Real-World Driver Stress Recognition and Diagnosis Based on Multimodal Deep Learning and Fuzzy EDAS Approaches
Abstract
:1. Introduction
2. Related Work
3. Materials and Methods
3.1. SRAD Dataset
3.2. AffectiveROAD Database
3.3. Pre-Processing
3.4. 1D CNN Models
Network’s Training
3.5. Hybrid 1D CNN-LSTM Models
3.6. Fuzzy EDAS Approach
4. Results
4.1. Models’ Evaluation for the Two-Stress Class
4.2. Models’ Evaluation for the Three-Stress Class
4.3. Rank-Based Performance Evaluation
4.3.1. Rank Estimation of the CNN Models for Two Levels of Stress
4.3.2. Rank Estimation of the CNN-LSTM Models for Two Levels of Stress
4.3.3. Rank Estimation of the CNN Models for Three Levels of Stress
4.3.4. Rank Estimation of the CNN-LSTM Models for Three Levels of Stress
4.4. Comparison of the Proposed 1D CNN and 1D CNN-LSTM Models
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Evans, G.W.; Carrère, S. Traffic Congestion, Perceived Control, and Psychophysiological Stress among Urban Bus Drivers. J. Appl. Psychol. 1991, 76, 658–663. [Google Scholar] [CrossRef]
- Hanzlíková, I. Professional drivers: The sources of occupational stress. In Proceedings of the Young Researchers Seminar, The Hague, The Netherlands, 2005. [Google Scholar]
- de Naurois, C.J.; Bourdin, C.; Stratulat, A.; Diaz, E.; Vercher, J.L. Detection and prediction of driver drowsiness using artificial neural network models. Accid. Anal. Prev. 2019, 126, 95–104. [Google Scholar] [CrossRef]
- Chen, L.L.; Zhao, Y.; Ye, P.F.; Zhang, J.; Zou, J.Z. Detecting driving stress in physiological signals based on multimodal feature analysis and kernel classifiers. Expert Syst. Appl. 2017, 85, 279–291. [Google Scholar] [CrossRef]
- Manseer, M.; Riener, A. Evaluation of driver stress while transiting road tunnels. In Proceedings of the 6th International Conference on Automotive User Interfaces and Interactive Vehicular Applications, Seattle, WA, USA, 17–19 September 2014; Association for Computing Machinery (ACM): New York, NY, USA, 2014; pp. 1–6. [Google Scholar]
- Benlagha, N.; Charfeddine, L. Risk factors of road accident severity and the development of a new system for prevention: New insights from China. Accid. Anal. Prev. 2020, 136, 105411. [Google Scholar] [CrossRef] [PubMed]
- American Psychological Association. Stress in America: The State of our Nation. Stress in America Survey; American Psychological Association: Washington, DC, USA, 2017. [Google Scholar]
- Khowaja, S.A.; Prabono, A.G.; Setiawan, F.; Yahya, B.N.; Lee, S.L. Toward soft real-time stress detection using wrist-worn devices for human workspaces. Soft Comput. 2021, 25, 2793–2820. [Google Scholar] [CrossRef]
- Shinar, D.; Compton, R. Aggressive driving: An observational study of driver, vehicle, and situational variables. Accid. Anal. Prev. 2004, 36, 429–437. [Google Scholar] [CrossRef]
- Singh, S. Critical reasons for crashes investigated in the National Motor Vehicle Crash Causation Survey. Natl. Highw. Traffic Saf. Adm. 2015, 1–2. [Google Scholar]
- Rastgoo, M.N.; Nakisa, B.; Maire, F.; Rakotonirainy, A.; Chandran, V. Automatic driver stress level classification using multimodal deep learning. Expert Syst. Appl. 2019, 138, 112793. [Google Scholar] [CrossRef]
- Nakisa, B.; Rastgoo, M.N.; Tjondronegoro, D.; Chandran, V. Evolutionary computation algorithms for feature selection of EEG-based emotion recognition using mobile sensors. Expert Syst. Appl. 2018, 93, 143–155. [Google Scholar] [CrossRef]
- Pourbabaee, B.; Roshtkhari, M.J.; Khorasani, K. Deep Convolutional Neural Networks and Learning ECG Features for Screening Paroxysmal Atrial Fibrillation Patients. IEEE Trans. Syst. Man Cybern. Syst. 2018, 48, 2095–2104. [Google Scholar] [CrossRef]
- Liu, Y.; Chen, X.; Peng, H.; Wang, Z. Multi-focus image fusion with a deep convolutional neural network. Inf. Fusion 2017, 36, 191–207. [Google Scholar] [CrossRef]
- Zheng, Y.; Liu, Q.; Chen, E.; Ge, Y.; Zhao, J.L. Exploiting multi-channels deep convolutional neural networks for multivariate time series classification. Front. Comput. Sci. 2016, 10, 96–112. [Google Scholar] [CrossRef]
- Zheng, Y.; Liu, Q.; Chen, E.; Ge, Y.; Zhao, J.L. Time series classification using multi-channels deep convolutional neural networks. In Proceedings of the Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), Macau, China, 16–18 June 2014; Springer: Berlin/Heidelberg, Germany, 2014; Volume 8485, pp. 298–310. [Google Scholar]
- Kanjo, E.; Younis, E.M.G.; Ang, C.S. Deep learning analysis of mobile physiological, environmental and location sensor data for emotion detection. Inf. Fusion 2019, 49, 46–56. [Google Scholar] [CrossRef]
- Ngiam, J.; Khosla, A.; Kim, M.; Nam, J.; Lee, H.; Ng, A.Y. Multimodal deep learning. In Proceedings of the 28th International Conference on Machine Learning, ICML 2011, Bellevue, WA, USA, 28 June–2 July 2011; pp. 689–696. [Google Scholar]
- Deng, L.; Yu, D. Deep learning: Methods and applications. Found. Trends Signal Process. 2013, 7, 197–387. [Google Scholar] [CrossRef]
- Dalmeida, K.M.; Masala, G.L. Hrv features as viable physiological markers for stress detection using wearable devices. Sensors 2021, 21, 2873. [Google Scholar] [CrossRef] [PubMed]
- Vargas-Lopez, O.; Perez-Ramirez, C.A.; Valtierra-Rodriguez, M.; Yanez-Borjas, J.J.; Amezquita-Sanchez, J.P. An explainable machine learning approach based on statistical indexes and svm for stress detection in automobile drivers using electromyographic signals. Sensors 2021, 21, 3155. [Google Scholar] [CrossRef]
- Lopez-Martinez, D.; El-Haouij, N.; Picard, R. Detection of Real-World Driving-Induced Affective State Using Physiological Signals and Multi-View Multi-Task Machine Learning. In Proceedings of the 2019 8th International Conference on Affective Computing and Intelligent Interaction Workshops and Demos, ACIIW 2019, Cambridge, UK, 3–6 September 2019; pp. 356–361. [Google Scholar]
- El Haouij, N.; Poggi, J.M.; Ghozi, R.; Sevestre-Ghalila, S.; Jaïdane, M. Random forest-based approach for physiological functional variable selection for driver’s stress level classification. Stat. Methods Appl. 2019, 28, 157–185. [Google Scholar] [CrossRef]
- Ghaderi, A.; Frounchi, J.; Farnam, A. Machine learning-based signal processing using physiological signals for stress detection. In Proceedings of the 2015 22nd Iranian Conference on Biomedical Engineering, ICBME 2015, Tehran, Iran, 25–27 November 2016; pp. 93–98. [Google Scholar]
- Zhang, L.; Tamminedi, T.; Ganguli, A.; Yosiphon, G.; Yadegar, J. Hierarchical multiple sensor fusion using structurally learned Bayesian network. In Proceedings of the Proceedings—Wireless Health 2010, WH’10, San Diego, CA, USA, 5–7 October 2010; pp. 174–183. [Google Scholar]
- Healey, J.A.; Picard, R.W. Detecting stress during real-world driving tasks using physiological sensors. IEEE Trans. Intell. Transp. Syst. 2005, 6, 156–166. [Google Scholar] [CrossRef]
- PhysioNet. Stress Recognition in Automobile Drivers, Version: 1.0.0; PhysioNet (MIT Laboratory for Computational Physiology US): Cambridge, MA, USA, 2008. [Google Scholar] [CrossRef]
- Rigas, G.; Goletsis, Y.; Bougia, P.; Fotiadis, D.I. Towards driver’s state recognition on real driving conditions. Int. J. Veh. Technol. 2011, 2011, 617210. [Google Scholar] [CrossRef]
- Zontone, P.; Affanni, A.; Bernardini, R.; Piras, A.; Rinaldo, R.; Formaggia, F.; Minen, D.; Minen, M.; Savorgnan, C. Car Driver’s Sympathetic Reaction Detection through Electrodermal Activity and Electrocardiogram Measurements. IEEE Trans. Biomed. Eng. 2020, 67, 3413–3424. [Google Scholar] [CrossRef]
- Bianco, S.; Napoletano, P.; Schettini, R. Multimodal car driver stress recognition. In Proceedings of the PervasiveHealth: Pervasive Computing Technologies for Healthcare, Trento, Italy, 20–23 May 2019; pp. 302–307. [Google Scholar]
- Lee, D.S.; Chong, T.W.; Lee, B.G. Stress Events Detection of Driver by Wearable Glove System. IEEE Sens. J. 2017, 17, 194–204. [Google Scholar] [CrossRef]
- Lanatà, A.; Valenza, G.; Greco, A.; Gentili, C.; Bartolozzi, R.; Bucchi, F.; Frendo, F.; Scilingo, E.P. How the Autonomic nervous system and driving style change with incremental stressing conditions during simulated driving. IEEE Trans. Intell. Transp. Syst. 2015, 16, 1505–1517. [Google Scholar] [CrossRef]
- Gao, H.; Yuce, A.; Thiran, J.P. Detecting emotional stress from facial expressions for driving safety. In Proceedings of the 2014 IEEE International Conference on Image Processing, ICIP 2014, Paris, France, 27–30 October 2014; pp. 5961–5965. [Google Scholar]
- Šalkevicius, J.; Damaševičius, R.; Maskeliunas, R.; Laukienė, I. Anxiety level recognition for virtual reality therapy system using physiological signals. Electronics 2019, 8, 1039. [Google Scholar] [CrossRef]
- Rodríguez-Arce, J.; Lara-Flores, L.; Portillo-Rodríguez, O.; Martínez-Méndez, R. Towards an anxiety and stress recognition system for academic environments based on physiological features. Comput. Methods Programs Biomed. 2020, 190, 105408. [Google Scholar] [CrossRef]
- Can, Y.S.; Chalabianloo, N.; Ekiz, D.; Ersoy, C. Continuous stress detection using wearable sensors in real life: Algorithmic programming contest case study. Sensors 2019, 19, 1849. [Google Scholar] [CrossRef]
- Al abdi, R.M.; Alhitary, A.E.; Abdul Hay, E.W.; Al-bashir, A.K. Objective detection of chronic stress using physiological parameters. Med. Biol. Eng. Comput. 2018, 56, 2273–2286. [Google Scholar] [CrossRef] [PubMed]
- Betti, S.; Lova, R.M.; Rovini, E.; Acerbi, G.; Santarelli, L.; Cabiati, M.; Del Ry, S.; Cavallo, F. Evaluation of an integrated system of wearable physiological sensors for stress monitoring in working environments by using biological markers. IEEE Trans. Biomed. Eng. 2018, 65, 1748–1758. [Google Scholar] [CrossRef] [PubMed]
- Sriramprakash, S.; Prasanna, V.D.; Murthy, O.V.R. Stress Detection in Working People. In Proceedings of the Procedia Computer Science, Cochin, India, 22–24 August 2017; Volume 115, pp. 359–366. [Google Scholar]
- de Vries, G.J.J.; Pauws, S.C.; Biehl, M. Insightful stress detection from physiology modalities using Learning Vector Quantization. Neurocomputing 2015, 151, 873–882. [Google Scholar] [CrossRef]
- Sun, F.T.; Kuo, C.; Cheng, H.T.; Buthpitiya, S.; Collins, P.; Griss, M. Activity-aware mental stress detection using physiological sensors. In Proceedings of the Lecture Notes of the Institute for Computer Sciences, Social-Informatics and Telecommunications Engineering, LNICST, Santa Clara, CA, USA, 25–28 October 2012; Volume 76, pp. 282–301. [Google Scholar]
- Anceschi, E.; Bonifazi, G.; De Donato, M.C.; Corradini, E.; Ursino, D.; Virgili, L. Savemenow.ai: A machine learning based wearable device for fall detection in a workplace. Stud. Comput. Intell. 2021, 911, 493–514. [Google Scholar] [CrossRef]
- Bonifazi, G.; Corradini, E.; Ursino, D.; Virgili, L. Defining user spectra to classify Ethereum users based on their behavior. J. Big Data 2022, 9, 37. [Google Scholar] [CrossRef]
- Zalabarria, U.; Irigoyen, E.; Martinez, R.; Larrea, M.; Salazar-Ramirez, A. A Low-Cost, Portable Solution for Stress and Relaxation Estimation Based on a Real-Time Fuzzy Algorithm. IEEE Access 2020, 8, 74118–74128. [Google Scholar] [CrossRef]
- Lecun, Y.; Bengio, Y.; Hinton, G. Deep learning. Nature 2015, 521, 436–444. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Mei, X.; Liu, H.; Yuan, S.; Qian, T. Detecting negative emotional stress based on facial expression in real time. In Proceedings of the 2019 IEEE 4th International Conference on Signal and Image Processing, ICSIP 2019, Wuxi, China, 19–21 July 2019; pp. 430–434. [Google Scholar]
- Lim, S.; Yang, J.H. Driver state estimation by convolutional neural network using multimodal sensor data. Electron. Lett. 2016, 52, 1495–1497. [Google Scholar] [CrossRef]
- Yan, S.; Teng, Y.; Smith, J.S.; Zhang, B. Driver behavior recognition based on deep convolutional neural networks. In Proceedings of the 2016 12th International Conference on Natural Computation, Fuzzy Systems and Knowledge Discovery, ICNC-FSKD 2016, Changsha, China, 13–15 August 2016; pp. 636–641. [Google Scholar]
- Hajinoroozi, M.; Mao, Z.; Jung, T.P.; Lin, C.T.; Huang, Y. EEG-based prediction of driver’s cognitive performance by deep convolutional neural network. Signal Process. Image Commun. 2016, 47, 549–555. [Google Scholar] [CrossRef]
- Lee, J.; Lee, H.; Shin, M. Driving stress detection using multimodal convolutional neural networks with nonlinear representation of short-term physiological signals. Sensors 2021, 21, 2381. [Google Scholar] [CrossRef] [PubMed]
- Masood, K.; Alghamdi, M.A. Modeling Mental Stress Using a Deep Learning Framework. IEEE Access 2019, 7, 68446–68454. [Google Scholar] [CrossRef]
- Cho, Y.; Bianchi-Berthouze, N.; Julier, S.J. DeepBreath: Deep learning of breathing patterns for automatic stress recognition using low-cost thermal imaging in unconstrained settings. In Proceedings of the 2017 7th International Conference on Affective Computing and Intelligent Interaction, ACII 2017, San Antonio, TX, USA, 23–26 October 2017; Volume 2018, pp. 456–463. [Google Scholar]
- Seo, W.; Kim, N.; Kim, S.; Lee, C.; Park, S.M. Deep ECG-respiration network (DeepER net) for recognizing mental stress. Sensors 2019, 19, 3021. [Google Scholar] [CrossRef]
- Hwang, B.; You, J.; Vaessen, T.; Myin-Germeys, I.; Park, C.; Zhang, B.T. Deep ECGNet: An optimal deep learning framework for monitoring mental stress using ultra short-term ECG signals. Telemed. E-Health 2018, 24, 753–772. [Google Scholar] [CrossRef]
- He, J.; Li, K.; Liao, X.; Zhang, P.; Jiang, N. Real-Time Detection of Acute Cognitive Stress Using a Convolutional Neural Network from Electrocardiographic Signal. IEEE Access 2019, 7, 42710–42717. [Google Scholar] [CrossRef]
- Martínez-Rodrigo, A.; García-Martínez, B.; Huerta, Á.; Alcaraz, R. Detection of negative stress through spectral features of electroencephalographic recordings and a convolutional neural network. Sensors 2021, 21, 3050. [Google Scholar] [CrossRef]
- Healey, J.A.; Picard, R.W. Stress Recognition in Automobile Drivers. IEEE Trans. Intell. Transp. Syst. 2005. [Google Scholar]
- Clifford, G.D.; Azuaje, F.; Mcsharry, P. ECG statistics, noise, artifacts, and missing data. Adv. Methods Tools ECG Data Anal. 2006, 6, 18. [Google Scholar]
- Sörnmo, L.; Laguna, P. Bioelectrical Signal Processing in Cardiac and Neurological Applications; Academic Press: Cambridge, MA, USA, 2005; ISBN 9780124375529. [Google Scholar]
- Rahman, J.S.; Gedeon, T.; Caldwell, S.; Jones, R.; Jin, Z. Towards Effective Music Therapy for Mental Health Care Using Machine Learning Tools: Human Affective Reasoning and Music Genres. J. Artif. Intell. Soft Comput. Res. 2021, 11, 5–20. [Google Scholar] [CrossRef]
- Sánchez-Reolid, R.; López de la Rosa, F.; López, M.T.; Fernández-Caballero, A. One-dimensional convolutional neural networks for low/high arousal classification from electrodermal activity. Biomed. Signal Process. Control 2022, 71, 103203. [Google Scholar] [CrossRef]
- Ordóñez, F.J.; Roggen, D. Deep convolutional and LSTM recurrent neural networks for multimodal wearable activity recognition. Sensors 2016, 16, 115. [Google Scholar] [CrossRef]
- Zhao, G.; Zhang, Z.; Guan, H.; Tang, P.; Wang, J. Rethinking ReLU to Train Better CNNs. In Proceedings of the Proceedings—International Conference on Pattern Recognition, Beijing, China, 20–24 August 2018; Volume 2018, pp. 603–608. [Google Scholar]
- Hochreiter, S.; Schmidhuber, J. Long short-term memory. Neural Comput. 1997, 9, 1735–1780. [Google Scholar] [CrossRef]
- Amin, M.; Ullah, K.; Asif, M.; Waheed, A.; Haq, S.U.; Zareei, M.; Biswal, R.R. ECG-Based Driver’s Stress Detection Using Deep Transfer Learning and Fuzzy Logic Approaches. IEEE Access 2022, 10, 29788–29809. [Google Scholar] [CrossRef]
Dataset | Feature Learning (1D CNN) | Training Options (1D CNN) | ||||||
---|---|---|---|---|---|---|---|---|
Filter Size | Padding | Layers | Optimization Algorithm (Feature Learning/ Classification) | No. of Epochs (Feature Learning/ Classification) | Mini-Batch size (Feature Learning/ Classification) | Validation Frequency | Training/ Validation Set | |
SRAD | 03 | Causal | 1st Bloch: Conv1D (Filters: 8), ReLU, LN 2nd: Bloch: Conv1D (Filters: 32), ReLU, LN 3rd Block: Conv1D (Filters: 64), ReLU, LN 4th Block: Conv1D (Filters: 128), ReLU, LN Conv1D (Filters: 8) GAP; FC; Softmax; Classification | Adam | 20 | 30 | 10 | 80:20 |
E4-L | 30 20 | 20 10 | ||||||
E4-R | 30 10 | 20 20 | ||||||
E4-(L+R) | Sum of the layers of E4-L and E4-R | 30 + 30 10 | 20 + 20 20 | |||||
BH | 1st Bloch: Conv1D (Filters: 128), ReLU, LN 2nd: Bloch: Conv1D (Filters: 64), ReLU, LN 3rd Block: Conv1D (Filters: 32), ReLU, LN GAP; Softmax; FC; Classification | 80 10 | 20 20 | |||||
BH+E4-(L+R) | Sum of the layers of BH, E4-L, and E4-R | 80 + 30 + 30 10 | 20 + 20 + 20 20 |
Dataset | Features Learning (1D CNN) | Training Options (1D CNN-LSTM) | Training/ Validation Set | |||||||
---|---|---|---|---|---|---|---|---|---|---|
Filter Size | Padding | Layers | Hidden Layers | Dropout | Optimization Algorithm (Feature Learning/ Classification) | Epochs (Feature Learning/ Classification) | Mini-Batch Size (Feature Learning/ Classification) | Validation Frequency | ||
SRAD | 03 | Causal | 1st Bloch: Conv1D (Filters: 8), ReLU, LN 2nd: Bloch: Conv1D (Filters: 32), ReLU, LN 3rd Block: Conv1D (Filters: 64), ReLU, LN 4th Block: Conv1D (Filters: 128), ReLU, LN Conv1D (8 Filters) GAP; FC; Softmax; Classification | 250 | 0.4 | Adam | 20 20 | 30 | 10 | 80:20 |
E4-L | 300 | 0.5 | 30 10 | 20 20 | ||||||
E4-R | 200 | 0.5 | 30 10 | 20 20 | ||||||
E4-(L+R) | Sum of the layers of E4-L and E4-R | 200 | 0.5 | 30 + 30 10 | 20 + 20 20 | |||||
BH | 1st Bloch: Conv1D (Filters: 128), ReLU, LN 2nd: Bloch: Conv1D (Filters: 64), ReLU, LN 3rd Block: Conv1D (Filters: 32), ReLU, LN GAP; Softmax; FC; Classification | 200 | 0.5 | 80 20 | 20 20 | |||||
BH+E4-(L+R) | Sum of the layers of BH, E4-L, and E4-R | 200 | 0.5 | 80 + 30 + 30 15 | 20 + 20 + 20 20 |
Deep Learning Model | Dataset | Driver’s Stress Level | Performance Measure | |||||
---|---|---|---|---|---|---|---|---|
ACC | RCL | PRC | F1 | SPC | Overall ACC | |||
1D CNN | SRAD | Relaxed | 0.9271 | 0.8774 | 0.9118 | 0.8942 | 0.9541 | 92.7% |
Stressed | 0.9271 | 0.9541 | 0.9350 | 0.9444 | 0.8774 | |||
BH | Relaxed | 0.8909 | 0.9278 | 0.8267 | 0.8743 | 0.8654 | 89.1% | |
Stressed | 0.8909 | 0.8654 | 0.9454 | 0.9036 | 0.9278 | |||
E4-L | Relaxed | 0.8653 | 0.8072 | 0.9394 | 0.8683 | 0.9363 | 86.53% | |
Stressed | 0.8653 | 0.9363 | 0.7989 | 0.8622 | 0.8073 | |||
E4-R | Relaxed | 0.8825 | 0.8636 | 0.8693 | 0.8664 | 0.8974 | 88.3% | |
Stressed | 0.8825 | 0.8974 | 0.8929 | 0.8951 | 0.8636 | |||
E4-(L+R) | Relaxed | 0.9235 | 0.9776 | 0.8617 | 0.916 | 0.8833 | 92.35% | |
Stressed | 0.9235 | 0.8833 | 0.9815 | 0.9298 | 0.9776 | |||
BH+E4-(L+R) | Relaxed | 0.9564 | 0.9772 | 0.9224 | 0.949 | 0.9417 | 95.6% | |
Stressed | 0.9564 | 0.9417 | 0.9831 | 0.962 | 0.9772 | |||
1D CNN-LSTM | SRAD | Relaxed | 0.9180 | 0.9041 | 0.8742 | 0.8889 | 0.9261 | 91.8% |
Stressed | 0.9181 | 0.9261 | 0.9444 | 0.9352 | 0.9041 | |||
BH | Relaxed | 0.9545 | 0.9857 | 0.9079 | 0.9452 | 0.9340 | 95.5% | |
Stressed | 0.9545 | 0.9340 | 0.9900 | 0.9612 | 0.9857 | |||
E4-L | Relaxed | 0.8882 | 0.9007 | 0.85 | 0.8746 | 0.8788 | 88.83% | |
Stressed | 0.8882 | 0.8788 | 0.9206 | 0.8992 | 0.9007 | |||
E4-R | Relaxed | 0.9065 | 0.9099 | 0.8649 | 0.8868 | 0.9041 | 90.65% | |
Stressed | 0.9065 | 0.9041 | 0.9371 | 0.9203 | 0.9099 | |||
E4-(L+R) | Relaxed | 0.9465 | 0.9555 | 0.9328 | 0.944 | 0.9384 | 94.65% | |
Stressed | 0.9465 | 0.9384 | 0.9593 | 0.9487 | 0.9555 | |||
BH+E4-(L+R) | Relaxed | 0.9659 | 0.9395 | 0.9873 | 0.9628 | 0.9893 | 96.59% | |
Stressed | 0.9659 | 0.9893 | 0.9486 | 0.9685 | 0.9395 |
Deep Learning Model | Dataset | Driver’s Stress Level | Performance Measure | |||||
---|---|---|---|---|---|---|---|---|
ACC | RCL | PRC | F1 | SPC | Overall ACC | |||
1D CNN | SRAD | Low | 0.9338 | 0.8596 | 0.9607 | 0.9074 | 0.9787 | 79.5% |
Medium | 0.8377 | 0.5921 | 0.7143 | 0.6475 | 0.9203 | |||
High | 0.8377 | 0.8661 | 0.708 | 0.7791 | 0.7895 | |||
BH | High | 0.8659 | 0.8461 | 0.8959 | 0.8703 | 0.8883 | 78.9% | |
Medium | 0.8886 | 0.6216 | 0.3965 | 0.4842 | 0.9131 | |||
Low | 0.8227 | 0.7456 | 0.7826 | 0.7636 | 0.8708 | |||
E4-L | Low | 0.8911 | 0.8514 | 0.9255 | 0.8869 | 0.931 | 76.5% | |
Medium | 0.8567 | 0.6667 | 0.1132 | 0.1935 | 0.8618 | |||
High | 0.7822 | 0.6788 | 0.8296 | 0.7467 | 0.875 | |||
E4-R | Low | 0.8997 | 0.8687 | 0.9085 | 0.8882 | 0.9259 | 76.79% | |
Medium | 0.8481 | 0.493 | 0.6731 | 0.5691 | 0.9388 | |||
High | 0.788 | 0.7966 | 0.6528 | 0.7176 | 0.7835 | |||
E4-(L+R) | Low | 0.9312 | 0.9159 | 0.9241 | 0.9200 | 0.9428 | 83.94% | |
Medium | 0.893 | 0.7600 | 0.4634 | 0.5758 | 0.907 | |||
High | 0.8547 | 0.7854 | 0.894 | 0.8362 | 0.9167 | |||
BH+E4-(L+R) | Low | 0.9541 | 0.9548 | 0.9268 | 0.9406 | 0.9537 | 85.66% | |
Medium | 0.8929 | 0.6800 | 0.4595 | 0.5484 | 0.9154 | |||
High | 0.8662 | 0.8175 | 0.918 | 0.8649 | 0.9197 | |||
1D CNN-LSTM | SRAD | Low | 0.9454 | 0.9388 | 0.9139 | 0.9262 | 0.9492 | 85.6% |
Medium | 0.9032 | 0.8033 | 0.6447 | 0.7153 | 0.9210 | |||
High | 0.8635 | 0.8103 | 0.8977 | 0.8517 | 0.9135 | |||
BH | Low | 0.9574 | 0.9245 | 0.9800 | 0.9515 | 0.9845 | 87.8% | |
Medium | 0.9204 | 0.9130 | 0.4468 | 0.6000 | 0.9210 | |||
High | 0.8778 | 0.8294 | 0.9097 | 0.8677 | 0.9231 | |||
E4-L | Low | 0.8596 | 0.8415 | 0.8571 | 0.8492 | 0.8757 | 76.22% | |
Medium | 0.8768 | 0.6552 | 0.3654 | 0.4691 | 0.8969 | |||
High | 0.788 | 0.6987 | 0.8015 | 0.7466 | 0.8601 | |||
E4-R | Low | 0.9027 | 0.9021 | 0.8833 | 0.8926 | 0.9031 | 82.06% | |
Medium | 0.9046 | 0.62 | 0.5 | 0.5536 | 0.9346 | |||
High | 0.834 | 0.7824 | 0.8423 | 0.8113 | 0.8772 | |||
E4-(L+R) | Low | 0.9235 | 0.9395 | 0.8821 | 0.9099 | 0.9123 | 84.13% | |
Medium | 0.9082 | 0.7857 | 0.4583 | 0.5789 | 0.9189 | |||
High | 0.8509 | 0.7707 | 0.9234 | 0.8402 | 0.9338 | |||
BH+E4-(L+R) | Low | 0.9522 | 0.9511 | 0.9386 | 0.9448 | 0.953 | 87.95% | |
Medium | 0.9178 | 0.7705 | 0.6184 | 0.6861 | 0.9372 | |||
High | 0.8891 | 0.8397 | 0.9087 | 0.8728 | 0.9301 |
Dataset | Performance Measure (Driver’s Relaxed State) | ||||
---|---|---|---|---|---|
ACC | RCL | PRC | F1 | SPC | |
SRAD | 0.9271 | 0.8774 | 0.9118 | 0.8942 | 0.9541 |
BH | 0.8909 | 0.9278 | 0.8267 | 0.8743 | 0.8654 |
E4-L | 0.8653 | 0.8072 | 0.9394 | 0.8683 | 0.9363 |
E4-R | 0.8825 | 0.8636 | 0.8693 | 0.8664 | 0.8974 |
E4-(L+R) | 0.9235 | 0.9776 | 0.8617 | 0.916 | 0.8833 |
BH+E4-(L+R) | 0.9564 | 0.9772 | 0.9224 | 0.949 | 0.9417 |
0.9076 | 0.9051 | 0.8886 | 0.8947 | 0.9130 |
Dataset | Performance Measure (Driver’s Relaxed State) | ||||
---|---|---|---|---|---|
ACC | RCL | PRC | F1 | SPC | |
SRAD | 0.0000 | 0.0306 | 0.0000 | 0.0006 | 0.0000 |
BH | 0.0184 | 0.0000 | 0.0696 | 0.0228 | 0.0522 |
E4-L | 0.0466 | 0.1082 | 0.0000 | 0.0295 | 0.0000 |
E4-R | 0.0277 | 0.0459 | 0.0217 | 0.0249 | 0.0171 |
E4-(L+R) | 0.0000 | 0.0000 | 0.0302 | 0.0000 | 0.0326 |
BH+E4-(L+R) | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 |
Dataset | Performance Measure (Driver’s Relaxed State) | ||||
---|---|---|---|---|---|
ACC | RCL | PRC | F1 | SPC | |
SRAD | 0.0000 | 0.0000 | 0.0262 | 0.0000 | 0.0450 |
BH | 0.0000 | 0.0250 | 0.0000 | 0.0000 | 0.0000 |
E4-L | 0.0000 | 0.0000 | 0.0572 | 0.0000 | 0.0255 |
E4-R | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 |
E4-(L+R) | 0.0175 | 0.0801 | 0.0000 | 0.0238 | 0.0000 |
BH+E4-(L+R) | 0.0537 | 0.0796 | 0.0191 | 0.0607 | 0.0314 |
Weight of Criteria | 0.4176 | 0.2850 | 0.14533 | 0.0844 | 0.0676 | |
Dataset | Performance Measure (Driver’s Relaxed State) | |||||
ACC | RCL | PRC | F1 | SPC | ||
SRAD | 0.0000 | 0.0087 | 0.0000 | 0.0005 | 0.0000 | 0.0088 |
BH | 0.0077 | 0.0000 | 0.0100 | 0.0019 | 0.0035 | 0.0233 |
E4-L | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 |
E4-R | 0.0116 | 0.0000 | 0.0031 | 0.0027 | 0.0012 | 0.0185 |
E4-(L+R) | 0.0000 | 0.0000 | 0.0044 | 0.0000 | 0.0022 | 0.0066 |
BH+E4-(L+R) | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 |
Weight of Criteria | 0.4176 | 0.2850 | 0.1453 | 0.0844 | 0.0676 | |
Dataset | Performance Measure (Driver’s Relaxed State) | |||||
ACC | RCL | PRC | F1 | SPC | ||
SRAD | 0.0090 | 0.0000 | 0.0038 | 0.0000 | 0.0030 | 0.0158 |
BH | 0.0000 | 0.0071 | 0.0000 | 0.0000 | 0.0000 | 0.0071 |
E4-L | 0.0000 | 0.0000 | 0.0083 | 0.0000 | 0.0017 | 0.0100 |
E4-R | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 |
E4-(L+R) | 0.0073 | 0.0228 | 0.0000 | 0.0020 | 0.0000 | 0.0321 |
BH+E4-(L+R) | 0.0224 | 0.0227 | 0.0055 | 0.0051 | 0.0021 | 0.0579 |
Dataset | Ranks | |||||
---|---|---|---|---|---|---|
SRAD | 0.0088 | 0.0158 | 0.3774 | 0.7270 | 0.5522 | 4 |
BH | 0.0233 | 0.0071 | 1.0000 | 0.8768 | 0.9384 | 6 |
E4-L | 0.0000 | 0.0100 | 0.0000 | 0.8267 | 0.4133 | 2 |
E4-R | 0.0000 | 0.0000 | 0.0000 | 1.0000 | 0.5000 | 3 |
E4-(L+R) | 0.0185 | 0.0321 | 0.7968 | 0.4452 | 0.6210 | 5 |
BH+E4-(L+R) | 0.0066 | 0.0579 | 0.2835 | 0.0000 | 0.1417 | 1 |
Dataset | Ranks | |||||
---|---|---|---|---|---|---|
SRAD | 0.0021 | 0.0263 | 0.0874 | 0.4791 | 0.2832 | 2 |
BH | 0.0237 | 0.0052 | 1.0000 | 0.8960 | 0.9480 | 6 |
E4-L | 0.0000 | 0.0073 | 0.0000 | 0.8562 | 0.4280 | 3 |
E4-R | 0.0000 | 0.0000 | 0.0000 | 1.0000 | 0.5000 | 4 |
E4-(L+R) | 0.0213 | 0.0232 | 0.8985 | 0.5401 | 0.7193 | 5 |
BH+E4-(L+R) | 0.0093 | 0.0505 | 0.3913 | 0.0000 | 0.1956 | 1 |
Dataset | Ranks | |||||
---|---|---|---|---|---|---|
SRAD | 0.0214 | 0.0000 | 1.0000 | 1.0000 | 1.0000 | 5 |
BH | 0.0000 | 0.0311 | 0.0000 | 0.2328 | 0.1164 | 2 |
E4-L | 0.0000 | 0.0000 | 0.0000 | 1.0000 | 0.5000 | 3 |
E4-R | 0.0000 | 0.0000 | 0.0000 | 1.0000 | 0.5000 | 3 |
E4-(L+R) | 0.0212 | 0.0225 | 0.9887 | 0.4452 | 0.7169 | 4 |
BH+E4-(L+R) | 0.0000 | 0.0405 | 0.0000 | 0.0000 | 0.0000 | 1 |
Dataset | Ranks | |||||
---|---|---|---|---|---|---|
SRAD | 0.0093 | 0.0000 | 0.5875 | 1.0000 | 0.7938 | 4 |
BH | 0.0000 | 0.0247 | 0.0000 | 0.3496 | 0.1748 | 2 |
E4-L | 0.0000 | 0.0000 | 0.0000 | 1.0000 | 0.5000 | 3 |
E4-R | 0.0000 | 0.0000 | 0.0000 | 1.0000 | 0.5000 | 3 |
E4-(L+R) | 0.0158 | 0.0145 | 1.0000 | 0.6195 | 0.8097 | 5 |
BH+E4-(L+R) | 0.0000 | 0.0380 | 0.0000 | 0.0000 | 0.0000 | 1 |
Dataset | Ranks | |||||
---|---|---|---|---|---|---|
SRAD | 0.0075 | 0.0190 | 0.1696 | 0.5996 | 0.3846 | 2 |
BH | 0.0441 | 0.0000 | 1.0000 | 1.0000 | 1.0000 | 6 |
E4-L | 0.0000 | 0.0003 | 0.0000 | 0.9937 | 0.4968 | 4 |
E4-R | 0.0000 | 0.0000 | 0.0000 | 1.0000 | 0.5000 | 5 |
E4-(L+R) | 0.0104 | 0.0214 | 0.2357 | 0.5504 | 0.3931 | 3 |
BH+E4-(L+R) | 0.0000 | 0.0476 | 0.0000 | 0.0000 | 0.0000 | 1 |
Dataset | Ranks | |||||
---|---|---|---|---|---|---|
SRAD | 0.0348 | 0.1006 | 1.0000 | 0.0000 | 0.5000 | 5 |
BH | 0.0322 | 0.0094 | 0.9250 | 0.9061 | 0.9155 | 6 |
E4-L | 0.0000 | 0.0140 | 0.0000 | 0.8240 | 0.4120 | 4 |
E4-R | 0.0000 | 0.0761 | 0.0000 | 0.2438 | 0.1219 | 1 |
E4-(L+R) | 0.0103 | 0.0793 | 0.2956 | 0.2117 | 0.2537 | 2 |
BH+E4-(L+R) | 0.0022 | 0.0392 | 0.0638 | 0.6101 | 0.3370 | 3 |
Dataset | Ranks | |||||
---|---|---|---|---|---|---|
SRAD | 0.0224 | 0.0371 | 0.3835 | 0.4636 | 0.4236 | 2 |
BH | 0.0194 | 0.0009 | 0.3326 | 0.9868 | 0.6597 | 5 |
E4-L | 0.0000 | 0.0071 | 0.0000 | 0.8974 | 0.4487 | 3 |
E4-R | 0.0000 | 0.0054 | 0.0000 | 0.9212 | 0.4606 | 4 |
E4-(L+R) | 0.0584 | 0.0439 | 1.0000 | 0.3648 | 0.6824 | 6 |
BH+E4-(L+R) | 0.0000 | 0.0691 | 0.0000 | 0.0000 | 0.0000 | 1 |
Dataset | Ranks | |||||
---|---|---|---|---|---|---|
SRAD | 0.0000 | 0.0204 | 0.0000 | 0.4467 | 0.2233 | 4 |
BH | 0.0000 | 0.0368 | 0.0000 | 0.0000 | 0.0000 | 2 |
E4-L | 0.0000 | 0.0000 | 0.0000 | 1.0000 | 0.5000 | 3 |
E4-R | 0.0000 | 0.0000 | 0.0000 | 1.0000 | 0.5000 | 3 |
E4-(L+R) | 0.0173 | 0.0072 | 1.0000 | 0.8034 | 0.9017 | 5 |
BH+E4-(L+R) | 0.0058 | 0.0332 | 0.3365 | 0.0981 | 0.2173 | 1 |
Dataset | Ranks | |||||
---|---|---|---|---|---|---|
SRAD | 0.0009 | 0.0732 | 0.0559 | 0.0000 | 0.0280 | 1 |
BH | 0.0170 | 0.0653 | 1.0000 | 0.1072 | 0.5536 | 4 |
E4-L | 0.0000 | 0.0000 | 0.0000 | 1.0000 | 0.5000 | 3 |
E4-R | 0.0000 | 0.0009 | 0.0000 | 0.9870 | 0.4935 | 2 |
E4-(L+R) | 0.0085 | 0.0118 | 0.4974 | 0.8383 | 0.6678 | 6 |
BH+E4-(L+R) | 0.0168 | 0.0561 | 0.9891 | 0.2327 | 0.6109 | 5 |
Dataset | Ranks | |||||
---|---|---|---|---|---|---|
SRAD | 0.0000 | 0.0196 | 0.0000 | 0.5913 | 0.2956 | 3 |
BH | 0.0000 | 0.0379 | 0.0000 | 0.2113 | 0.1057 | 1 |
E4-L | 0.0000 | 0.0000 | 0.0000 | 1.0000 | 0.5000 | 4 |
E4-R | 0.0000 | 0.0000 | 0.0000 | 1.0000 | 0.5000 | 4 |
E4-(L+R) | 0.0187 | 0.0102 | 1.0000 | 0.7884 | 0.8942 | 5 |
BH+E4-(L+R) | 0.0064 | 0.0480 | 0.3450 | 0.0000 | 0.1725 | 2 |
Dataset | Execution Environment | Training Time 1D CNN | Performance | |||||
---|---|---|---|---|---|---|---|---|
Accuracy (%) | Fuzzy EDAS Rank | |||||||
Feature Learning | Classification | Relaxed State | Stressed State | Overall | Relaxed State | Stressed State | ||
SRAD | Single CPU | 277 min 29 s | 92.71 | 92.71 | 92.72 | 4 | 2 | |
E4-L | 35 min, 18 s | 13 s | 86.53 | 86.53 | 86.53 | 2 | 3 | |
E4-R | 35 min, 26 s | 13 s | 88.25 | 88.25 | 88.25 | 3 | 4 | |
E4-(L+R) | 70 min, 26 s | 12 s | 92.35 | 92.35 | 92.35 | 5 | 5 | |
BH | 1 min, 46 s | 1 min, 29 s | 89.09 | 89.09 | 89.09 | 6 | 6 | |
BH+E4-(L+R) | 72 min, 30 s | 12 s | 95.64 | 9564 | 95.64 | 1 | 1 |
Dataset | Execution Environment | Training Time 1D CNN-LSTM | Performance | |||||
---|---|---|---|---|---|---|---|---|
Accuracy (%) | Fuzzy EDAS Rank | |||||||
Feature Learning | Classification | Relaxed State | Stressed State | Overall | Relaxed State | Stressed State | ||
SRAD | Single CPU | 167 min 33 s | 23 s | 91.80 | 91.80 | 91.81 | 5 | 4 |
E4-L | 35 min 18 s | 34 s | 88.82 | 88.82 | 88.83 | 3 | 3 | |
E4-R | 35 min 26 s | 31 s | 90.65 | 90.65 | 90.65 | 3 | 3 | |
E4-(L+R) | 70 min 26 s | 32 s | 94.65 | 94.65 | 94.65 | 4 | 5 | |
BH | 1 min 46 s | 33 s | 95.45 | 95.45 | 95.45 | 2 | 2 | |
BH+E4-(L+R) | 72 min 30 s | 21 s | 96.59 | 96.59 | 96.59 | 1 | 1 |
Dataset | Execution Environment | Training Time 1D CNN | Performance | |||||||
---|---|---|---|---|---|---|---|---|---|---|
Accuracy (%) | Fuzzy EDAS Rank | |||||||||
Feature Learning | Classification | Low-stress State | Medium-Stress State | High-Stress State | Overall | Low-Stress State | Medium-Stress State | High-Stress State | ||
SRAD | Single CPU | 279 min, 6 s | 93.38 | 83.77 | 83.77 | 79.47 | 2 | 5 | 2 | |
E4-L | 35 min, 20 s | 45 s | 89.11 | 85.67 | 78.22 | 76.50 | 4 | 4 | 3 | |
E4-R | 35 min, 19 s | 13 s | 89.97 | 84.81 | 78.80 | 76.79 | 5 | 1 | 4 | |
E4-(L+R) | 70 min, 39 s | 12 s | 93.12 | 89.30 | 85.47 | 83.94 | 3 | 2 | 6 | |
BH | 1 min, 28 s | 2 min, 17 s | 86.59 | 88.86 | 82.27 | 78.86 | 6 | 6 | 5 | |
BH+E4-(L+R) | 72 min, 7 s | 22 s | 95.41 | 89.29 | 86.62 | 85.66 | 1 | 3 | 1 |
Dataset | Execution Environment | Training Time 1D CNN-LSTM | Performance | |||||||
---|---|---|---|---|---|---|---|---|---|---|
Accuracy (%) | Fuzzy EDAS Rank | |||||||||
Feature Learning | Classification | Low-Stress State | Medium-Stress State | High-Stress State | Overall | Low-Stress State | Medium-Stress State | High-Stress State | ||
SRAD | Single CPU | 170 min, 44 s | 47 s | 94.54 | 90.32 | 86.35 | 85.61 | 4 | 1 | 1 |
E4-L | 35 min, 20 s | 3 min, 4 s | 85.96 | 87.68 | 78.80 | 76.22 | 3 | 3 | 3 | |
E4-R | 35 min, 19 s | 33 s | 90.27 | 90.46 | 83.40 | 82.06 | 3 | 2 | 2 | |
E4-(L+R) | 70 min, 39 s | 30 s | 92.35 | 90.82 | 85.09 | 84.13 | 5 | 6 | 6 | |
BH | 1 min, 28 s | 34 s | 95.74 | 92.04 | 87.78 | 87.78 | 2 | 4 | 4 | |
BH+E4-(L+R) | 72 min, 7 s | 31 s | 95.22 | 91.78 | 88.91 | 87.95 | 1 | 5 | 5 |
Article / Year | Signal(s) / Modalities | Environment | No. of Subjects | Data I/P Mechanism | Deep Learning Approach | Stress Levels | ACC (%) | RCL | PRC | F1 | SPC |
---|---|---|---|---|---|---|---|---|---|---|---|
Proposed Models | HR, BR, Posture, Activity, TEMP, IBI, GSR, ACCL | Real-World Driving | 10 | 1D Signal | CNN-LSTM | 2 | 96.6 | 96.4 | 96.8 | 96.6 | 96.4 |
3 | 88 | 85.4 | 82.2 | 83.5 | 94 | ||||||
[50]/2021 | HR, GSR | 9 | Continues RPs | CNN | 2 | 95.7 | 95.7 | 95.9 | 95.7 | - | |
[46]/2019 | Facial Images | 123 | Images | Pre-Trained MTCNN | 2 | 97.3 | - | - | - | - | |
[11]/2019 | ECG, VDD, EP | Simulated Driving | 27 | 1D Signal | CNN-LSTM | 3 | 92.8 | 94.1 | 95 | - | 97.4 |
[49]/2016 | EEG | 37 | 1D Signal | CCNN | 2 | 86.1 | - | - | - | - | |
[53]/2019 | RESP and ECG | Cognitive Tasks (Lab/Workplace) | 18 | 1D Signal | CNN-LSTM | 3 | 83.9 | - | - | 81.1 | - |
[56]/2021 | EEG | 32 | Spectrogram | Pre-Trained AlexNet | 2 | 84.8 | 85.2 | - | - | 84.3 | |
[55]/2019 | ECG | 20 | CNN | 2 | 82.7 | - | - | - | - | ||
[54]/2018 | ECG | 13 | 1D Signal | 1D CNN | 2 | 80 | - | - | - | - | |
[52]/2017 | Thermographic Patterns of Breath | 8 | Spectrogram | CNN | 2 | 84.6 | - | - | - | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Amin, M.; Ullah, K.; Asif, M.; Shah, H.; Mehmood, A.; Khan, M.A. Real-World Driver Stress Recognition and Diagnosis Based on Multimodal Deep Learning and Fuzzy EDAS Approaches. Diagnostics 2023, 13, 1897. https://doi.org/10.3390/diagnostics13111897
Amin M, Ullah K, Asif M, Shah H, Mehmood A, Khan MA. Real-World Driver Stress Recognition and Diagnosis Based on Multimodal Deep Learning and Fuzzy EDAS Approaches. Diagnostics. 2023; 13(11):1897. https://doi.org/10.3390/diagnostics13111897
Chicago/Turabian StyleAmin, Muhammad, Khalil Ullah, Muhammad Asif, Habib Shah, Arshad Mehmood, and Muhammad Attique Khan. 2023. "Real-World Driver Stress Recognition and Diagnosis Based on Multimodal Deep Learning and Fuzzy EDAS Approaches" Diagnostics 13, no. 11: 1897. https://doi.org/10.3390/diagnostics13111897
APA StyleAmin, M., Ullah, K., Asif, M., Shah, H., Mehmood, A., & Khan, M. A. (2023). Real-World Driver Stress Recognition and Diagnosis Based on Multimodal Deep Learning and Fuzzy EDAS Approaches. Diagnostics, 13(11), 1897. https://doi.org/10.3390/diagnostics13111897