRef] [PubMed]
- Thaler, M.A.; Iakoubov, R.; Bietenbeck, A.; Luppa, P.B. Clinically relevant lot-to-lot reagent difference in a commercial immunoturbidimetric assay for glycated hemoglobin A1c. Clin. Biochem. 2015, 48, 1167–1170. [Google Scholar] [CrossRef] [PubMed]
- Böttcher, S.; van der Velden, V.H.J.; Villamor, N.; Ritgen, M.; Flores-Montero, J.; Escobar, H.M.; Kalina, T.; Brüggemann, M.; Grigore, G.; Martin-Ayuso, M.; et al. Lot-to-lot stability of antibody reagents for flow cytometry. J. Immunol. Methods 2019, 475, 112294. [Google Scholar] [CrossRef]
- Kim, H.S.; Kang, H.J.; Whang, D.H.; Lee, S.G.; Park, M.J.; Park, J.Y.; Lee, K.M. Analysis of reagent lot-to-lot comparability tests in five immunoassay items. Ann. Clin. Lab. Sci. 2012, 42, 165–173. [Google Scholar]
- Sikaris, K.; Pehm, K.; Wallace, M.; Picone, D.; Frydenberg, M. Review of serious failures in reported test results for prostate-specific antigen (PSA) testing of patients by SA Pathology. In Australian Commission on Safety and Quality in Health Care; Australian Government: Canberra, Australia, 2016; p. 22. [Google Scholar]
- de Marco, A.; Berrow, N.; Lebendiker, M.; Garcia-Alai, M.; Knauer, S.H.; Lopez-Mendez, B.; Matagne, A.; Parret, A.; Remans, K.; Uebel, S.; et al. Quality control of protein reagents for the improvement of research data reproducibility. Nat. Commun. 2021, 12, 8–11. [Google Scholar] [CrossRef]
- Finn, T.E.; Nunez, A.C.; Sunde, M.; Easterbrook-Smith, S.B. Serum albumin prevents protein aggregation and amyloid formation and retains chaperone-like activity in the presence of physiological ligands. J. Biol. Chem. 2012, 287, 21530–21540. [Google Scholar] [CrossRef]
- Vagenende, V.; Yap, M.G.S.; Trout, B.L. Mechanisms of protein stabilization and prevention of protein aggregation by glycerol. Biochemistry 2009, 48, 11084–11096. [Google Scholar] [CrossRef]
- Deshpande, S.S. Enzyme Immunoassays: From Concept to Product Development; Kluwer Academic Publishers: Norwell, MA, USA, 1996. [Google Scholar]
- Grey, H.M.; Hirst, J.W.; Cohn, M. A New Mouse Immunoglobulin: IgG3. J. Exp. Med. 1971, 133, 289–304. [Google Scholar] [CrossRef]
- Abdelmoula, M.; Spertini, F.; Shibata, T.; Gyotoku, Y.; Luzuy, S.; Lambert, P.H.; Izui, S. IgG3 is the major source of cryoglobulins in mice. J. Immunol. 1989, 143, 526–532. [Google Scholar] [CrossRef]
- Klaus, T.; Bzowska, M.; Kulesza, M.; Kabat, A.M.; Jemioła-Rzemińska, M.; Czaplicki, D.; Makuch, K.; Jucha, J.; Karabasz, A.; Bereta, J. Agglutinating mouse IgG3 compares favourably with IgMs in typing of the blood group B antigen: Functionality and stability studies. Sci. Rep. 2016, 6, 1–16. [Google Scholar] [CrossRef] [PubMed]
- Pehrsson, M.; Manon-Jensen, T.; Sun, S.; Villesen, I.F.; Castañé, H.; Joven, J.; Patel, K.; Goodman, Z.; Nielsen, M.J.; Bay-Jensen, A.C.; et al. An MMP-degraded and cross-linked fragment of type III collagen as a non-invasive biomarker of hepatic fibrosis resolution. Liver Int. 2022, 42, 1605–1617. [Google Scholar] [CrossRef]
- Life Technologies A/S. Use of Diglyme as a Process Chemical in the Manufacture of MP. European Chemicals Agency. 2016, pp. 1–30. Available online: https://echa.europa.eu/documents/10162/06d37c3c-3276-415d-b807-45fe913129f4 (accessed on 17 February 2016).
- Roche Diagnostics GmbH. Use of Diglyme as a Process Chemical in the Manufacture of One Specific Type of Dynabeads® Used in Immunodiagnostic Assays (IVD). European Chemicals Agency. 2016, pp. 1–22. Available online: https://echa.europa.eu/documents/10162/afd8cb1c-027f-4c04-8a33-faa415116c3e (accessed on 17 February 2016).
- Roche Diagnostics GmbH. Opinion on an Application for Authorisation for Use of Diglyme as a Process Chemical in the Manufacture of One Specific Type of Dynabeads® Used in Immunodiagnostic Assays (In Vitro Diagnostic). European Chemicals Agency. 2017, pp. 1–34. Available online: https://echa.europa.eu/documents/10162/56ad4d1b-4238-640d-5ed0-b38dc6f320b5 (accessed on 6 June 2017).
- Semenov, A.G.; Feygina, E.E. Standardization of BNP and NT-proBNP Immunoassays in Light of the Diverse and Complex Nature of Circulating BNP-Related Peptides, 1st ed.; Elsevier Inc.: Amsterdam, The Netherlands, 2018. [Google Scholar] [CrossRef]
- Brandt, I.; Lambeir, A.-M.; Ketelslegers, J.-M.; Vanderheyden, M.; Scharpé, S.; De Meester, I. Dipeptidyl-Peptidase IV Converts Intact B-Type Natriuretic Peptide into Its des-SerPro Form. Clin. Chem. 2006, 52, 82–87. [Google Scholar] [CrossRef]
- Norman, J.A.; Little, D.; Bolgar, M.; Di Donato, G. Degradation of brain natriuretic peptide by neutral endopeptidase: Species specific sites of proteolysis determined by mass spectrometry. Biochem. Biophys. Res. Commun. 1991, 175, 22–30. [Google Scholar] [CrossRef]
- Kenny, A.J.; Bourne, A.; Ingram, J. Hydrolysis of human and pig brain natriuretic peptides, urodilatin, C-type natriuretic peptide and some C-receptor ligands by endopeptidase-24.11. Biochem. J. 1993, 291, 83–88. [Google Scholar] [CrossRef]
- Ralat, L.A.; Guo, Q.; Ren, M.; Funke, T.; Dickey, D.M.; Potter, L.R.; Tang, W.J. Insulin-degrading Enzyme Modulates the Natriuretic Peptide-mediated Signaling Response. J. Biol. Chem. 2011, 286, 4670–4679. [Google Scholar] [CrossRef] [PubMed]
- Katrukha, I.A.; Kogan, A.E.; Vylegzhanina, A.V.; Kharitonov, A.V.; Tamm, N.N.; Filatov, V.L.; Bereznikova, A.V.; Koshkina, E.V.; Katrukha, A.G. Full-size cardiac Troponin I and its proteolytic fragments in blood of patients with acute myocardial infarction: Antibody selection for assay development. Clin. Chem. 2018, 64, 1104–1112. [Google Scholar] [CrossRef] [PubMed]
- Vylegzhanina, A.V.; Kogan, A.E.; Katrukha, I.A.; Koshkina, E.V.; Bereznikova, A.V.; Filatov, V.L.; Bloshchitsyna, M.N.; Bogomolova, A.P.; Katrukha, A.G. Full-size and partially truncated cardiac troponin complexes in the blood of patients with acute myocardial infarction. Clin. Chem. 2019, 65, 882–892. [Google Scholar] [CrossRef]
- Vasile, V.C.; Jaffe, A.S. Natriuretic peptides and analytical barriers. Clin. Chem. 2017, 63, 50–58. [Google Scholar] [CrossRef]
- Semenov, A.G.; Tamm, N.N.; Apple, F.S.; Schulz, K.M.; Love, S.A.; Ler, R.; Feygina, E.E.; Katrukha, A.G. Searching for a BNP standard: Glycosylated proBNP as a common calibrator enables improved comparability of commercial BNP immunoassays. Clin. Biochem. 2017, 50, 181–185. [Google Scholar] [CrossRef]
- Saenger, A.K.; Rodriguez-Fraga, O.; Ler, R.; Ordonez-Llanos, J.; Jaffe, A.S.; Goetze, J.P.; Apple, F.S. Specificity of B-type natriuretic peptide assays: Cross-reactivity with different BNP, NT-proBNP, and proBNP peptides. Clin. Chem. 2017, 63, 351–358. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Semenov, A.G.; Feygina, E.E.; Yang, C.; Wang, N.; Chen, C.; Hu, X.; Ni, X.; Zhang, Z. Diagnostic utility of total NT-proBNP testing by immunoassay based on antibodies targeting glycosylation-free regions of NT-proBNP. Clin. Chem. Lab. Med. 2022, 61, 485–493. [Google Scholar] [CrossRef] [PubMed]
- Seifert, I.; Bregolin, A.; Fissore, D.; Friess, W. The Influence of Arginine and Counter-Ions: Antibody Stability during Freeze-Drying. J. Pharm. Sci. 2021, 110, 2017–2027. [Google Scholar] [CrossRef] [PubMed]
- Barnett, G.V.; Razinkov, V.I.; Kerwin, B.A.; Blake, S.; Qi, W.; Curtis, R.A.; Roberts, C.J. Osmolyte Effects on Monoclonal Antibody Stability and Concentration-Dependent Protein Interactions with Water and Common Osmolytes. J. Phys. Chem. B 2016, 120, 3318–3330. [Google Scholar] [CrossRef]
- Moelbert, S.; Normand, B.; De Los Rios, P. Kosmotropes and chaotropes: Modelling preferential exclusion, binding and aggregate stability. Biophys. Chem. 2004, 112, 45–57. [Google Scholar] [CrossRef]
- Rajan, R.; Ahmed, S.; Sharma, N.; Kumar, N.; Debas, A.; Matsumura, K. Review of the current state of protein aggregation inhibition from a materials chemistry perspective: Special focus on polymeric materials. Mater. Adv. 2021, 2, 1139–1176. [Google Scholar] [CrossRef]
- Site, G. The effect of pH on the aggregation of biotinylated antibodies and on the signal-to-noise observed in immunoassays utilizing biotinylated antibodies. J. Immunol. Methods 1987, 103, 1–7. [Google Scholar]
- Raynal, B.; Lenormand, P.; Baron, B.; Hoos, S.; England, P. Quality assessment and optimization of purified protein samples: Why and how? Microb. Cell Fact. 2010, 13, 180. [Google Scholar] [CrossRef]
- Pace, C.N.; Vajdos, F.; Fee, L.; Grimsley, G.; Gray, T. How to measure and predict the molar absorption coefficient of a protein. Protein Sci. 1995, 4, 2411–2423. [Google Scholar] [CrossRef]
- Noble, J.E. Quantification of Protein Concentration Using UV Absorbance and Coomassie Dyes, 1st ed.; Elsevier Inc.: Amsterdam, The Netherlands, 2014; Volume 536, ISBN 9780124200708. [Google Scholar]
- Thiagarajan, G.; Semple, A.; James, J.K.; Cheung, J.K.; Shameem, M. A comparison of biophysical characterization techniques in predicting monoclonal antibody stability. MAbs 2016, 8, 1088–1097. [Google Scholar] [CrossRef]
- Nielsen, M.J.; Nedergaard, A.F.; Sun, S.; Veidal, S.S.; Larsen, L.; Zheng, Q.; Suetta, C.; Henriksen, K.; Christiansen, C.; Karsdal, M.A.; et al. The neo-epitope specific PRO-C3 ELISA measures true formation of type III collagen associated with liver and muscle parameters. Am. J. Transl. Res. 2013, 5, 303–315. Available online: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3633973&tool=pmcentrez&rendertype=abstract (accessed on 19 April 2013). [PubMed]
- Sun, S.; Henriksen, K.; Karsdal, M.A.; Byrjalsen, I.; Rittweger, J.; Armbrecht, G.; Belavy, D.L.; Felsenberg, D.; Nedergaard, A.F. Collagen Type III and VI Turnover in Response to Long-Term Immobilization. PLoS ONE 2015, 10, e0144525. [Google Scholar] [CrossRef] [PubMed]
- Walsh, S.J.; Bargh, J.D.; Dannheim, F.M.; Hanby, A.R.; Seki, H.; Counsell, A.J.; Ou, X.; Fowler, E.; Ashman, N.; Takada, Y.; et al. Site-selective modification strategies in antibody-drug conjugates. Chem. Soc. Rev. 2021, 50, 1305–1353. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Z.; Ramakrishnan, B.; Li, J.; Wang, Y.; Feng, Y.; Prabakaran, P.; Colantonio, S.; Dyba, M.A.; Qasba, P.K.; Dimitrov, D.S. Site-specific antibody-drug conjugation through an engineered glycotransferase and a chemically reactive sugar. MAbs 2014, 6, 1190–1200. [Google Scholar] [CrossRef] [PubMed]
- Lou, D.; Fan, L.; Cui, Y.; Zhu, Y.; Gu, N.; Zhang, Y. Fluorescent Nanoprobes with Oriented Modified Antibodies to Improve Lateral Flow Immunoassay of Cardiac Troponin i. Anal. Chem. 2018, 90, 6502–6508. [Google Scholar] [CrossRef]
- Lou, D.; Ji, L.; Fan, L.; Ji, Y.; Gu, N.; Zhang, Y. Antibody-Oriented Strategy and Mechanism for the Preparation of Fluorescent Nanoprobes for Fast and Sensitive Immunodetection. Langmuir 2019, 35, 4860–4867. [Google Scholar] [CrossRef]
- Miller, W.L.; Phelps, M.A.; Wood, C.M.; Schellenberger, U.; Van Le, A.; Perichon, R.; Jaffe, A.S. Comparison of Mass Spectrometry and Clinical Assay Measurements of Circulating Fragments of B-Type Natriuretic Peptide in Patients With Chronic Heart Failure. Circ. Hear. Fail. 2011, 4, 355–360. [Google Scholar] [CrossRef]
- Vesper, H.W.; Miller, W.G.; Myers, G.L. Reference materials and commutability. Clin. Biochem. Rev. 2007, 28, 139–147. Available online: https://pubmed.ncbi.nlm.nih.gov/18392124/ (accessed on 1 November 2007).
- Katzman, B.M.; Ness, K.M.; Algeciras-Schimnich, A. Evaluation of the CLSI EP26-A protocol for detection of reagent lot-to-lot differences. Clin. Biochem. 2017, 50, 768–771. [Google Scholar] [CrossRef]
- Kim, S.; Chang, J.; Kim, S.K.; Park, S.; Huh, J.; Jeong, T.D. Sample size and rejection limits for detecting reagent lot variability: Analysis of the applicability of the Clinical and Laboratory Standards Institute (CLSI) EP26-A protocol to real-world clinical chemistry data. Clin. Chem. Lab. Med. 2021, 59, 127–138. [Google Scholar] [CrossRef]
- Braga, F.; Pasqualetti, S.; Aloisio, E.; Panteghini, M. The internal quality control in the traceability era. Clin. Chem. Lab. Med. 2021, 59, 291–300. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Tan, C.H.; Loh, T.P.; Badrick, T. Detecting long-term drift in reagent lots. Clin. Chem. 2015, 61, 1292–1298. [Google Scholar] [CrossRef] [PubMed]
- Cavalier, E.; Lukas, P.; Crine, Y.; Peeters, S.; Carlisi, A.; Le Goff, C.; Gadisseur, R.; Delanaye, P.; Souberbielle, J.C. Evaluation of automated immunoassays for 25(OH)-vitamin D determination in different critical populations before and after standardization of the assays. Clin. Chim. Acta 2014, 431, 60–65. [Google Scholar] [CrossRef] [PubMed]
- Cavalier, E.; Lukas, P.; Bekaert, A.C.; Peeters, S.; Le Goff, C.; Yayo, E.; Delanaye, P.; Souberbielle, J.C. Analytical and clinical evaluation of the new Fujirebio Lumipulse(r)G non-competitive assay for 25(OH)-Vitamin D and three immunoassays for 25(OH)D in healthy subjects, osteoporotic patients, third trimester pregnant women, healthy African subjects, hemod. Clin. Chem. Lab. Med. 2016, 54, 1347–1355. [Google Scholar] [CrossRef]
- Giuliani, S.; Corvetta, D.; Lucchiari, M.; Herrmann, M. Evaluation of the analytical and clinical performance of the Fujirebio Lumipulse® G 25-OH vitamin D assay. Ann. Clin. Biochem. 2018, 55, 302–304. [Google Scholar] [CrossRef]
Materials | Specifications That May Lead to LTLV 1 |
---|---|
Internal materials | |
Antigen | Unclear and color appearance, low storage concentration, high aggregate, low purity, inappropriate storage buffer |
Antibody | Unclear and color appearance, low storage concentration, high aggregate, low purity, inappropriate storage buffer |
Enzyme | Inconsistent enzymatic activity |
Conjugate | Unclear appearance, low concentration, low purity |
Kit controls and calibrators | Kit controls use the same materials as the calibrators |
Buffer/Diluent | Not mixed thoroughly, resulting in pH and conductivity deviation |
Others (containers, microtiter plates, magnetic beads, etc.) | Unclean containers. Inhomogeneous magnetic beads |
External materials | |
Lot-to-Lot QC panel | Unstable and short shelf-life |
Master calibrator | Not freeze-dried. Unstable |
Parameters | Hybridoma Antibody | Recombinant Antibody | Percent Deviation |
---|---|---|---|
Max signals (RLU 2) | 493,180 | 412,901 | −19.4% |
Background (RLU) | 4809 | 4546 | −5.80% |
EC50 3 (ng/mL) | 3.66 | 6.17 | 68.4% |
Additive | Proposed Mode of Action |
---|---|
Glycerol, 5 to 40% (v/v) Sucrose, 10 to 40% (w/v) Glycine, 0.02 to 0.5 M Sorbitol, 5 to 40% (w/v) | Stabilizes native, intramolecular protein interactions |
PEG 1, 1 to 15% (v/v) Nonionic detergents | Shields surface exposed hydrophobic sites (reduces protein-protein interactions) |
Citrate, 0.02 to 0.4 M | Shields surface exposed hydrophobic sites (reduces protein-protein interactions) |
Urea, up to 2 M Arginine, up to 2 M | Reduces protein-protein interactions |
DTT 2, 0.1 to 1 mM | Prevents formation of intermolecular S-S bonds |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Luo, Y.; Pehrsson, M.; Langholm, L.; Karsdal, M.; Bay-Jensen, A.-C.; Sun, S. Lot-to-Lot Variance in Immunoassays—Causes, Consequences, and Solutions. Diagnostics 2023, 13, 1835. https://doi.org/10.3390/diagnostics13111835
Luo Y, Pehrsson M, Langholm L, Karsdal M, Bay-Jensen A-C, Sun S. Lot-to-Lot Variance in Immunoassays—Causes, Consequences, and Solutions. Diagnostics. 2023; 13(11):1835. https://doi.org/10.3390/diagnostics13111835
Chicago/Turabian StyleLuo, Yunyun, Martin Pehrsson, Lasse Langholm, Morten Karsdal, Anne-Christine Bay-Jensen, and Shu Sun. 2023. "Lot-to-Lot Variance in Immunoassays—Causes, Consequences, and Solutions" Diagnostics 13, no. 11: 1835. https://doi.org/10.3390/diagnostics13111835
APA StyleLuo, Y., Pehrsson, M., Langholm, L., Karsdal, M., Bay-Jensen, A. -C., & Sun, S. (2023). Lot-to-Lot Variance in Immunoassays—Causes, Consequences, and Solutions. Diagnostics, 13(11), 1835. https://doi.org/10.3390/diagnostics13111835