Differences in Tumour Aggressiveness Based on Molecular Subtype and Race Measured by [18F]FDG PET Metabolic Metrics in Patients with Invasive Carcinoma of the Breast
Abstract
:1. Introduction
2. Materials and Methods
2.1. Patient Selection
2.2. [18F]FDG PET/CT Acquisition and Data Collection
2.3. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Weigelt, B.; Geyer, F.C.; Reis-Filho, J.S. Histological types of breast cancer: How special are they? Mol. Oncol. 2010, 4, 192–208. [Google Scholar] [CrossRef] [Green Version]
- Voduc, K.D.; Cheang, M.C.U.; Tyldesley, S.; Gelmon, K.; Nielsen, T.O.; Kennecke, H. Breast Cancer Subtypes and the Risk of Local and Regional Relapse. J. Clin. Oncol. 2010, 28, 1684–1691. [Google Scholar] [CrossRef] [Green Version]
- Gong, Y.; Liu, Y.-R.; Ji, P.; Hu, X.; Shao, Z.-M. Impact of molecular subtypes on metastatic breast cancer patients: A SEER population-based study. Sci. Rep. 2017, 7, 45411. [Google Scholar] [CrossRef] [Green Version]
- Castaneda, C.A.; Andrés, E.; Barcena, C.; Gómez, H.L.; Cortés-Funés, H.; Ciruelos, E. Behaviour of breast cancer molecular subtypes through tumour progression. Clin. Transl. Oncol. 2012, 14, 481–485. [Google Scholar] [CrossRef] [PubMed]
- Akinyemiju, T.; Sakhuja, S.; Waterbor, J.; Pisu, M.; Altekruse, S.F. Racial/ethnic disparities in de novo metastases sites and survival outcomes for patients with primary breast, colorectal, and prostate cancer. Cancer Med. 2018, 7, 1183–1193. [Google Scholar] [CrossRef]
- Parise, C.; Caggiano, V. The influence of marital status and race/ethnicity on risk of mortality for triple negative breast cancer. PLoS ONE 2018, 13, e0196134. [Google Scholar] [CrossRef] [PubMed]
- Rauscher, G.H.; Silva, A.; Pauls, H.; Frasor, J.; Bonini, M.G.; Hoskins, K. Racial disparity in survival from estrogen and progesterone receptor-positive breast cancer: Implications for reducing breast cancer mortality disparities. Breast Cancer Res. Treat. 2017, 163, 321–330. [Google Scholar] [CrossRef]
- Yang, L.Y.; Yang, L.P.; Zhu, B. Clinicopathological characteristics and survival outcomes of invasive lobular carcinoma in different races. Oncotarget 2017, 8, 74287–74298. [Google Scholar] [CrossRef] [Green Version]
- Silber, J.H.; Rosenbaum, P.R.; Clark, A.S.; Giantonio, B.J.; Ross, R.N.; Teng, Y.; Wang, M.; Niknam, B.A.; Ludwig, J.M.; Wang, W.; et al. Characteristics associated with differences in survival among black and white women with breast cancer. JAMA 2013, 310, 389–397. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Foy, K.C.; Fisher, J.L.; Lustberg, M.B.; Gray, D.M.; DeGraffinreid, C.R.; Paskett, E.D. Disparities in breast cancer tumor characteristics, treatment, time to treatment, and survival probability among African American and white women. NPJ Breast Cancer 2018, 4, 7. [Google Scholar] [CrossRef] [Green Version]
- Clarke, C.A.; Keegan, T.H.; Yang, J.; Press, D.J.; Kurian, A.W.; Patel, A.H.; Lacey, J.V., Jr. Age-specific incidence of breast cancer subtypes: Understanding the black-white crossover. J. Natl. Cancer Inst. 2012, 104, 1094–1101. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gupta, V.; Haque, I.; Chakraborty, J.; Graff, S.; Banerjee, S.; Banerjee, S.K. Racial disparity in breast cancer: Can it be mattered for prognosis and therapy. J. Cell Commun. Signal. 2018, 12, 119–132. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Keenan, T.; Moy, B.; Mroz, E.A.; Ross, K.; Niemierko, A.; Rocco, J.W.; Isakoff, S.; Ellisen, L.W.; Bardia, A. Comparison of the Genomic Landscape Between Primary Breast Cancer in African American Versus White Women and the Association of Racial Differences with Tumor Recurrence. J. Clin. Oncol. 2015, 33, 3621–3627. [Google Scholar] [CrossRef] [PubMed]
- Higashi, K.; Ueda, Y.; Ayabe, K.; Sakurai, A.; Seki, H.; Nambu, Y.; Oguchi, M.; Shikata, H.; Taki, S.; Tonami, H.; et al. FDG PET in the evaluation of the aggressiveness of pulmonary adenocarcinoma: Correlation with histopathological features. Nucl. Med. Commun. 2000, 21, 707–714. [Google Scholar] [CrossRef] [PubMed]
- Groheux, D.; Giacchetti, S.; Moretti, J.L.; Porcher, R.; Espié, M.; Lehmann-Che, J.; de Roquancourt, A.; Hamy, A.S.; Cuvier, C.; Vercellino, L.; et al. Correlation of high 18F-FDG uptake to clinical, pathological and biological prognostic factors in breast cancer. Eur. J. Nucl. Med. Mol. Imaging 2011, 38, 426–435. [Google Scholar] [CrossRef]
- Ziai, P.; Hayeri, M.R.; Salei, A.; Salavati, A.; Houshmand, S.; Alavi, A.; Teytelboym, O.M. Role of Optimal Quantification of FDG PET Imaging in the Clinical Practice of Radiology. RadioGraphics 2016, 36, 481–496. [Google Scholar] [CrossRef] [Green Version]
- Watanabe, R.; Tomita, N.; Takeuchi, K.; Sakata, S.; Tateishi, U.; Tanaka, M.; Fujita, H.; Inayama, Y.; Ishigatsubo, Y. SUVmax in FDG-PET at the biopsy site correlates with the proliferation potential of tumor cells in non-Hodgkin lymphoma. Leuk. Lymphoma 2010, 51, 279–283. [Google Scholar] [CrossRef]
- Kitajima, K.; Fukushima, K.; Miyoshi, Y.; Nishimukai, A.; Hirota, S.; Igarashi, Y.; Katsuura, T.; Maruyama, K.; Hirota, S. Association between 18F-FDG uptake and molecular subtype of breast cancer. Eur. J. Nucl. Med. Mol. Imaging 2015, 42, 1371–1377. [Google Scholar] [CrossRef]
- Koo, H.R.; Park, J.S.; Kang, K.W.; Cho, N.; Chang, J.M.; Bae, M.S.; Kim, W.H.; Lee, S.H.; Kim, M.Y.; Kim, J.Y.; et al. 18F-FDG uptake in breast cancer correlates with immunohistochemically defined subtypes. Eur. Radiol. 2014, 24, 610–618. [Google Scholar] [CrossRef]
- Ozkan, E.E.; Sengul, S.S.; Erdogan, M.; Gurdal, O.; Eroglu, H.E. 18F-fluorodeoxyglucose PET/computed tomography in locoregional staging and assessment of biological and clinical aggressiveness of breast cancer subtypes. Nucl. Med. Commun. 2019, 40, 1043–1050. [Google Scholar] [CrossRef]
- Sokolović, E.; Cerić, T.; Cerić, Š.; Bešlija, S.; Vegar-Zubović, S.; Bešlić, N.; Sefić-Pašić, I.; Pašić, A. The Prognostic Value of SUVmax of 18F-FDG PET/CT in Patients with Metastatic Colorectal Cancer. Acta Med. Acad. 2020, 49, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Nakamura, K.; Kodama, J.; Okumura, Y.; Hongo, A.; Kanazawa, S.; Hiramatsu, Y. The SUVmax of 18F-FDG PET correlates with histological grade in endometrial cancer. Int. J. Gynecol. Cancer 2010, 20, 110–115. [Google Scholar] [CrossRef]
- Jin, A.; Lin, X.; Yin, X.; Cui, Y.; Ma, L. Prognostic value of MTV and TLG of 18 F-FDG PET in patients with head and neck squamous cell carcinoma: A meta-analysis. Medicine 2022, 101, e30798. [Google Scholar] [CrossRef] [PubMed]
- Breen, W.G.; Hathcock, M.A.; Young, J.R.; Kowalchuk, R.O.; Bansal, R.; Khurana, A.; Bennani, N.N.; Paludo, J.; Villasboas Bisneto, J.C.; Wang, Y.; et al. Metabolic characteristics and prognostic differentiation of aggressive lymphoma using one-month post-CAR-T FDG PET/CT. J. Hematol. Oncol. 2022, 15, 36. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Dong, M.; Sun, X.; Li, W.; Xing, L.; Yu, J. Prognostic Value of 18F-FDG PET/CT in Surgical Non-Small Cell Lung Cancer: A Meta-Analysis. PLoS ONE 2016, 11, e0146195. [Google Scholar] [CrossRef] [Green Version]
- Wen, W.; Xuan, D.; Hu, Y.; Li, X.; Liu, L.; Xu, D. Prognostic value of maximum standard uptake value, metabolic tumor volume, and total lesion glycolysis of positron emission tomography/computed tomography in patients with breast cancer: A systematic review and meta-analysis. PLoS ONE 2019, 14, e0225959. [Google Scholar] [CrossRef] [Green Version]
- Alvarez, J.V.; Belka, G.K.; Pan, T.-C.; Chen, C.-C.; Blankemeyer, E.; Alavi, A.; Karp, J.S.; Chodosh, L.A. Oncogene Pathway Activation in Mammary Tumors Dictates FDG-PET Uptake. Cancer Res. 2014, 74, 7583–7598. [Google Scholar] [CrossRef] [Green Version]
- Basu, S.; Chen, W.; Tchou, J.; Mavi, A.; Cermik, T.; Czerniecki, B.; Schnall, M.; Alavi, A. Comparison of triple-negative and estrogen receptor-positive/progesterone receptor-positive/HER2-negative breast carcinoma using quantitative fluorine-18 fluorodeoxyglucose/positron emission tomography imaging parameters: A potentially useful method for disease characterization. Cancer 2008, 112, 995–1000. [Google Scholar] [CrossRef]
- Boellaard, R.; Delgado-Bolton, R.; Oyen, W.J.; Giammarile, F.; Tatsch, K.; Eschner, W.; Verzijlbergen, F.J.; Barrington, S.F.; Pike, L.C.; Weber, W.A.; et al. FDG PET/CT: EANM procedure guidelines for tumour imaging: Version 2.0. Eur. J. Nucl. Med. Mol. Imaging 2015, 42, 328–354. [Google Scholar] [CrossRef]
- Johnson, K.S.; Conant, E.F.; Soo, M.S. Molecular Subtypes of Breast Cancer: A Review for Breast Radiologists. J. Breast Imaging 2020, 3, 12–24. [Google Scholar] [CrossRef]
- Hwang, E.; Yap, M.L.; Boxer, M.M.; Chong, S.; Duggan, K.; Kaadan, N.; Delaney, G.P. Variations in breast cancer histology and treatment patterns between the major ethnic groups of South West Sydney. Breast J. 2017, 24, 615–619. [Google Scholar] [CrossRef] [PubMed]
- Khanna, S.; Kim, K.N.; Qureshi, M.M.; Agarwal, A.; Parikh, D.; Ko, N.Y.; Rand, A.E.; Hirsch, A.E. Impact of patient demographics, tumor characteristics, and treatment type on treatment delay throughout breast cancer care at a diverse academic medical center. Int. J. Women’s Health 2017, 9, 887–896. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pak, K.; Seok, J.W.; Kim, H.Y.; Nguyen, T.L.; Kim, K.; Kim, S.J.; Kim, I.J.; Hopper, J. Prognostic value of metabolic tumor volume and total lesion glycolysis in breast cancer: A meta-analysis. Nucl. Med. Commun. 2020, 41, 824–829. [Google Scholar] [CrossRef] [PubMed]
- Singh, E.; Joffe, M.; Cubasch, H.; Ruff, P.; Norris, S.A.; Pisa, P.T. Breast cancer trends differ by ethnicity: A report from the South African National Cancer Registry (1994–2009). Eur. J. Public Health 2017, 27, 173–178. [Google Scholar] [CrossRef] [Green Version]
- Chen, H.L.; Zhou, M.Q.; Tian, W.; Meng, K.X.; He, H.F. Effect of Age on Breast Cancer Patient Prognoses: A Population-Based Study Using the SEER 18 Database. PLoS ONE 2016, 11, e0165409. [Google Scholar] [CrossRef]
- Buck, A.; Schirrmeister, H.; Kühn, T.; Shen, C.; Kalker, T.; Kotzerke, J.; Dankerl, A.; Glatting, G.; Reske, S.; Mattfeldt, T. FDG uptake in breast cancer: Correlation with biological and clinical prognostic parameters. Eur. J. Nucl. Med. Mol. Imaging 2002, 29, 1317–1323. [Google Scholar] [CrossRef]
- Yersal, O.; Barutca, S. Biological subtypes of breast cancer: Prognostic and therapeutic implications. World J. Clin. Oncol. 2014, 5, 412–424. [Google Scholar] [CrossRef]
- Menikdiwela, K.R.; Kahathuduwa, C.; Bolner, M.L.; Rahman, R.L.; Moustaid-Moussa, N. Association between Obesity, Race or Ethnicity, and Luminal Subtypes of Breast Cancer. Biomedicines 2022, 10, 2931. [Google Scholar] [CrossRef]
- Parada, H., Jr.; Sun, X.; Fleming, J.M.; Williams-DeVane, C.R.; Kirk, E.L.; Olsson, L.T.; Perou, C.M.; Olshan, A.F.; Troester, M.A. Race-associated biological differences among luminal A and basal-like breast cancers in the Carolina Breast Cancer Study. Breast Cancer Res. BCR 2017, 19, 131. [Google Scholar] [CrossRef] [Green Version]
- Newman, L.A. Breast Cancer Disparities: Socioeconomic Factors versus Biology. Ann. Surg. Oncol. 2017, 24, 2869–2875. [Google Scholar] [CrossRef]
- Key, T.J.; Verkasalo, P.K.; Banks, E. Epidemiology of breast cancer. Lancet Oncol. 2001, 2, 133–140. [Google Scholar] [CrossRef]
- Cho, B.; Han, Y.; Lian, M.; Colditz, G.A.; Weber, J.D.; Ma, C.; Liu, Y. Evaluation of Racial/Ethnic Differences in Treatment and Mortality Among Women With Triple-Negative Breast Cancer. JAMA Oncol. 2021, 7, 1016–1023. [Google Scholar] [CrossRef] [PubMed]
- You, K.; Park, S.; Ryu, J.M.; Kim, I.; Lee, S.K.; Yu, J.; Kim, S.W.; Nam, S.J.; Lee, J.E. Comparison of Core Needle Biopsy and Surgical Specimens in Determining Intrinsic Biological Subtypes of Breast Cancer with Immunohistochemistry. J. Breast Cancer 2017, 20, 297–303. [Google Scholar] [CrossRef] [PubMed]
- Van de Wiele, C.; Kruse, V.; Smeets, P.; Sathekge, M.; Maes, A. Predictive and prognostic value of metabolic tumour volume and total lesion glycolysis in solid tumours. Eur. J. Nucl. Med. Mol. Imaging 2013, 40, 290–301. [Google Scholar] [CrossRef] [PubMed]
- Sopik, V.; Narod, S.A. The relationship between tumour size, nodal status and distant metastases: On the origins of breast cancer. Breast Cancer Res. Treat. 2018, 170, 647–656. [Google Scholar] [CrossRef] [Green Version]
Total | Mixed Ancestry | Black | White | p-Value | |
---|---|---|---|---|---|
Number (%) | 127 (100%) | 81 (63.8%) | 40 (31.5%) | 6 (4.7%) | |
Mean Age (SD), years | 51.50 (12.78) | 52.1 (12.45) | 49.63 (13.51) | 55.83 (12.58) | 0.425 A |
Median SUVmax-PT | 11.5 | 11.1 | 13.80 | 6.30 | 0.004 K |
Median MTV-PT | 37.3 | 30 | 52.05 | 14.8 | 0.041 K |
Median TLG-PT | 235.0 | 229.3 | 304.95 | 40.75 | 0.005 K |
Patients with regional metastases, n (%) | 110 (86.6%) | 67 (82.7%) | 37 (92.5%) | 6 (100%) | 0.204 C |
Patients with distant metastases, n (%) | 61 (48%) | 32 (39.5%) | 28 (70%) | 1 (16.7%) | 0.002 C |
Luminal | HER2-Enriched | Basal | p-Value | |
---|---|---|---|---|
Number (%) | 80 (67.2%) | 20 (16.8%) | 19 (16%) | |
Mean Age (SD), years | 51.8(12.6) | 54.5 (13.9) | 45.7 (10.9) | 0.078 A |
Median SUVmax-PT | 10.3 | 13 | 20.3 | <0.001 K |
Median MTV-PT | 24.45 | 62.8 | 119.6 | <0.001 K |
Median TLG-PT | 162.1 | 557.45 | 1384.6 | <0.001 K |
Patients with regional metastases, n (%) | 66 (82.5%) | 20 (100%) | 16 (84.2%) | 0.376 C |
Patients with distant metastases, n (%) | 36 (45%) | 13 (65%) | 9 (47.4%) | 0.275 C |
Luminal | ||||
---|---|---|---|---|
Mixed Ancestry | Black | White | p-Value | |
N/T (%) * | 53/76 (69.7%) | 23/37 (62.2%) | 4/6 (66.7%) | 0.723 C |
Mean Age (SD), years | 53.4 (12.9) | 47.9 (11.7) | 53.5 (12.4) | 0.216 A |
Median SUVmax-PT | 9.7 | 12.1 | 4.8 | 0.012 K |
Median MTV-PT | 22.5 | 27.9 | 27.8 | 0.411 K |
Median TLG-PT | 151.1 | 189.7 | 77.05 | 0.132 K |
Patients with regional metastases, n (%) | 41 (77.4%) | 21 (91.3%) | 4 (100%) | 0.340 C |
Patients with distant metastases, n (%) | 19 (35.8%) | 17 (73.9%) | 0 (0%) | 0.006 C |
HER2-Enriched | ||||
N/T (%) * | 11/76 (14.5%) | 7/37 (18.9%) | 2/6 (33.3%) | 0.452 C |
Mean Age (SD), years | 54.2(13.4) | 53.3 (16.0) | 60.5 (16.3) | 0.823 A |
Median SUVmax-PT | 16.8 | 11.9 | 9.3 | 0.394 K |
Median MTV-PT | 86.6 | 57.9 | 4.2 | 0.075 K |
Median TLG-PT | 771 | 523.5 | 20.75 | 0.071 K |
Patients with regional metastases, n (%) | 11 (100%) | 7 (100%) | 2 (100%) | NA |
Patients with distant metastases, n (%) | 6 (54.5%) | 6 (85.7%) | 1 (50%) | 0.359 C |
Luminal | |||
---|---|---|---|
Mixed Ancestry | Black | p-Value | |
N/T (%) * | 53/76 (69.7%) | 23/37 (62.2%) | 0.421 C |
Mean Age (SD) | 53.4 (12.9) | 47.9 (11.7) | 0.085 T |
Median SUVmax-PT | 9.7 | 12.1 | 0.017 M |
Median MTV-PT | 22.5 | 27.9 | 0.182 M |
Median TLG-PT | 151.1 | 189.7 | 0.081 M |
Patients with regional metastases, n (%) | 41 (77.4%) | 21 (91.3%) | 0.149 C |
Patients with distant metastases, n (%) | 19 (35.8%) | 17 (73.9%) | 0.002 C |
HER2-Enriched | |||
N/T (%) * | 11/76 (14.5%) | 7/37 (18.9%) | 0.544 C |
Mean Age (SD) | 54.2 (13.4) | 53.3 (16.0) | 0.899 T |
Median SUVmax-PT | 16.8 | 11.9 | 0.650 M |
Median MTV-PT | 86.6 | 57.9 | 0.860 M |
Median TLG-PT | 771 | 523.5 | 0.724 M |
Patients with regional metastases, n (%) | 11 (100%) | 7 (100%) | |
Patients with distant metastases, n (%) | 6 (54.5%) | 6 (85.7%) | 0.171 C |
Basal | |||
N/T (%) | 12/76 (15.8%) | 7/37 (18.9%) | 0.676 C |
Mean Age (SD), years | 46.83 (10.62) | 43.71 (12.06) | 0.564 T |
Median SUVmax-PT | 16.55 | 21.2 | 0.057 M |
Median MTV-PT | 92.85 | 131.70 | 0.100 M |
Median TLG-PT | 634.59 | 2842.5 | 0.007 M |
Patients with regional metastases, n (%) | 10 (83.3%) | 6 (85.7%) | 0.890 C |
Patients with distant metastases, n (%) | 6 (50%) | 3 (42.9%) | 0.763 C |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abubakar, S.; More, S.; Tag, N.; Olabinjo, A.; Isah, A.; Lawal, I. Differences in Tumour Aggressiveness Based on Molecular Subtype and Race Measured by [18F]FDG PET Metabolic Metrics in Patients with Invasive Carcinoma of the Breast. Diagnostics 2023, 13, 2059. https://doi.org/10.3390/diagnostics13122059
Abubakar S, More S, Tag N, Olabinjo A, Isah A, Lawal I. Differences in Tumour Aggressiveness Based on Molecular Subtype and Race Measured by [18F]FDG PET Metabolic Metrics in Patients with Invasive Carcinoma of the Breast. Diagnostics. 2023; 13(12):2059. https://doi.org/10.3390/diagnostics13122059
Chicago/Turabian StyleAbubakar, Sofiullah, Stuart More, Naima Tag, Afusat Olabinjo, Ahmed Isah, and Ismaheel Lawal. 2023. "Differences in Tumour Aggressiveness Based on Molecular Subtype and Race Measured by [18F]FDG PET Metabolic Metrics in Patients with Invasive Carcinoma of the Breast" Diagnostics 13, no. 12: 2059. https://doi.org/10.3390/diagnostics13122059
APA StyleAbubakar, S., More, S., Tag, N., Olabinjo, A., Isah, A., & Lawal, I. (2023). Differences in Tumour Aggressiveness Based on Molecular Subtype and Race Measured by [18F]FDG PET Metabolic Metrics in Patients with Invasive Carcinoma of the Breast. Diagnostics, 13(12), 2059. https://doi.org/10.3390/diagnostics13122059