Genetic Testing for Familial Hypercholesterolemia in a Pediatric Group: A Romanian Showcase
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Genetic Testing Results
3.2. Clinical Data
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ramaswami, U.; Humphries, S.E. Familial Hypercholesterolaemia: What’s New? Paediatr. Child Health 2019, 29, 127–136. [Google Scholar] [CrossRef]
- Watts, G.F.; Gidding, S.; Wierzbicki, A.S.; Toth, P.P.; Alonso, R.; Brown, W.V.; Bruckert, E.; Defesche, J.; Lin, K.K.; Livingston, M.; et al. Integrated Guidance on the Care of Familial Hypercholesterolaemia from the International FH Foundation. Eur. J. Prev. Cardiol. 2015, 22, 849–854. [Google Scholar] [CrossRef] [PubMed]
- Vallejo-Vaz, A.J.; De Marco, M.; Stevens, C.A.T.; Akram, A.; Freiberger, T.; Hovingh, G.K.; Kastelein, J.J.P.; Mata, P.; Raal, F.J.; Santos, R.D.; et al. Overview of the Current Status of Familial Hypercholesterolaemia Care in over 60 Countries—The EAS Familial Hypercholesterolaemia Studies Collaboration (FHSC). Atherosclerosis 2018, 277, 234–255. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nordestgaard, B.G.; Chapman, M.J.; Humphries, S.E.; Ginsberg, H.N.; Masana, L.; Descamps, O.S.; Wiklund, O.; Hegele, R.A.; Raal, F.J.; Defesche, J.C.; et al. Familial Hypercholesterolaemia Is Underdiagnosed and Undertreated in the General Population: Guidance for Clinicians to Prevent Coronary Heart Disease. Eur. Heart J. 2013, 34, 3478–3490. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hu, P.; Dharmayat, K.I.; Stevens, C.A.T.; Sharabiani, M.T.A.; Jones, R.S.; Watts, G.F.; Genest, J.; Ray, K.K.; Vallejo-Vaz, A.J. Prevalence of Familial Hypercholesterolemia among the General Population and Patients with Atherosclerotic Cardiovascular Disease: A Systematic Review and Meta-Analysis. Circulation 2020, 141, 1742–1759. [Google Scholar] [CrossRef]
- Vallejo-Vaz, A.J.; Ray, K.K. Epidemiology of Familial Hypercholesterolaemia: Community and Clinical. Atherosclerosis 2018, 277, 289–297. [Google Scholar] [CrossRef] [Green Version]
- Goldberg, A.C.; Hopkins, P.N.; Toth, P.P.; Ballantyne, C.M.; Rader, D.J.; Robinson, J.G.; Daniels, S.R.; Gidding, S.S.; De Ferranti, S.D.; Ito, M.K.; et al. Familial Hypercholesterolemia: Screening, Diagnosis and Management of Pediatric and Adult Patients: Clinical Guidance from the National Lipid Association Expert Panel on Familial Hypercholesterolemia. J. Clin. Lipidol. 2011, 5, 1–52. [Google Scholar] [CrossRef]
- Mytilinaiou, M.; Kyrou, I.; Khan, M.; Grammatopoulos, D.K.; Randeva, H.S. Familial Hypercholesterolemia: New Horizons for Diagnosis and Effective Management. Front. Pharmacol. 2018, 9, 707. [Google Scholar] [CrossRef]
- Kim, Y.R.; Han, K.H. Familial Hypercholesterolemia and the Atherosclerotic Disease. Korean Circ. J. 2013, 43, 363–367. [Google Scholar] [CrossRef] [Green Version]
- Maliachova, O.; Stabouli, S. Familial Hypercholesterolemia in Children and Adolescents: Diagnosis and Treatment. Curr. Pharm. Des. 2018, 24, 3672–3677. [Google Scholar] [CrossRef]
- Harada-shiba, M.; Ohta, T.; Ohtake, A.; Ogura, M.; Dobashi, K. Guidance for Pediatric Familial Hypercholesterolemia 2017. J. Atheroscler. Thromb. 2018, 25, 539–553. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brett, T.; Qureshi, N.; Gidding, S.; Watts, G.F. Screening for Familial Hypercholesterolaemia in Primary Care: Time for General Practice to Play Its Part. Atherosclerosis 2018, 277, 399–406. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wiegman, A.; Gidding, S.S.; Watts, G.F.; Chapman, M.J.; Ginsberg, H.N.; Cuchel, M.; Ose, L.; Averna, M.; Boileau, C.; Borén, J.; et al. Familial Hypercholesterolæmia in Children and Adolescents: Gaining Decades of Life by Optimizing Detection and Treatment. Eur. Heart J. 2015, 36, 2425–2437. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Raal, F.J.; Hovingh, G.K.; Catapano, A.L. Familial Hypercholesterolemia Treatments: Guidelines and New Therapies. Atherosclerosis 2018, 277, 483–492. [Google Scholar] [CrossRef] [Green Version]
- Migliara, G.; Baccolini, V.; Rosso, A.; D’Andrea, E.; Massimi, A.; Villari, P.; De Vito, C. Familial Hypercholesterolemia: A Systematic Review of Guidelines on Genetic Testing and Patient Management. Front. Public Health 2017, 5, 252. [Google Scholar] [CrossRef]
- Berberich, A.J.; Hegele, R.A. The Complex Molecular Genetics of Familial Hypercholesterolaemia. Nat. Rev. Cardiol. 2019, 16, 9–20. [Google Scholar] [CrossRef]
- Vrablik, M.; Tichý, L.; Freiberger, T.; Blaha, V.; Satny, M.; Hubacek, J.A. Genetics of Familial Hypercholesterolemia: New Insights. Front. Genet. 2020, 11, 574474. [Google Scholar] [CrossRef]
- Lambert, C.T.; Sandesara, P.; Isiadinso, I.; Gongora, M.C.; Eapen, D.; Bhatia, N.; Baer, J.T.; Sperling, L. Current Treatment of Familial Hypercholesterolaemia. Eur. Cardiol. Rev. 2014, 9, 76–81. [Google Scholar] [CrossRef]
- Repas, T.B.; Ross Tanner, J. Preventing Early Cardiovascular Death in Patients with Familial Hypercholesterolemia. J. Am. Osteopath. Assoc. 2014, 114, 99–108. [Google Scholar] [CrossRef] [Green Version]
- Zubielienė, K.; Valterytė, G.; Jonaitienė, N.; Žaliaduonytė, D.; Zabiela, V. Familial Hypercholesterolemia and Its Current Diagnostics and Treatment Possibilities: A Literature Analysis. Medicina 2022, 58, 1665. [Google Scholar] [CrossRef]
- Garcia, M.; Juhos, S.; Larsson, M.; Olason, P.I.; Martin, M.; Eisfeldt, J.; DiLorenzo, S.; Sandgren, J.; Díaz De Ståhl, T.; Ewels, P.; et al. Sarek: A Portable Workflow for Whole-Genome Sequencing Analysis of Germline and Somatic Variants. F1000Research 2020, 9, 63. [Google Scholar] [CrossRef] [PubMed]
- McLaren, W.; Gil, L.; Hunt, S.E.; Riat, H.S.; Ritchie, G.R.S.; Thormann, A.; Flicek, P.; Cunningham, F. The Ensembl Variant Effect Predictor. Genome Biol. 2016, 17, 122. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, X.; Li, C.; Mou, C.; Dong, Y.; Tu, Y. DbNSFP v4: A Comprehensive Database of Transcript-Specific Functional Predictions and Annotations for Human Nonsynonymous and Splice-Site SNVs. Genome Med. 2020, 12, 103. [Google Scholar] [CrossRef] [PubMed]
- Kopanos, C.; Tsiolkas, V.; Kouris, A.; Chapple, C.E.; Albarca Aguilera, M.; Meyer, R.; Massouras, A. VarSome: The Human Genomic Variant Search Engine. Bioinformatics 2019, 35, 1978–1980. [Google Scholar] [CrossRef] [Green Version]
- Landrum, M.J.; Chitipiralla, S.; Brown, G.R.; Chen, C.; Gu, B.; Hart, J.; Hoffman, D.; Jang, W.; Kaur, K.; Liu, C.; et al. ClinVar: Improvements to Accessing Data. Nucleic Acids Res. 2020, 48, D835–D844. [Google Scholar] [CrossRef]
- Hamosh, A.; Scott, A.F.; Amberger, J.; Valle, D.; McKusick, V.A. Online Mendelian Inheritance in Man (OMIM). Hum. Mutat. 2000, 15, 57–61. [Google Scholar] [CrossRef]
- Richards, S.; Aziz, N.; Bale, S.; Bick, D.; Das, S.; Gastier-Foster, J.; Grody, W.W.; Hegde, M.; Lyon, E.; Spector, E.; et al. Standards and Guidelines for the Interpretation of Sequence Variants: A Joint Consensus Recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet. Med. Off. J. Am. Coll. Med. Genet. 2015, 17, 405–424. [Google Scholar] [CrossRef] [Green Version]
- Pitea, A.M. Hiper LDL-Colesterolemia. In Protocoale de Diagnostic si Tratament in Pediatrie; Plesca, D.A., Ed.; Amaltea: București, Romania, 2019; pp. 394–396. ISBN 978-973-162-195-1. [Google Scholar]
- Flynn, J.T.; Kaelber, D.C.; Baker-Smith, C.M.; Blowey, D.; Carroll, A.E.; Daniels, S.R.; De Ferranti, S.D.; Dionne, J.M.; Falkner, B.; Flinn, S.K.; et al. Clinical Practice Guideline for Screening and Management of High Blood Pressure in Children and Adolescents. Pediatrics 2017, 140, e20171904. [Google Scholar] [CrossRef] [Green Version]
- Tokgozoglu, L.; Kayikcioglu, M. Familial Hypercholesterolemia: Global Burden and Approaches. Curr. Cardiol. Rep. 2021, 23, 151. [Google Scholar] [CrossRef]
- Toft-Nielsen, F.; Emanuelsson, F.; Benn, M. Familial Hypercholesterolemia Prevalence Among Ethnicities—Systematic Review and Meta-Analysis. Front. Genet. 2022, 13, 840797. [Google Scholar] [CrossRef]
- Beheshti, S.O.; Madsen, C.M.; Varbo, A.; Nordestgaard, B.G. Worldwide Prevalence of Familial Hypercholesterolemia: Meta-Analyses of 11 Million Subjects. J. Am. Coll. Cardiol. 2020, 75, 2553–2566. [Google Scholar] [CrossRef] [PubMed]
- Harada, P.H.; Miname, M.H.; Benseñor, I.M.; Santos, R.D.; Lotufo, P.A. Familial Hypercholesterolemia Prevalence in an Admixed Racial Society: Sex and Race Matter. The ELSA-Brasil. Atherosclerosis 2018, 277, 273–277. [Google Scholar] [CrossRef] [PubMed]
- Benn, M.; Watts, G.F.; Tybjaerg-Hansen, A.; Nordestgaard, B.G. Familial Hypercholesterolemia in the Danish General Population: Prevalence, Coronary Artery Disease, and Cholesterol-Lowering Medication. J. Clin. Endocrinol. Metab. 2012, 97, 3956–3964. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vallejo-Vaz, A.J.; Stevens, C.A.T.; Lyons, A.R.M.; Dharmayat, K.I.; Freiberger, T.; Hovingh, G.K.; Mata, P.; Raal, F.J.; Santos, R.D.; Soran, H.; et al. Global Perspective of Familial Hypercholesterolaemia: A Cross-Sectional Study from the EAS Familial Hypercholesterolaemia Studies Collaboration (FHSC). Lancet 2021, 398, 1713–1725. [Google Scholar] [CrossRef]
- Iacocca, M.A.; Hegele, R.A. Recent Advances in Genetic Testing for Familial Hypercholesterolemia. Expert Rev. Mol. Diagn. 2017, 17, 641–651. [Google Scholar] [CrossRef]
- Ibrahim, S.; Defesche, J.C.; Kastelein, J.J.P. Beyond the Usual Suspects: Expanding on Mutations and Detection for Familial Hypercholesterolemia. Expert Rev. Mol. Diagn. 2021, 21, 887–895. [Google Scholar] [CrossRef]
- Sturm, A.C.; Knowles, J.W.; Gidding, S.S.; Ahmad, Z.S.; Ahmed, C.D.; Ballantyne, C.M.; Baum, S.J.; Bourbon, M.; Carrié, A.; Cuchel, M.; et al. Clinical Genetic Testing for Familial Hypercholesterolemia: JACC Scientific Expert Panel. J. Am. Coll. Cardiol. 2018, 72, 662–680. [Google Scholar] [CrossRef]
- Gidding, S.S.; Wiegman, A.; Groselj, U.; Freiberger, T.; Peretti, N.; Dharmayat, K.I.; Daccord, M.; Bedlington, N.; Sikonja, J.; Ray, K.K.; et al. Paediatric Familial Hypercholesterolaemia Screening in Europe: Public Policy Background and Recommendations. Eur. J. Prev. Cardiol. 2022, 29, 2301–2311. [Google Scholar] [CrossRef]
- Ramaswami, U.; Futema, M.; Bogsrud, M.P.; Holven, K.B.; Roeters van Lennep, J.; Wiegman, A.; Descamps, O.S.; Vrablik, M.; Freiberger, T.; Dieplinger, H.; et al. Comparison of the Characteristics at Diagnosis and Treatment of Children with Heterozygous Familial Hypercholesterolaemia (FH) from Eight European Countries. Atherosclerosis 2020, 292, 178–187. [Google Scholar] [CrossRef] [Green Version]
- Groselj, U.; Kovac, J.; Sustar, U.; Mlinaric, M.; Fras, Z.; Podkrajsek, K.T.; Battelino, T. Universal Screening for Familial Hypercholesterolemia in Children: The Slovenian Model and Literature Review. Atherosclerosis 2018, 277, 383–391. [Google Scholar] [CrossRef]
- Zuurbier, L.C.; Defesche, J.C.; Wiegman, A. Successful Genetic Screening and Creating Awareness of Familial Hypercholesterolemia and Other Heritable Dyslipidemias in the Netherlands. Genes 2021, 12, 1168. [Google Scholar] [CrossRef] [PubMed]
- McKay, A.J.; Hogan, H.; Humphries, S.E.; Marks, D.; Ray, K.K.; Miners, A. Universal Screening at Age 1-2 Years as an Adjunct to Cascade Testing for Familial Hypercholesterolaemia in the UK: A Cost-Utility Analysis. Atherosclerosis 2018, 275, 434–443. [Google Scholar] [CrossRef] [PubMed]
- Betteridge, D.J.; Broome, K.; Durrington, P.N.; Mann, J.I.; Miller, J.P.; Neil, H.A.W.; Thompson, G.R.; Thorogood, M.; Galton, D.J.; Lewis, B.; et al. Risk of Fatal Coronary Heart Disease in Familial Hypercholesterolaemia. Br. Med. J. 1991, 303, 893–896. [Google Scholar]
- Defesche, J.C.; Lansberg, P.J.; Umans-Eckenhausen, M.A.W.; Kastelein, J.J.P. Advanced Method for the Identification of Patients with Inherited Hypercholesterolemia. Semin. Vasc. Med. 2004, 4, 59–65. [Google Scholar] [CrossRef] [PubMed]
- Gidding, S.S.; Champagne, M.A.; De Ferranti, S.D.; Defesche, J.; Ito, M.K.; Knowles, J.W.; McCrindle, B.; Raal, F.; Rader, D.; Santos, R.D.; et al. The Agenda for Familial Hypercholesterolemia: A Scientific Statement from the American Heart Association. Circulation 2015, 132, 2167–2192. [Google Scholar] [CrossRef]
- Bourbon, M.; Alves, A.C.; Alonso, R.; Mata, N.; Aguiar, P.; Padró, T.; Mata, P. Mutational Analysis and Genotype-Phenotype Relation in Familial Hypercholesterolemia: The SAFEHEART Registry. Atherosclerosis 2017, 262, 8–13. [Google Scholar] [CrossRef]
- Banderali, G.; Capra, M.E.; Biasucci, G.; Stracquadaino, R.; Viggiano, C.; Pederiva, C. Detecting Familial Hypercholesterolemia in Children and Adolescents: Potential and Challenges. Ital. J. Pediatr. 2022, 48, 115. [Google Scholar] [CrossRef]
- Di Taranto, M.D.; Giacobbe, C.; Fortunato, G. Familial Hypercholesterolemia: A Complex Genetic Disease with Variable Phenotypes. Eur. J. Med. Genet. 2020, 63, 103831. [Google Scholar] [CrossRef]
- Bianconi, V.; Banach, M.; Pirro, M. Why Patients with Familial Hypercholesterolemia Are at High Cardiovascular Risk? Beyond LDL-C Levels. Trends Cardiovasc. Med. 2021, 31, 205–215. [Google Scholar] [CrossRef]
- Whyte, K.; Jenkins, L.; Path, F.R.C.; Wald, N.J. Child–Parent Familial Hypercholesterolemia Screening in Primary Care. N. Engl. J. Med. 2016, 375, 1628–1637. [Google Scholar] [CrossRef]
- Kerr, M.; Pears, R.; Miedzybrodzka, Z.; Haralambos, K.; Cather, M.; Watson, M.; Humphries, S.E. Cost Effectiveness of Cascade Testing for Familial Hypercholesterolaemia, Based on Data from Familial Hypercholesterolaemia Services in the UK. Eur. Heart J. 2017, 38, 1832–1839. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lázaro, P.; De Isla, L.P.; Watts, G.F.; Alonso, R.; Norman, R.; Muñiz, O.; Fuentes, F.; Mata, N.; López-miranda, J.; González-juanatey, J.R.; et al. Cost-Effectiveness of a Cascade Screening Program for the Early Detection of Familial Hypercholesterolemia. J. Clin. Lipidol. 2017, 11, 260–271. [Google Scholar] [CrossRef] [PubMed]
- Kindt, I.; Mata, P.; Knowles, J.W. The Role of Registries and Genetic Databases in Familial Hypercholesterolemia. Curr. Opin. Lipidol. 2017, 28, 152–160. [Google Scholar] [CrossRef] [PubMed]
- Luirink, I.K.; Wiegman, A.; Kusters, D.M.; Hof, M.H.; Groothoff, J.W.; de Groot, E.; Kastelein, J.J.P.; Hutten, B.A. 20-Year Follow-up of Statins in Children with Familial Hypercholesterolemia. N. Engl. J. Med. 2019, 381, 1547–1556. [Google Scholar] [CrossRef] [PubMed]
- Madar, L.; Juhász, L.; Szűcs, Z.; Kerkovits, L.; Harangi, M.; Balogh, I. Establishing the Mutational Spectrum of Hungarian Patients with Familial Hypercholesterolemia. Genes 2022, 13, 153. [Google Scholar] [CrossRef]
- Chora, J.R.; Medeiros, A.M.; Alves, A.C.; Bourbon, M. Analysis of Publicly Available LDLR, APOB, and PCSK9 Variants Associated with Familial Hypercholesterolemia: Application of ACMG Guidelines and Implications for Familial Hypercholesterolemia Diagnosis. Genet. Med. 2017, 20, 591–598. [Google Scholar] [CrossRef] [Green Version]
- Fouchier, S.W.; Defesche, J.C.; Umans-Eckenhausen, M.A.; Kastelein, J.J. The Molecular Basis of Familial Hypercholesterolemia in the Netherlands. Hum. Genet. 2001, 109, 602–615. [Google Scholar] [CrossRef]
- Santos, R.D.; Bourbon, M.; Alonso, R.; Cuevas, A.; Vasques-Cardenas, N.A.; Pereira, A.C.; Merchan, A.; Alves, A.C.; Medeiros, A.M.; Jannes, C.E.; et al. Clinical and Molecular Aspects of Familial Hypercholesterolemia in Ibero-American Countries. J. Clin. Lipidol. 2017, 11, 160–166. [Google Scholar] [CrossRef]
- Doi, T.; Hori, M.; Harada-Shiba, M.; Kataoka, Y.; Onozuka, D.; Nishimura, K.; Nishikawa, R.; Tsuda, K.; Ogura, M.; Son, C.; et al. Patients With LDLR and PCSK9 Gene Variants Experienced Higher Incidence of Cardiovascular Outcomes in Heterozygous Familial Hypercholesterolemia. J. Am. Heart Assoc. 2021, 10, e018263. [Google Scholar] [CrossRef]
- Wang, H.; Yang, H.; Liu, Z.; Cui, K.; Zhang, Y.; Zhang, Y.; Zhao, K.; Yin, K.; Li, W.; Zhou, Z. Targeted Genetic Analysis in a Chinese Cohort of 208 Patients Related to Familial Hypercholesterolemia. J. Atheroscler. Thromb. 2020, 27, 1288–1298. [Google Scholar] [CrossRef]
- Vlad, C.E.; Foia, L.G.; Popescu, R.; Popa, I.; Aanicai, R.; Reurean-pintilei, D.; Toma, V.; Florea, L.; Kanbay, M.; Covic, A. Molecular Genetic Approach and Evaluation of Cardiovascular Events in Patients with Clinical Familial Hypercholesterolemia Phenotype from Romania. J. Clin. Med. 2021, 10, 1399. [Google Scholar] [CrossRef]
- Miltiadous, G.; Elisaf, M.; Bairaktari, H.; Xenophontos, S.L.; Manoli, P.; Cariolou, M.A. Characterization and Geographic Distribution of the Low Density Lipoprotein Receptor (LDLR) Gene Mutations in Northwestern Greece. Hum. Mutat. 2001, 17, 432–433. [Google Scholar] [CrossRef] [PubMed]
- Tichý, L.; Fajkusová, L.; Zapletalová, P.; Schwarzová, L.; Vrablík, M.; Freiberger, T. Molecular Genetic Background of an Autosomal Dominant Hypercholesterolemia in the Czech Republic. Physiol. Res. 2017, 66, S47–S54. [Google Scholar] [CrossRef] [PubMed]
- Sharifi, M.; Walus-Miarka, M.; Idzior-Waluś, B.; Malecki, M.T.; Sanak, M.; Whittall, R.; Li, K.W.; Futema, M.; Humphries, S.E. The Genetic Spectrum of Familial Hypercholesterolemia in South-Eastern Poland. Metabolism. 2016, 65, 48–53. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Górski, B.; Kubalska, J.; Naruszewicz, M.; Lubiński, J. LDL-R and Apo-B-100 Gene Mutations in Polish Familial Hypercholesterolemias. Hum. Genet. 1998, 102, 562–565. [Google Scholar] [CrossRef]
- Medeiros, A.M.; Alves, A.C.; Bourbon, M. Mutational Analysis of a Cohort with Clinical Diagnosis of Familial Hypercholesterolemia: Considerations for Genetic Diagnosis Improvement. Genet. Med. 2016, 18, 316–324. [Google Scholar] [CrossRef] [Green Version]
- Dedoussis, G.V.Z.; Skoumas, J.; Pitsavos, C.; Choumerianou, D.M.; Genschel, J.; Schmidt, H.; Stefanadis, C. FH Clinical Phenotype in Greek Patients with LDL-R Defective vs. Negative Mutations. Eur. J. Clin. Investig. 2004, 34, 402–409. [Google Scholar] [CrossRef]
- Mozas, P.; Castillo, S.; Tejedor, D.; Reyes, G.; Alonso, R.; Franco, M.; Saenz, P.; Fuentes, F.; Almagro, F.; Mata, P.; et al. Molecular Characterization of Familial Hypercholesterolemia in Spain: Identification of 39 Novel and 77 Recurrent Mutations in LDLR. Hum. Mutat. 2004, 24, 187. [Google Scholar] [CrossRef]
- Weiss, N.; Binder, G.; Keller, C. Mutations in the Low-Density-Lipoprotein Receptor Gene in German Patients with Familial Hypercholesterolaemia. J. Inherit. Metab. Dis. 2000, 23, 778–790. [Google Scholar] [CrossRef]
- Tosi, I.; Toledo-Leiva, P.; Neuwirth, C.; Naoumova, R.P.; Soutar, A.K. Genetic Defects Causing Familial Hypercholesterolaemia: Identification of Deletions and Duplications in the LDL-Receptor Gene and Summary of All Mutations Found in Patients Attending the Hammersmith Hospital Lipid Clinic. Atherosclerosis 2007, 194, 102–111. [Google Scholar] [CrossRef]
- Jannes, C.E.; Santos, R.D.; de Souza Silva, P.R.; Turolla, L.; Gagliardi, A.C.M.; Marsiglia, J.D.C.; Chacra, A.P.; Miname, M.H.; Rocha, V.Z.; Filho, W.S.; et al. Familial Hypercholesterolemia in Brazil: Cascade Screening Program, Clinical and Genetic Aspects. Atherosclerosis 2015, 238, 101–107. [Google Scholar] [CrossRef] [PubMed]
- Faiz, F.; Allcock, R.J.; Hooper, A.J.; van Bockxmeer, F.M. Detection of Variations and Identifying Genomic Breakpoints for Large Deletions in the LDLR by Ion Torrent Semiconductor Sequencing. Atherosclerosis 2013, 230, 249–255. [Google Scholar] [CrossRef] [PubMed]
- Chiou, K.-R.; Charng, M.-J.; Chang, H.-M. Array-Based Resequencing for Mutations Causing Familial Hypercholesterolemia. Atherosclerosis 2011, 216, 383–389. [Google Scholar] [CrossRef] [PubMed]
- Miyake, Y.; Yamamura, T.; Sakai, N.; Miyata, T.; Kokubo, Y.; Yamamoto, A. Update of Japanese Common LDLR Gene Mutations and Their Phenotypes: Mild Type Mutation L547V Might Predominate in the Japanese Population. Atherosclerosis 2009, 203, 153–160. [Google Scholar] [CrossRef]
- Tichý, L.; Freiberger, T.; Zapletalová, P.; Soška, V.; Ravčuková, B.; Fajkusová, L. The Molecular Basis of Familial Hypercholesterolemia in the Czech Republic: Spectrum of LDLR Mutations and Genotype-Phenotype Correlations. Atherosclerosis 2012, 223, 401–408. [Google Scholar] [CrossRef]
- Khera, A.V.; Won, H.-H.; Peloso, G.M.; Lawson, K.S.; Bartz, T.M.; Deng, X.; van Leeuwen, E.M.; Natarajan, P.; Emdin, C.A.; Bick, A.G.; et al. Diagnostic Yield and Clinical Utility of Sequencing Familial Hypercholesterolemia Genes in Patients With Severe Hypercholesterolemia. J. Am. Coll. Cardiol. 2016, 67, 2578–2589. [Google Scholar] [CrossRef]
- Gidding, S.S. Special Commentary: Is Diet Management Helpful in Familial Hypercholesterolemia? Curr. Opin. Clin. Nutr. Metab. Care 2019, 22, 135–140. [Google Scholar] [CrossRef]
- Mach, F.; Baigent, C.; Catapano, A.L.; Koskinas, K.C.; Casula, M.; Badimon, L.; Chapman, M.J.; De Backer, G.G.; Delgado, V.; Ference, B.A.; et al. 2019 ESC/EAS Guidelines for the Management of Dyslipidaemias: Lipid Modification to Reduce Cardiovascular Risk. Eur. Heart J. 2020, 41, 111–188. [Google Scholar] [CrossRef] [Green Version]
- Ramaswami, U.; Humphries, S.E.; Priestley-Barnham, L.; Green, P.; Wald, D.S.; Capps, N.; Anderson, M.; Dale, P.; Morris, A.A. Current Management of Children and Young People with Heterozygous Familial Hypercholesterolaemia—HEART UK Statement of Care. Atherosclerosis 2019, 290, 1–8. [Google Scholar] [CrossRef]
- van der Graaf, A.; Cuffie-Jackson, C.; Vissers, M.N.; Trip, M.D.; Gagné, C.; Shi, G.; Veltri, E.; Avis, H.J.; Kastelein, J.J.P. Efficacy and Safety of Coadministration of Ezetimibe and Simvastatin in Adolescents with Heterozygous Familial Hypercholesterolemia. J. Am. Coll. Cardiol. 2008, 52, 1421–1429. [Google Scholar] [CrossRef] [Green Version]
- Spolitu, S.; Dai, W.; Zadroga, J.A.; Ozcan, L. Proprotein Convertase Subtilisin/Kexin Type 9 and Lipid Metabolism. Curr. Opin. Lipidol. 2019, 30, 186–191. [Google Scholar] [CrossRef] [PubMed]
- Santos, R.D.; Ruzza, A.; Hovingh, G.K.; Stefanutti, C.; Mach, F.; Descamps, O.S.; Bergeron, J.; Wang, B.; Bartuli, A.; Buonuomo, P.S.; et al. Paediatric Patients with Heterozygous Familial Hypercholesterolaemia Treated with Evolocumab for 80 Weeks (HAUSER-OLE): A Single-Arm, Multicentre, Open-Label Extension of HAUSER-RCT. Lancet Diabetes Endocrinol. 2022, 10, 732–740. [Google Scholar] [CrossRef] [PubMed]
- Berberich, A.J.; Hegele, R.A. Lomitapide for the Treatment of Hypercholesterolemia. Expert Opin. Pharmacother. 2017, 18, 1261–1268. [Google Scholar] [CrossRef] [PubMed]
- Santos, R.D.; Duell, P.B.; East, C.; Guyton, J.R.; Moriarty, P.M.; Chin, W.; Mittleman, R.S. Long-Term Efficacy and Safety of Mipomersen in Patients with Familial Hypercholesterolaemia: 2-Year Interim Results of an Open-Label Extension. Eur. Heart J. 2013, 36, 566–575. [Google Scholar] [CrossRef]
- Crooke, S.T.; Geary, R.S. Clinical Pharmacological Properties of Mipomersen (Kynamro), a Second Generation Antisense Inhibitor of Apolipoprotein B HO. Br. J. Clin. Pharmacol. 2012, 76, 269–276. [Google Scholar] [CrossRef] [Green Version]
- Reeskamp, L.F.; Kastelein, J.J.P.; Moriarty, P.M.; Duell, P.B.; Catapano, A.L.; Santos, R.D.; Ballantyne, C.M. Safety and Efficacy of Mipomersen in Patients with Heterozygous Familial Hypercholesterolemia. Atherosclerosis 2019, 280, 109–117. [Google Scholar] [CrossRef]
- Moriarty, P.M.; Parhofer, K.G.; Babirak, S.P.; Cornier, M.-A.; Duell, P.B.; Hohenstein, B.; Leebmann, J.; Ramlow, W.; Schettler, V.; Simha, V.; et al. Alirocumab in Patients with Heterozygous Familial Hypercholesterolaemia Undergoing Lipoprotein Apheresis: The ODYSSEY ESCAPE Trial. Eur. Heart J. 2016, 37, 3588–3595. [Google Scholar] [CrossRef] [Green Version]
- Thompson, G.; Parhofer, K.G. Current Role of Lipoprotein Apheresis. Curr. Atheroscler. Rep. 2019, 21, 26. [Google Scholar] [CrossRef] [Green Version]
- Lui, D.T.W.; Lee, A.C.H.; Tan, K.C.B. Management of Familial Hypercholesterolemia: Current Status and Future Perspectives. J. Endocr. Soc. 2021, 5, bvaa122. [Google Scholar] [CrossRef]
- Medeiros, A.M.; Bourbon, M. Genetic Testing in Familial Hypercholesterolemia: Is It for Everyone? Curr. Atheroscler. Rep. 2023, 25, 127–132. [Google Scholar] [CrossRef]
Case Number | FH | Affected Gene | Variant | ACMG Variant Classification | |
---|---|---|---|---|---|
#4 | Type 2 OMIM #144010 AD * | APOB | NM_000384.3:c.10580G>A rs5742904 (p.Arg3527Gln) | Heterozygous | Likely pathogenic |
#3 | Type 2 OMIM #144010 AD | APOB | NM_000384.3:c.12443_12444delinsAA rs1558559244 (p.Ala4148Glu) | Heterozygous | VUS |
#2 | Type 1 OMIM #143890 AR */AD | LDLR | NM_000527.5:c.1618G>A rs769370816 (p.Ala540Thr) | Heterozygous | Pathogenic |
#6 | Type 1 OMIM #143890 AD/AR | LDLR | NM_000527.5:c.1775G>A rs137929307 (p.Gly592Glu) | Heterozygous | Pathogenic |
#7 | Type 1 OMIM #143890 AD/AR | LDLR | NM_000527.5:c.502G>A rs200727689 (p.Asp168Asn) | Heterozygous | Pathogenic |
#8 | Type 1 OMIM #143890 AD/AR | LDLR | NM_000527.5:c.81C>G rs2228671 (p.Cys27Trp) | Heterozygous | Likely pathogenic |
#1 | Type 3 OMIM #603776 AD | PCSK9 | NM_174936.4:c.836C>T rs1049662014 (p.Pro279Leu) | Heterozygous | VUS |
#5 | Type 3 OMIM #603776 AD | PCSK9 | NM_174936.4:c.836C>T rs1049662014 (p.Pro279Leu) | Heterozygous | VUS |
Study Group (n =20) | Negative Genetic Testing (n = 12) | Positive Genetic Testing (n = 8) | p Values | |
---|---|---|---|---|
Gender | 10 girls 10 boys | 7 girls 5 boys | 3 girls 5 boys | |
Positive family history | 10 cases | 7 cases | 3 cases | 0.32 |
Mean age | 9.70 years (±4.09) | 10.16 years (±4.58) | 9.00 years (±3.38) | 0.43 |
BMI | 19.49 (±7.48) | 20.44 (±8.10) | 17.57 (±6.26) | 1.00 |
Mean systolic blood pressure | 115.38 mmHg (±16.53) | 120.80 mmHg (±12.50) | 108.62 mmHg (±19.21) | 0.22 |
Mean diastolic blood pressure | 66.72 mmHg (±9.00) | 70.10 mmHg (±6.43) | 62.50 mmHg (±10.35) | 0.09 |
Study Group (n = 20) | Negative Genetic Testing (n = 12) | Positive Genetic Testing (n = 8) | p Values | |
---|---|---|---|---|
Total cholesterol | 224.35 mg/dL (±30.75) | 213.16 mg/dL (±21.31) | 241.12 mg/dL (±36.29) | 0.07 |
LDL-cholesterol | 154.25 mg/dL (±26.79) | 147.00 mg/dL (±18.98) | 165.12 mg/dL (±34.01) | 0.24 |
HDL-cholesterol | 59.55 mg/dL (±17.69) | 54.41 mg/dL (±12.51) | 67.25 mg/dL (±22.14) | 0.16 |
ApoA | 149.05 mg/dL (±25.53) | 139.30 mg/dL (±21.72) | 161.25 mg/dL (±32.64) | 0.14 |
ApoB | 117.77 mg/dL (±17.54) | 114.40 mg/dL (±10.80) | 122.00 mg/dL (±23.68) | 0.39 |
Affected Gene | Variant | Country | Number of Patients Included in the Study | Technique Molecular Analysis |
---|---|---|---|---|
LDLR | NM_000527.5:c.1775G>A | Greece [63] | 73 | Direct DNA sequencing of LDL gene (previously identified LDL mutation) |
LDLR | NM_000527.5:c.502G>A | Romania [62] | 61 | Multiplex ligation-dependent probe amplification (MLPA) Sanger sequencing |
Czech Republic-1 [64] | 3914 | MLPA | ||
LDLR | NM_000527.5:c.81C>G | Romania [62] | 61 | MLPA Sanger sequencing |
China-1 [61] | 208 | MLPA | ||
LDLR | NM_000527.5:c.1618G>A | Romania [62] | 61 | MLPA Sanger sequencing |
Hungary [56] | 44 | MLPA | ||
Poland [65] | 161 | MLPA | ||
Greece [68] | 183 | Denaturing gradient gel electrophoresis (DGGE) analysis | ||
Spain [69] | 476 | Single-strand conformation polymorphism (SSCP) analysis | ||
Germany [70] | 162 | MLPA Direct sequencing on LDL gene | ||
United Kingdom [71] | 280 | MLPA Sequencing of amplified fragments of genomic mRNA or DNA | ||
Brazil [72] | 248 | MLPA | ||
Australia [73] | 30 | MLPA Sanger sequencing Ion torrent personal genome machine (PGM) sequencing | ||
Taiwan [74] | 125 | Sanger sequencing Microarray resequencing | ||
Japan [75] | 205 | MLPA SSCP assay | ||
China-2 [60] | 377 | MLPA | ||
China-1 [61] | 208 | MLPA | ||
APOB | NM_000384.3:c.10580G>A | Czech Republic-2 [76] | 2239 | MLPA |
Poland [65] | 161 | MLPA |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Constantin, A.T.; Streata, I.; Covăcescu, M.S.; Riza, A.L.; Roșca, I.; Delia, C.; Tudor, L.M.; Dorobanțu, Ș.; Dragoș, A.; Ristea, D.; et al. Genetic Testing for Familial Hypercholesterolemia in a Pediatric Group: A Romanian Showcase. Diagnostics 2023, 13, 1988. https://doi.org/10.3390/diagnostics13121988
Constantin AT, Streata I, Covăcescu MS, Riza AL, Roșca I, Delia C, Tudor LM, Dorobanțu Ș, Dragoș A, Ristea D, et al. Genetic Testing for Familial Hypercholesterolemia in a Pediatric Group: A Romanian Showcase. Diagnostics. 2023; 13(12):1988. https://doi.org/10.3390/diagnostics13121988
Chicago/Turabian StyleConstantin, Andreea Teodora, Ioana Streata, Mirela Silvia Covăcescu, Anca Lelia Riza, Ioana Roșca, Corina Delia, Lucia Maria Tudor, Ștefania Dorobanțu, Adina Dragoș, Diana Ristea, and et al. 2023. "Genetic Testing for Familial Hypercholesterolemia in a Pediatric Group: A Romanian Showcase" Diagnostics 13, no. 12: 1988. https://doi.org/10.3390/diagnostics13121988
APA StyleConstantin, A. T., Streata, I., Covăcescu, M. S., Riza, A. L., Roșca, I., Delia, C., Tudor, L. M., Dorobanțu, Ș., Dragoș, A., Ristea, D., Ioana, M., & Gherghina, I. (2023). Genetic Testing for Familial Hypercholesterolemia in a Pediatric Group: A Romanian Showcase. Diagnostics, 13(12), 1988. https://doi.org/10.3390/diagnostics13121988