Image Guided Radiotherapy (IGRT) and Delta (Δ) Radiomics—An Urgent Alliance for the Front Line of the War against Head and Neck Cancers
Abstract
:1. Introduction
2. Aims and Scope
3. Radiomics—An Emerging Role in HNC
4. The Multidisciplinary Approach in Locally Advanced HNC: Challenges in ERA Precision Oncology
5. Image-Guided Radiotherapy (IGRT)—The Cornerstone for Radiomics
6. Δ Radiomics in HNC—From Image-Guided Radiotherapy (IGRT) and Adaptive Radiotherapy (ART) to Treatment Response/Toxicity Prediction
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Gillies, R.J.; Kinahan, P.E.; Hricak, H. Radiomics: Images Are More than Pictures, They Are Data. Radiology 2016, 278, 563–577. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nardone, V.; Reginelli, A.; Grassi, R.; Boldrini, L.; Vacca, G.; D’Ippolito, E.; Annunziata, S.; Farchione, A.; Belfiore, M.P.; Desideri, I.; et al. Delta radiomics: A systematic review. Radiol. Med. 2021, 126, 1571–1583. [Google Scholar] [CrossRef] [PubMed]
- Denaro, N.; Merlano, M.C.; Russi, E.G. Follow-up in Head and Neck Cancer: Do More Does It Mean Do Better? A Systematic Review and Our Proposal Based on Our Experience. Clin. Exp. Otorhinolaryngol. 2016, 9, 287–297. [Google Scholar] [CrossRef]
- Sturgis, E.M.; Miller, R.H. Second primary malignancies in the head and neck cancer patient. Ann. Otol. Rhinol. Laryngol. 1995, 104, 946–954. [Google Scholar] [CrossRef] [PubMed]
- Fave, X.; Zhang, L.; Yang, J.; Mackin, D.; Balter, P.; Gomez, D.; Followill, D.; Jones, A.K.; Stingo, F.; Liao, Z.; et al. Delta-radiomics features for the prediction of patient outcomes in non–small cell lung cancer. Sci. Rep. 2017, 7, 588. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jha, A.K.; Mithun, S.; Purandare, N.C.; Kumar, R.; Rangarajan, V.; Wee, L.; Dekker, A. Radiomics: A quantitative imaging biomarker in precision oncology. Nucl. Med. Commun. 2022, 43, 483–493. [Google Scholar] [CrossRef]
- Wang, X.; Xie, T.; Luo, J.; Zhou, Z.; Yu, X.; Guo, X. Radiomics predicts the prognosis of patients with locally advanced breast cancer by reflecting the heterogeneity of tumor cells and the tumor microenvironment. Breast Cancer Res. 2022, 24, 20. [Google Scholar] [CrossRef]
- Iancu, R.I.; Zara, A.D.; Mirestean, C.C.; Iancu, D.P.T. Radiomics in Head and Neck Cancers Radiotherapy. Promises and Challenges. Maedica (Bucur) 2021, 16, 482–488. [Google Scholar] [CrossRef]
- Mirestean, C.C.; Pagute, O.; Buzea, C.; Iancu, R.I.; Iancu, D.T. Radiomic Machine Learning and Texture Analysis—New Horizons for Head and Neck Oncology. Maedica (Bucur) 2019, 14, 126–130. [Google Scholar] [CrossRef]
- Wendt, T.G.; Grabenbauer, G.G.; Rödel, C.M.; Thiel, H.J.; Aydin, H.; Rohloff, R.; Wustrow, T.P.; Iro, H.; Popella, C.; Schalhorn, A. Simultaneous radiochemotherapy versus radiotherapy alone in advanced head and neck cancer: A randomized multicenter study. J. Clin. Oncol. 1998, 16, 1318–1324. [Google Scholar] [CrossRef]
- Skladowski, K.; Law, M.G.; Maciejewski, B.; Steel, G.G. Planned and unplanned gaps in radiotherapy: The importance of gap position and gap duration. Radiother. Oncol. 1994, 30, 109–120. [Google Scholar] [CrossRef] [PubMed]
- Robertson, A.G.; Robertson, C.; Perone, C.; Clarke, K.; Dewar, J.; Elia, M.H.; Hurman, D.; MacDougall, R.H.; Yosef, H.M. Effect of gap length and position on results of treatment of cancer of the larynx in Scotland by radiotherapy: A linear quadratic analysis. Radiother. Oncol. 1998, 48, 165–173. [Google Scholar] [CrossRef] [PubMed]
- O’Shea, K.; Coleman, L.; Fahy, L.; Kleefeld, C.; Foley, M.J.; Moore, M. Compensation for radiotherapy treatment interruptions due to a cyberattack: An isoeffective DVH-based dose compensation decision tool. J. Appl. Clin. Med. Phys. 2022, 23, e13716. [Google Scholar] [CrossRef]
- Putora, P.M.; Schmuecking, M.; Aebersold, D.; Plasswilm, L. Compensability index for compensation radiotherapy after treatment interruptions. Radiat Oncol. 2012, 7, 208. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Steinmann, D.; Cerny, B.; Karstens, J.H.; Bremer, M. Chemoradiotherapy with weekly cisplatin 40 mg/m2 in 103 head-and-neck cancer patients: A cumulative dose-effect analysis. Strahlenther. Onkol. 2009, 185, 682–688. [Google Scholar] [CrossRef]
- Sharma, A.; Kumar, M.; Bhasker, S.; Thakar, A.; Pramanik, R.; Biswas, A.; Kumar, A.; Sikka, K.; Singh, A.C.; Mallick, S.; et al. An open-label, noninferiority phase III RCT of weekly versus three weekly cisplatin and radical radiotherapy in locally advanced head and neck squamous cell carcinoma (ConCERT trial). In Proceedings of the 2022 ASCO Annual Meeting, Chicago, IL, USA, 3–7 June 2022. [Google Scholar]
- Lacas, B.; Carmel, A.; Landais, C.; Wong, S.J.; Licitra, L.; Tobias, J.S.; Burtness, B.; Ghi, M.G.; Cohen, E.E.W.; Grau, C.; et al. Meta-analysis of chemotherapy in head and neck cancer (MACH-NC): An update on 107 randomized trials and 19,805 patients, on behalf of MACH-NC Group. Radiother. Oncol. 2021, 156, 281–293. [Google Scholar] [CrossRef]
- Available online: https://ascopost.com/issues/september-10-2022/concurrent-chemoradiation-therapy-with-weekly-cisplatin-for-locally-advanced-head-and-neck-squamous-cell-carcinoma/ (accessed on 3 March 2023).
- Bonner, J.A.; Harari, P.M.; Giralt, J.; Cohen, R.B.; Jones, C.U.; Sur, R.K.; Raben, D.; Baselga, J.; Spencer, S.A.; Zhu, J.; et al. Radiotherapy plus cetuximab for locoregionally advanced head and neck cancer: 5-year survival data from a phase 3 randomised trial, and relation between cetuximab-induced rash and survival. Lancet Oncol. 2010, 11, 21–28. [Google Scholar] [CrossRef]
- Taberna, M.; Oliva, M.; Mesía, R. Cetuximab-Containing Combinations in Locally Advanced and Recurrent or Metastatic Head and Neck Squamous Cell Carcinoma. Front. Oncol. 2019, 9, 383. [Google Scholar] [CrossRef]
- Gillison, M.L.; Trotti, A.M.; Harris, J.; Eisbruch, A.; Harari, P.M.; Adelstein, D.J.; Jordan, R.C.K.; Zhao, W.; Sturgis, E.M.; Burtness, B.; et al. Radiotherapy plus cetuximab or cisplatin in human papillomavirus-positive oropharyngeal cancer (NRG Oncology RTOG 1016): A randomised, multicentre, non-inferiority trial. Lancet 2019, 393, 40–50, Erratum in Lancet 2020, 395, 784. [Google Scholar] [CrossRef]
- Mehanna, H.; Robinson, M.; Hartley, A.; Kong, A.; Foran, B.; Fulton-Lieuw, T.; Dalby, M.; Mistry, P.; Sen, M.; O’Toole, L.; et al. Radiotherapy plus cisplatin or cetuximab in low-risk human papillomavirus-positive oropharyngeal cancer (De-ESCALaTE HPV): An open-label randomised controlled phase 3 trial. Lancet 2019, 393, 51–60. [Google Scholar] [CrossRef] [Green Version]
- Huo, R.X.; Jin, Y.Y.; Zhuo, Y.X.; Ji, X.T.; Cui, Y.; Wu, X.J.; Wang, Y.J.; Zhang, L.; Zhang, W.H.; Cai, Y.M.; et al. Concurrent chemoradiotherapy using gemcitabine and nedaplatin in recurrent or locally advanced head and neck squamous cell carcinoma. World J. Clin. Cases 2022, 10, 3414–3425. [Google Scholar] [CrossRef] [PubMed]
- Antonia, S.J.; Villegas, A.; Daniel, D.; Vicente, D.; Murakami, S.; Hui, R.; Yokoi, T.; Chiappori, A.; Lee, K.H.; de Wit, M.; et al. Durvalumab after Chemoradiotherapy in Stage III Non-Small-Cell Lung Cancer. N. Engl. J. Med. 2017, 377, 1919–1929. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tao, Y.; Biau, J.; Sun, X.S.; Sire, C.; Martin, L.; Alfonsi, M.; Prevost, J.B.; Modesto, A.; Lafond, C.; Tourani, J.M.; et al. Pembrolizumab versus cetuximab concurrent with radiotherapy in patients with locally advanced squamous cell carcinoma of head and neck unfit for cisplatin (GORTEC 2015-01 PembroRad): A multicenter, randomized, phase II trial. Ann. Oncol. 2023, 34, 101–110. [Google Scholar] [CrossRef] [PubMed]
- Haddad, R.I.; Posner, M.; Hitt, R.; Cohen, E.E.W.; Schulten, J.; Lefebvre, J.L.; Vermorken, J.B. Induction chemotherapy in locally advanced squamous cell carcinoma of the head and neck: Role, controversy, and future directions. Ann. Oncol. 2018, 29, 1130–1140. [Google Scholar] [CrossRef]
- Hitt, R.; Paz-Ares, L.; Brandáriz, A.; Castellano, D.; Peña, C.; Millán, J.M.; Calvo, F.; Ortiz de Urbina, D.; López, E.; Alvarez-Vicent, J.J.; et al. Induction chemotherapy with paclitaxel, cisplatin and 5-fluorouracil for squamous cell carcinoma of the head and neck: Long-term results of a phase II trial. Ann. Oncol. 2002, 13, 1665–1673. [Google Scholar] [CrossRef]
- Lowe, N.M.; Bernstein, J.M.; Mais, K.; Garcez, K.; Lee, L.W.; Sykes, A.; Thomson, D.J.; Homer, J.J.; West, C.M.; Slevin, N.J. Taxane, platinum and 5-FU prior to chemoradiotherapy benefits patients with stage IV neck node-positive head and neck cancer and a good performance status. J. Cancer Res. Clin. Oncol. 2018, 144, 389–401. [Google Scholar] [CrossRef]
- Wang, X.; Eisbruch, A. IMRT for head and neck cancer: Reducing xerostomia and dysphagia. J. Radiat. Res. 2016, 57 (Suppl. S1), i69–i75. [Google Scholar] [CrossRef] [Green Version]
- Lee, N.; Xia, P.; Quivey, J.M.; Sultanem, K.; Poon, I.; Akazawa, C.; Akazawa, P.; Weinberg, V.; Fu, K.K. Intensity-modulated radiotherapy in the treatment of nasopharyngeal carcinoma: An update of the UCSF experience. Int. J. Radiat. Oncol. Biol. Phys. 2002, 53, 12–22. [Google Scholar] [CrossRef]
- Little, M.; Schipper, M.; Feng, F.Y.; Vineberg, K.; Cornwall, C.; Murdoch-Kinch, C.A.; Eisbruch, A. Reducing xerostomia after chemo-IMRT for head-and-neck cancer: Beyond sparing the parotid glands. Int. J. Radiat. Oncol. Biol. Phys. 2012, 83, 1007–1014. [Google Scholar] [CrossRef] [Green Version]
- Rades, D.; Warwas, B.; Gerull, K.; Pries, R.; Leichtle, A.; Bruchhage, K.L.; Hakim, S.G.; Schild, S.E.; Cremers, F. Prognostic Factors for Complete Recovery From Xerostomia After Radiotherapy of Head-and-Neck Cancers. In Vivo 2022, 36, 1795–1800. [Google Scholar] [CrossRef]
- Fernández-Rodríguez, L.J.; Arens-Benites, M.A.; Maldonado-Pijoan, X. Image-Guided Radiation Therapy for Squamous Cell Cancer of the Head and Neck in a Specialized Peruvian Public Hospital. Cureus 2022, 14, e22569. [Google Scholar] [CrossRef] [PubMed]
- Kearney, M.; Coffey, M.; Leong, A. A review of Image Guided Radiation Therapy in head and neck cancer from 2009-201—Best Practice Recommendations for RTTs in the Clinic. Technol. Innov. Patient Support. Radiat. Oncol. 2020, 14, 43–50. [Google Scholar] [CrossRef] [PubMed]
- Sumner, W.; Kim, S.S.; Vitzthum, L.; Moore, K.; Atwood, T.; Murphy, J.; Miyauchi, S.; Califano, J.A.; Mell, L.K.; Mundt, A.J.; et al. End of treatment cone-beam computed tomography (CBCT) is predictive of radiation response and overall survival in oropharyngeal squamous cell carcinoma. Radiat. Oncol. 2021, 16, 147. [Google Scholar] [CrossRef]
- Zumsteg, Z.; DeMarco, J.; Lee, S.P.; Steinberg, M.L.; Lin, C.S.; McBride, W.; Lin, K.; Wang, P.C.; Kupelian, P.; Lee, P. Image guidance during head-and-neck cancer radiation therapy: Analysis of alignment trends with in-room cone-beam computed tomography scans. Int. J. Radiat. Oncol. Biol. Phys. 2012, 83, 712–719. [Google Scholar] [CrossRef]
- Tran, W.T.; Suraweera, H.; Quiaoit, K.; DiCenzo, D.; Fatima, K.; Jang, D.; Bhardwaj, D.; Kolios, C.; Karam, I.; Poon, I.; et al. Quantitative ultrasound delta-radiomics during radiotherapy for monitoring treatment responses in head and neck malignancies. Future Sci. OA 2020, 6, FSO624. [Google Scholar] [CrossRef] [PubMed]
- Sellami, S.; Bourbonne, V.; Hatt, M.; Tixier, F.; Bouzid, D.; Lucia, F.; Pradier, O.; Goasduff, G.; Visvikis, D.; Schick, U. Predicting response to radiotherapy of head and neck squamous cell carcinoma using radiomics from cone-beam CT images. Acta Oncol. 2022, 61, 73–80. [Google Scholar] [CrossRef]
- Yan, D. Adaptive radiotherapy: Merging principle into clinical practice. Semin. Radiat. Oncol. 2010, 20, 79–83. [Google Scholar] [CrossRef]
- National Radiotherapy Advisory Group. Radiotherapy: Developing a World Class Service for England. 2007. Available online: https://www.axrem.org.uk/radiotheraphy_papers/DH_Radiotheraphy_developing_first_class_service_NRAG.pdf (accessed on 3 March 2023).
- Nierer, L.; Eze, C.; da Silva Mendes, V.; Braun, J.; Thum, P.; von Bestenbostel, R.; Kurz, C.; Landry, G.; Reiner, M.; Niyazi, M.; et al. Dosimetric benefit of MR-guided online adaptive radiotherapy in different tumor entities: Liver, lung, abdominal lymph nodes, pancreas and prostate. Radiat. Oncol. 2022, 17, 53. [Google Scholar] [CrossRef]
- Avgousti, R.; Antypas, C.; Armpilia, C.; Simopoulou, F.; Liakouli, Z.; Karaiskos, P.; Kouloulias, V.; Kyrodimos, E.; Moulopoulos, L.A.; Zygogianni, A. Adaptive radiation therapy: When, how and what are the benefits that literature provides? Cancer Radiother. 2022, 26, 622–636. [Google Scholar] [CrossRef]
- Oh, S.; Stewart, J.; Moseley, J.; Kelly, V.; Lim, K.; Xie, J.; Fyles, A.; Brock, K.K.; Lundin, A.; Rehbinder, H.; et al. Hybrid adaptive radiotherapy with on-line MRI in cervix cancer IMRT. Radiother. Oncol. 2014, 110, 323–328. [Google Scholar] [CrossRef]
- Yan, D.; Chen, S.; Krauss, D.J.; Chen, P.Y.; Chinnaiyan, P.; Wilson, G.D. Tumor Voxel Dose-Response Matrix and Dose Prescription Function Derived Using 18F-FDG PET/CT Images for Adaptive Dose Painting by Number. Int. J. Radiat. Oncol. Biol. Phys. 2019, 104, 207–218. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Iliadou, V.; Kakkos, I.; Karaiskos, P.; Kouloulias, V.; Platoni, K.; Zygogianni, A.; Matsopoulos, G.K. Early Prediction of Planning Adaptation Requirement Indication Due to Volumetric Alterations in Head and Neck Cancer Radiotherapy: A Machine Learning Approach. Cancers 2022, 14, 3573. [Google Scholar] [CrossRef] [PubMed]
- Berger, T.; Noble, D.J.; Shelley, L.E.A.; McMullan, T.; Bates, A.; Thomas, S.; Carruthers, L.J.; Beckett, G.; Duffton, A.; Paterson, C.; et al. Predicting radiotherapy-induced xerostomia in head and neck cancer patients using day-to-day kinetics of radiomics features. Phys. Imaging Radiat. Oncol. 2022, 24, 95–101. [Google Scholar] [CrossRef] [PubMed]
- Pota, M.; Scalco, E.; Sanguineti, G.; Farneti, A.; Cattaneo, G.M.; Rizzo, G.; Esposito, M. Early prediction of radiotherapy-induced parotid shrinkage and toxicity based on CT radiomics and fuzzy classification. Artif. Intell. Med. 2017, 81, 41–53. [Google Scholar] [CrossRef] [PubMed]
- van Dijk, L.V.; Langendijk, J.A.; Zhai, T.-T.; Vedelaar, T.A.; Noordzij, W.; Steenbakkers, R.J.H.M.; Sijtsema, N.M. Delta-radiomics features during radiotherapy improve the prediction of late xerostomia. Sci. Rep. 2019, 9, 12483. [Google Scholar] [CrossRef] [Green Version]
- Fatima, K.; Dasgupta, A.; DiCenzo, D.; Kolios, C.; Quiaoit, K.; Saifuddin, M.; Sandhu, M.; Bhardwaj, D.; Karam, I.; Poon, I.; et al. Ultrasound delta-radiomics during radiotherapy to predict recurrence in patients with head and neck squamous cell carcinoma. Clin. Transl. Radiat. Oncol. 2021, 28, 62–70. [Google Scholar] [CrossRef] [PubMed]
- Morgan, H.E.; Wang, K.; Dohopolski, M.; Liang, X.; Folkert, M.R.; Sher, D.J.; Wang, J. Exploratory ensemble interpretable model for predicting local failure in head and neck cancer: The additive benefit of CT and intra-treatment cone-beam computed tomography features. Quant. Imaging Med. Surg. 2021, 11, 4781–4796. [Google Scholar] [CrossRef]
- Liu, Y.; Shi, H.; Huang, S.; Chen, X.; Zhou, H.; Chang, H.; Xia, Y.; Wang, G.; Yang, X. Early prediction of acute xerostomia during radiation therapy for nasopharyngeal cancer based on delta radiomics from CT images. Quant. Imaging Med. Surg. 2019, 9, 1288–1302. [Google Scholar] [CrossRef]
Δ Radiomics in HNC | |||
---|---|---|---|
Images Used for Radiomic Analysis | Number of Selected Features | Endpoint | References |
Ultrasound | Single-feature naive-Bayes classification | Prediction of radiotherapy response at 3 months | Tran et al., 2020 [37] |
CBCT | Two-dimensional (2D) maximum and craniocaudal (CC) | Prediction of radiotherapy response | Sumner at al., 2021 [35] |
CBCT | 1 feature (Coarseness); Clinical + radiomic model | Progression to radiotherapy for oropharingeal cancer | Sellami et al., 2022 [38] |
CBCT | 13 features extracted from CTV and 6 features extracted from parotid glands | Volume change in anatomical strictures; necessity for adaptive radiotherapy | Iliadou et al., 2022 [45] |
MVCT | Combination of dose/volume and radiomics-based model | Prediction of moderate-to-severe xerostomia | Berger et al., 2022 [46] |
CT | Texture features | Early prediction of radiotherapy-induced parotid shrinkage and toxicity during radiotherapy | Pota et al., 2017 [47] |
Treatment planning CT and evaluation CT | Grey tone difference matrix (coarseness), kurtosis, and the median intensity | Prediction of late xerostomia | van Dijk et al., 2019 [48] |
Ultrasound | 31 spectral and related texture features | Prediction of higher risk of recurrence | Fatima et al., 2021 [49] |
CT and CBCT | 102 features including 18 first order, 14 shape, 24 gray level co-occurrence matrix (GLCM), 16 gray level run length matrix (GLRLM), 16 gray level size zone matrix (GLSZM), and 14 gray level dependence matrix (GLDM) features. | Prediction of local failure | Morgan et al., 2021 [50] |
CT | Saliva amount and 1703 radiomics features based model | Prediction of acute xerostomia during radiation therapy for nasopharyngeal cancer | Liu et al., 2019 [51] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mireștean, C.C.; Iancu, R.I.; Iancu, D.P.T. Image Guided Radiotherapy (IGRT) and Delta (Δ) Radiomics—An Urgent Alliance for the Front Line of the War against Head and Neck Cancers. Diagnostics 2023, 13, 2045. https://doi.org/10.3390/diagnostics13122045
Mireștean CC, Iancu RI, Iancu DPT. Image Guided Radiotherapy (IGRT) and Delta (Δ) Radiomics—An Urgent Alliance for the Front Line of the War against Head and Neck Cancers. Diagnostics. 2023; 13(12):2045. https://doi.org/10.3390/diagnostics13122045
Chicago/Turabian StyleMireștean, Camil Ciprian, Roxana Irina Iancu, and Dragoș Petru Teodor Iancu. 2023. "Image Guided Radiotherapy (IGRT) and Delta (Δ) Radiomics—An Urgent Alliance for the Front Line of the War against Head and Neck Cancers" Diagnostics 13, no. 12: 2045. https://doi.org/10.3390/diagnostics13122045
APA StyleMireștean, C. C., Iancu, R. I., & Iancu, D. P. T. (2023). Image Guided Radiotherapy (IGRT) and Delta (Δ) Radiomics—An Urgent Alliance for the Front Line of the War against Head and Neck Cancers. Diagnostics, 13(12), 2045. https://doi.org/10.3390/diagnostics13122045