The Impact of the COVID-19 Pandemic on Outcomes in Acute Pancreatitis: A Propensity Score Matched Study Comparing before and during the Pandemic
Abstract
:1. Introduction
2. Materials and Methods
2.1. Inclusion Criteria
2.2. Exclusion Criteria
2.3. Study Design
2.4. Statistical Analysis
3. Results
3.1. Demographic, Clinical and Biological Data of AP Patients from the Pre-COVID-19 vs. during-COVID-19 Group
3.2. Demographic and Biological Data of Pre-COVID-19 AP Patients vs. COVID-19 AP Patients
3.3. Demographic and Biological Data of AP Patients in the during-COVID-19 Period vs. AP Patients with COVID-19
3.4. Comparison of Patients Discharged Alive and Those Who Died in the Pre-COVID-19 Group
3.5. Comparison of Patients Discharged Alive and Those Who Died in the during-COVID-19 Group
3.6. Comparison of Patients with AP and COVID-19 Disease Discharged Alive and Those Who Died
4. Discussion
Study Limitation
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Petrov, M.S.; Yadav, D. Global epidemiology and holistic prevention of pancreatitis. Nat. Rev. Gastroenterol. Hepatol. 2019, 16, 175–184. [Google Scholar] [CrossRef]
- Zheng, Z.; Ding, Y.-X.; Qu, Y.-X.; Cao, F.; Li, F. A narrative review of acutepancreatitis and its diagnosis, pathogenetic mecha-nism, and management. Ann.Transl. Med. 2021, 9, 69. [Google Scholar] [CrossRef]
- Boxhoorn, L.; Voermans, R.P.; Bouwense, S.A.; Treese, C. Acute pancreatitis. Lancet 2020, 396, 726–734. [Google Scholar] [CrossRef] [PubMed]
- Roberts, S.E.; Morrison-Rees, S.; John, A.; Williams, J.G.; Brown, T.H.; Samuel, D.G. The incidence and aetiology of acutepancreatitis across Europe. Pancreatology 2017, 17, 155–165. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cho, J.; Petrov, M.S. Pancreatitis, Pancreatic Cancer, and Their Metabolic Sequelae: Projected Burden to 2050. Clin. Transl. Gastroenterol. 2020, 11, e00251. [Google Scholar] [CrossRef] [PubMed]
- Banks, P.A.; Bollen, T.L.; Dervenis, C.; Johnson, C.D.; Sarr, M.G.; Vege, S.S. Classification of acute pancreatitis—2012: Revision of the Atlanta classification and definitions by international consensus. Gut 2013, 62, 102–111. [Google Scholar] [CrossRef] [PubMed]
- Chan, K.S.; Shelat, V.G. Diagnosis, severity stratification and management of adult acute pancreatitis–current evidence and controversies. World J. Gastrointest. Surg. 2022, 14, 1179–1197. [Google Scholar] [CrossRef]
- van Dijk, S.M.; Hallensleben, N.D.L.; van Santvoort, H.C.; Fockens, P.; van Goor, H.; Bruno, M.J.; Besselink, M.G. Acute pancreatitis:recent advances through randomised trials. Gut 2017, 66, 2024–2032. [Google Scholar] [CrossRef]
- Karimi, S.E.; Ahmadi, S.; Azar, N.S. Inequities as a Social Determinant of Health: Responsibility in Paying Attention to the Poor and Vulnerable at Risk of COVID-19. J. Public Health Res. 2021, 10, 1904. [Google Scholar] [CrossRef]
- Volintiru, C.; Gherghina, S. We are in this together: Stakeholder cooperation during COVID-19 in Romania. Eur. Politi Sci. 2022, 1, 1–11. [Google Scholar] [CrossRef]
- Mărcău, F.-C.; Purec, S.; Niculescu, G. Study on the Refusal of Vaccination against COVID-19 in Romania. Vaccines 2022, 10, 261. [Google Scholar] [CrossRef]
- Mărcău, F.C.; Peptan, C.; Nedelcuță, R.M.; Băleanu, V.D.; Băleanu, A.R.; Niculescu, B. Parental COVID-19 Vaccine Hesitancy for Children in Romania: National Survey. Vaccines 2022, 10, 547. [Google Scholar] [CrossRef]
- Cheeyandira, A. The effects of COVID-19 pandemic on the provision of urgent surgery: A perspective from the USA. J. Surg. Case Rep. 2020, 2020, rjaa109. [Google Scholar] [CrossRef] [PubMed]
- Wongtanasarasin, W.; Srisawang, T.; Yothiya, W.; Phinyo, P. Impact of national lockdown towards emergency department visits and admission rates during the COVID-19 pandemic in Thailand: A hospital-based study. Emerg. Med. Australas. 2020, 33, 316–323. [Google Scholar] [CrossRef] [PubMed]
- Pandanaboyana, S.; Moir, J.; Leeds, J.S.; Oppong, K.; Kanwar, A.; Marzouk, A. SARS-CoV-2 infection in acute pancreatitis increases disease severity and 30-day mortality: COVID PAN collaborative study. Gut 2021, 70, 1061–1069. [Google Scholar] [CrossRef] [PubMed]
- Dirweesh, A.; Li, Y.; Trikudanathan, G.; Mallery, J.S.; Freeman, M.L.; Amateau, S.K. Clinical Outcomes of Acute Pancreatitis in Patients With Coronavirus Disease 2019. Gastroenterology 2020, 159, 1972–1974. [Google Scholar] [CrossRef]
- Samanta, J.; Mahapatra, S.J.; Kumar, N.; Elhence, A.; Dhar, J.; Gupta, A.; Dhooria, A.; Bhalla, A.; Prasad, M.; Das, A.; et al. Virus related acute pancreatitis and virus superinfection in the ‘Dual disease’ model of acute pancreatitis and SARS-Co-V2 infection: A multicentre prospective study. Pancreatology 2022, 22, 339–347. [Google Scholar] [CrossRef]
- Colvin, S.D.; Smith, E.N.; Morgan, D.E.; Porter, K.K. Acute pancreatitis: An update on the revised Atlanta classification. Abdom. Imaging 2019, 45, 1222–1231. [Google Scholar] [CrossRef]
- Benjamini, Y.; Hochberg, Y. Controlling the False Discovery Rate: A Practical and Powerful Approach to Multiple Testing. J. Royal Statistical Soc. Ser. B Methodol. 1995, 57, 289–300. [Google Scholar] [CrossRef]
- Inamdar, S.; Benias, P.C.; Liu, Y.; Sejpal, D.V.; Satapathy, S.K.; Trindade, A.J. The Northwell COVID-19 Research Consortium. Prevalence, Risk Factors, and Outcomes of Hospitalized Patients with Coronavirus Disease 2019 Presenting as Acute Pancreatitis. Gastroenterology 2020, 159, 2226–2228.e2. [Google Scholar] [CrossRef]
- Shushtari, Z.J.; Salimi, Y.; Ahmadi, S.; Rajabi-Gilan, N.; Shirazikhah, M.; Biglarian, A.; Almasi, A.; Gharehghani, M.A.M. Social determinants of adherence to COVID-19 preventive guidelines: A comprehensive review. Osong Public Health Res. Perspect. 2021, 12, 346–360. [Google Scholar] [CrossRef]
- De Rosa, S.; Spaccarotella, C.; Basso, C.; Calabrò, M.P.; Curcio, A.; Filardi, P.P.; Mancone, M.; Mercuro, G.; Muscoli, S.; Nodari, S.; et al. Reduction of hospitalizations for myocardial infarction in Italy in the COVID-19 era. Eur. Heart J. 2020, 41, 2083–2088. [Google Scholar] [CrossRef] [PubMed]
- Hübner, M.; Zingg, T.; Martin, D.; Eckert, P.; Demartines, N. Surgery for non-COVID-19 patients during the pandemic. PLoS ONE 2020, 15, e0241331. [Google Scholar] [CrossRef] [PubMed]
- Martellucci, J.; Damigella, A.; Bergamini, C.; Alemanno, G.; Pantalone, D.; Coratti, A.; Muiesan, P.; Cianchi, F.; Prosperi, P. Emer-gency surgery in the time of Coronavirus: The pandemic effect. Minerva Chir. 2020, 76, 382–387. [Google Scholar]
- Zintsmaster, M.P.; Myers, D.T. Patients avoided important care during the early weeks of the coronavirus pandemic: Divertic-ulitis patients were more likely to present with an abscess on CT. Emerg. Radiol. 2021, 28, 279–282. [Google Scholar] [CrossRef]
- Rosa, F.; Covino, M.; Sabia, L.; Quero, G.; Fiorillo, C.; Cozza, V.; Sganga, G.; Gasbarrini, A.; Franceschi, F.; Alfieri, S. Surgical emer-gencies during SARS-CoV-2 pandemic lockdown: What happened? Eur. Rev. Med. Pharmacol. Sci. 2020, 24, 11919–11925. [Google Scholar] [PubMed]
- Hartnett, K.P.; Kite-Powell, A.; DeVies, J.; Coletta, M.A.; Boehmer, T.K.; Adjemian, J.; Gundlapalli, A.V. National Syndromic Surveillance Program Community of Practice. Impact of the COVID-19 Pandemic on Emergency Department Visits—United States, 1 January 2019–30 May 2020. MMWR Morb Mortal Wkly Rep. 2020, 69, 699c704. [Google Scholar] [CrossRef]
- COVIDSurg Collaborative. Elective surgery cancellations due to the COVID-19 pandemic: Global predictive modelling to inform surgical recovery plans. Br. J. Surg. 2020, 107, 1440–1449. [Google Scholar] [CrossRef]
- Cuadros, D.F.; Branscum, A.J.; Mukandavire, Z.; Miller, F.D.; MacKinnon, N. Dynamics of the COVID-19 epidemic in urban and rural areas in the United States. Ann. Epidemiol. 2021, 59, 16–20. [Google Scholar] [CrossRef]
- Olariu, T.R.; Craciun, A.C.; Vlad, D.C.; Dumitrascu, V.; Marincu, I.; Lupu, M.A. SARS-CoV-2 Seroprevalence in Western Romania, March to June 2021. Medicina 2022, 58, 35. [Google Scholar] [CrossRef]
- Mueller, J.T.; McConnell, K.; Burow, P.B.; Pofahl, K.; Merdjanoff, A.A.; Farrell, J. Impacts of the COVID-19 pandemic on rural America. Proc. Natl. Acad. Sci. USA 2020, 118, 2019378118. [Google Scholar] [CrossRef] [PubMed]
- Huang, Q.; Jackson, S.; Derakhshan, S.; Lee, L.; Pham, E.; Jackson, A.; Cutter, S.L. Urban-rural differences in COVID-19 exposures and outcomes in the South: A preliminary analysis of South Carolina. PLoS ONE 2021, 16, e0246548. [Google Scholar] [CrossRef] [PubMed]
- Qian, G.-Q.; Yang, N.-B.; Ding, F.; Ma, A.H.Y.; Wang, Z.-Y.; Shen, Y.-F.; Shi, C.-W.; Lian, X.; Chu, J.-G.; Chen, L.; et al. Epidemiologic and clinical characteristics of 91 hospitalized patients with COVID-19 in Zhejiang, China: A retrospective, multi-centre case series. QJM Int. J. Med. 2020, 113, 474–481. [Google Scholar] [CrossRef] [Green Version]
- Xu, X.-W.; Wu, X.-X.; Jiang, X.-G.; Xu, K.-J.; Ying, L.-J.; Ma, C.-L.; Li, S.-B.; Wang, H.-Y.; Zhang, S.; Gao, H.-N.; et al. Clinical findings in a group of patients infected with the 2019 novel coronavirus (SARS-CoV-2) outside of Wuhan, China: Retrospective case series. BMJ 2020, 368, m606. [Google Scholar] [CrossRef] [Green Version]
- Wu, J.; Liu, J.; Zhao, X.; Liu, C.; Wang, W.; Wang, D.; Xu, W.; Zhang, C.; Yu, J.; Jiang, B.; et al. Clinical Characteristics of Imported Cases of Coronavirus Disease 2019 (COVID-19) in Jiangsu Province: A Multicenter Descriptive Study. Clin. Infect. Dis. 2020, 71, 706–712. [Google Scholar] [CrossRef]
- Tabiei, S.; Farajzadeh, Z.; Eizadpanah, A. Self-medication with drug amongst university students of Birjand. Mod. Care J. 2012, 9, 4. [Google Scholar]
- Mulki, R.; Shah, R.; Qayed, E. Early vs late endoscopic retrograde cholangiopancreatography in patients with acute cholangitis: A nationwide analysis. World J. Gastrointest. Endosc. 2019, 11, 41–53. [Google Scholar] [CrossRef] [PubMed]
- Cobre, A.D.F.; Böger, B.; Fachi, M.M.; Vilhena, R.D.O.; Domingos, E.L.; Tonin, F.S.; Pontarolo, R. Risk factors associated with delay in diagnosis and mortality in patients with COVID-19 in the city of Rio de Janeiro, Brazil. Cien Saude Colet. 2020, 25, 4131–4140. [Google Scholar] [CrossRef]
- Güngör, B.; Cağlayan, K.; Polat, C.; Seren, D.; Erzurumlu, K.; Malazgirt, Z. The predictivity of serum biochemical markers in acute biliary pancreatitis. ISRN Gastroenterol. 2011, 2011, 279607. [Google Scholar] [CrossRef] [Green Version]
- Liu, W.; Du, J.J.; Li, Z.H.; Zhang, X.Y.; Zuo, H.D. Liver injury associated with acute pancreatitis: The current status of clinical evaluation and involved mechanisms. World J. Clin. Cases 2021, 9, 10418–10429. [Google Scholar] [CrossRef]
- Sarges, P.; Steinberg, J.M.; Lewis, J.H. Drug-Induced Liver Injury: Highlights from a Review of the 2015 Literature. Drug Saf. 2016, 39, 801–821. [Google Scholar] [CrossRef] [PubMed]
- Kazemioula, G.; Golestani, S.; Alavi, S.M.A.; Taheri, F.; Gheshlagh RGLotfalizadeh, M.H. Prevalence of self-medication during COVID-19 pandemic: A systematic review and meta-analysis. Front. Public Health 2022, 10, 1041695. [Google Scholar] [CrossRef] [PubMed]
- Brooks, S.K.; Webster, R.K.; Smith, L.E.; Woodland, L.; Wessely, S.; Greenberg, N.; Rubin, G.J. The psychological impact of quarantine and how to reduce it: Rapid review of the evidence. Lancet 2020, 395, 912–920. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Steptoe, A.; O’Donnell, K.; Badrick, E.; Kumari, M.; Marmot, M. Neuroendocrine and Inflammatory Factors Associated with Positive Affect in Healthy Men and Women: The Whitehall II Study. Am. J. Epidemiol. 2007, 167, 96–102. [Google Scholar] [CrossRef]
- Butterworth, R.F. Hepatic encephalopathy: A central neuroinflammatory disorder? Hepatology 2011, 53, 1372–1376. [Google Scholar] [CrossRef]
- Loria, P.; Carulli, L.; Bertolotti, M.; Lonardo, A. Endocrine and liver interaction: The role of endocrine pathways in NASH. Nat. Rev. Gastroenterol. Hepatol. 2009, 6, 236–247. [Google Scholar] [CrossRef]
- Clay, J.M.; Parker, M.O. Alcohol use and misuse during the COVID-19 pandemic: A potential public health crisis? Lancet Public Health 2020, 5, e259. [Google Scholar] [CrossRef]
- Calina, D.; Hartung, T.; Mardare, I.; Mitroi, M.; Poulas, K.; Tsatsakis, A.; Rogoveanu, I.; Docea, A.O. COVID-19 pandemic and alcohol consumption: Impacts and interconnections. Toxicol. Rep. 2021, 8, 529–535. [Google Scholar] [CrossRef]
- Pollard, M.S.; Tucker, J.S.; Green, H.D. Changes in Adult Alcohol Use and Consequences During the COVID-19 Pandemic in the US. JAMA Netw. Open 2020, 3, e2022942. [Google Scholar] [CrossRef]
- Naveau, S.; Raynard, B.; Ratziu, V.; Abella, A.; Imbert–Bismut, F.; Messous, D.; Beuzen, F.; Capron, F.; Thabut, D.; Munteanu, M.; et al. Biomarkers for the prediction of liver fibrosis in patients with chronic alcoholic liver disease. Clin. Gastroenterol. Hepatol. 2005, 3, 167–174. [Google Scholar] [CrossRef]
- Liu, S.-Y.; Tsai, I.-T.; Hsu, Y.-C. Alcohol-Related Liver Disease: Basic Mechanisms and Clinical Perspectives. Int. J. Mol. Sci. 2021, 22, 5170. [Google Scholar] [CrossRef] [PubMed]
- Zhao, X.; Lei, Z.; Gao, F.; Xie, Q.; Jang, K.; Gong, J. The impact of coronavirus disease 2019 (COVID-19) on liver injury in China: A systematic review and meta-analysis. Medicine 2021, 100, e24369. [Google Scholar] [CrossRef] [PubMed]
- Harper, S.J.F.; Cheslyn-Curtis, S. Acute pancreatitis. Ann. Clin. Biochem. 2011, 48, 23–37. [Google Scholar] [CrossRef]
- Tenner, S.; Baillie, J.; DeWitt, J.; Vege, S.S.; American College of Gastroenterology. American College of Gastroenterology Guideline: Management of Acute Pancreatitis. Am. J. Gastroenterol. 2013, 108, 1400–1415. [Google Scholar] [CrossRef] [PubMed]
- Baum, A.; Barnett, M.L.; Wisnivesky, J.; Schwartz, M.D. Association Between a Temporary Reduction in Access to Health Care and Long-term Changes in Hypertension Control among Veterans after a Natural Disaster. JAMA Netw. Open 2019, 2, e1915111. [Google Scholar] [CrossRef] [Green Version]
- Kane, D.D. Mortality in Puerto Rico after Hurricane Maria. N. Engl. J. Med. 2018, 379, e30. [Google Scholar] [CrossRef] [PubMed]
- Solomon, M.D.; McNulty, E.J.; Rana, J.S.; Leong, T.K.; Lee, C.; Sung, S.H.; Go, A.S. The COVID-19 pandemic and the incidence of acute myocardialinfarction. N. Engl. J. Med. 2020, 383, 691–693. [Google Scholar] [CrossRef] [PubMed]
- Nogueira, P.J.; Nobre, M.D.A.; Nicola, P.J.; Furtado, C.; Carneiro, A.V. Excess Mortality Estimation During the COVID-19 Pandemic: Preliminary Data from Portugal. Acta. Med. Port. 2020, 33, 376. [Google Scholar] [CrossRef]
- Lerner, E.B.; Newgard, C.D.; Mann, N.C. Effect of the coronavirus disease 2019 (COVID19) pandemic on the U.S. emergency medical services system: A preliminary report. Acad Emerg Med. Aug. 2020, 27, 693–699. [Google Scholar] [CrossRef]
- Gardner, T.B.; Vege, S.S.; Chari, S.T.; Petersen, B.T.; Topazian, M.D.; Clain, J.E.; Sarr, M.G. Fasterrate of initial fluid resuscitation in severe acutepancreatitis diminishes in-hospital mortality. Pancreatology 2009, 9, 770–776. [Google Scholar] [CrossRef]
- Hadi, A.; Werge, M.; Kristiansen, K.T.; Pedersen, U.G.; Karstensen, J.G.; Novovic, S.; Gluud, L.L. Coronavirus Disease-19 (COVID-19) associated with severe acute pancreatitis: Case report on three family members. Pancreatology 2020, 20, 665–667. [Google Scholar] [CrossRef] [PubMed]
- Petrov, M.S.; Shanbhag, S.; Chakraborty, M.; Phillips, A.R.; Windsor, J.A. Organ failure and infection of pancreatic necrosis as determinants of mortality in patients with acute pancreatitis. Organ failure and infection of pancreatic necrosis as de-terminants of mortality in patients with acute pancreatitis. Gastroenterology 2010, 139, 813–820. [Google Scholar] [CrossRef] [PubMed]
- Annunziata, A.; Coppola, A.; Andreozzi, P.; Lanza, M.; Simioli, F.; Carannante, N.; Di Somma, C.; Di Micco, P.; Fiorentino, G. Acute Pancreatitis and COVID-19: A Single-Center Experience. J. Multidiscip. Health 2021, 14, 2857–2861. [Google Scholar] [CrossRef]
- Pădureanu, V.; Caragea, D.C.; Florescu, M.M.; Vladu, I.M.; Rădulescu, P.M.; Florescu, D.N.; Rădulescu, D.; Pădureanu, R.; Efrem, I.C. Role of the SARS-CoV2 infection in the evolution of acute pancreatitis (Review). Biomed. Rep. 2023, 19, 1–8. [Google Scholar] [CrossRef]
- Babajide, O.I.; Ogbon, E.O.; Adelodun, A.; Agbalajobi, O.; Ogunsesan, Y. COVID-19 and acute pancreatitis: A systematic review. JGH Open 2022, 6, 231–235. [Google Scholar] [CrossRef]
- Garg, P.K.; Singh, V.P. Organ Failure Due to Systemic Injury in Acute Pancreatitis. Gastroenterology 2019, 156, 2008–2023. [Google Scholar] [CrossRef]
- Lippi, G.; Plebani, M. The critical role of laboratorymedicine during coronavirus disease 2019 (COVID-19) and other viral out-breaks. Clin. Chem. Lab. Med. 2020, 58, 1063–1069. [Google Scholar] [CrossRef] [Green Version]
- Suppiah, A.; Malde, D.; Arab, T.; Hamed, M.; Allgar, V.; Smith, A.M.; Morris-Stiff, G. The Prognostic Value of the Neutrophil–Lymphocyte Ratio (NLR) in Acute Pancreatitis: Identification of an Optimal NLR. J. Gastrointest. Surg. 2013, 17, 675–681. [Google Scholar] [CrossRef]
- Wang, B.; Tang, R.; Wu, S.; Liu, M.; Kanwal, F.; Rehman MFu Wu, F.; Zhu, J. Clinical Value of Neutrophil CD64 Index, PCT, and CRP in Acute Pancreatitis Complicated with Abdominal Infection. Diagnostics 2022, 12, 2409. [Google Scholar] [CrossRef] [PubMed]
- Zeng, Z.-Y.; Feng, S.-D.; Chen, G.-P.; Wu, J.-N. Predictive value of the neutrophil to lymphocyte ratio for disease deterioration and serious adverse outcomes in patients with COVID-19: A prospective cohort study. BMC Infect. Dis. 2021, 21, 80. [Google Scholar] [CrossRef]
- Huguet, E.; Maccallini, G.; Pardini, P.; Hidalgo, M.; Obregon, S.; Botto, F.; Koretzky, M.; Nilsson, P.M.; Ferdinand, K.; Kotliar, C. Reference Values for Neutrophil to Lymphocyte Ratio (NLR), a Biomarker of Cardiovascular Risk, According to Age and Sex in a Latin American Population. Curr. Probl. Cardiol. 2019, 46, 100422. [Google Scholar] [CrossRef]
- Cupp, M.A.; Cariolou, M.; Tzoulaki, I.; Aune, D.; Evangelou, E.; Berlanga-Taylor, A.J. Neutrophil to lymphocyte ratio and cancer prognosis: An umbrella review of systematic reviews and meta-analyses of observational studies. BMC Med. 2020, 18, 360. [Google Scholar] [CrossRef] [PubMed]
- Radulescu, D.; Baleanu, V.D.; Padureanu, V.; Radulescu, P.M.; Bordu, S.; Patrascu, S.; Socea, B.; Bacalbasa, N.; Surlin, M.V.; Georgescu, I.; et al. Neutrophil/Lymphocyte Ratio as Predictor of Anastomotic Leak after Gastric Cancer Surgery. Diagnostics 2020, 10, 799. [Google Scholar] [CrossRef]
- Yao, J.; Lv, G. Association between red cell distribution width and acute pancreatitis: A cross-sectional study. BMJ Open 2014, 4, e004721. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Azab, B.; Jaglall, N.; Atallah, J.P.; Lamet, A.; Raja-Surya, V.; Farah, B.; Lesser, M.; Widmann, W.D. Neutrophil-Lymphocyte Ratio as a Predictor of Adverse outcomes of Acute Pancreatitis. Pancreatology 2011, 11, 445–452. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Liu, Y.; Xiang, P.; Pu, L.; Xiong, H.; Li, C.; Zhang, M.; Tan, J.; Xu, Y.; Song, R.; et al. Neutrophil-to-lymphocyte ratio predicts critical illness patients with 2019 coronavirus disease in the early stage. J. Transl. Med. 2020, 18, 206. [Google Scholar] [CrossRef]
- Radulescu, P.M.; Davitoiu, D.V.; Baleanu, V.D.; Padureanu, V.; Ramboiu, D.S.; Surlin, M.V.; Bratiloveanu, T.C.; Georgescu, E.F.; Streba, C.T.; Mercut, R.; et al. Has COVID-19 Modified the Weight of Known Systemic Inflammation Indexes and the New Ones (MCVL and IIC) in the Assessment as Predictive Factors of Complications and Mortality in Acute Pancreatitis? Diagnostics 2022, 12, 3118. [Google Scholar] [CrossRef]
- Rehm, J.; Kilian, C.; Ferreira-Borges, C.; Jernigan, D.; Monteiro, M.; Parry, C.D.H.; Sanchez, Z.M.; Manthey, J. Alcohol use in times of the COVID 19: Implications for monitoring and policy. Drug Alcohol Rev. 2020, 39, 301–304. [Google Scholar] [CrossRef]
- Irving, H.M.; Samokhvalov, A.V.; Rehm, J. Alcohol as a risk factor for pancreatitis. A systematic review and meta-analysis. JOP J. Pancreas 2009, 10, 387–392. [Google Scholar]
- Ueda, T.; Kawakami, R.; Horii, M.; Sugawara, Y.; Matsumoto, T.; Okada, S.; Nishida, T.; Soeda, T.; Okayama, S.; Somekawa, S.; et al. High mean corpuscular volume is a new indicator of prognosis in acute decom-pensated heart failure. Circ. J. 2013, 77, 2766–2771. [Google Scholar] [CrossRef] [Green Version]
- Tsantes, A.E.; Bonovas, S.; Travlou, A.; Sitaras, N.M. Redox imbalance, macrocytosis, and RBC homeostasis. Antioxid Redox Signal 2006, 8, 1205–1216. [Google Scholar] [CrossRef]
- Solak, Y.; Yilmaz, M.I.; Saglam, M.; Demirbas, S.; Verim, S.; Unal, H.U.; Gaipov, A.; Oguz, Y.; Kayrak, M.; Caglar, K.; et al. Mean corpuscular volume is associated with endothelial dysfunction and predicts composite cardiovascular events in patients with chronic kidney disease. Nephrology 2013, 18, 728–735. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.H.; Liu, Z.H.; Yu, C.; Ji, D.X.; Li, L.S. Endothelial dysfunction in patients with severe acute pancreatitis: Improved by con-tinuous blood purification therapy. Int. J. Artif. Organs. 2007, 30, 393–400. [Google Scholar] [CrossRef]
- Hegyi, P.; Szakacs, Z.; Sahin-Toth, M. Lipotoxicity and cytokine storm in severe acutepancreatitis and COVID-19. Gastroenterology 2020, 159, 824–827. [Google Scholar] [CrossRef]
- Mardi, A.; Meidaninikjeh, S.; Nikfarjam, S.; Zolbanin, N.M.; Jafari, R. Interleukin-1 in COVID-19 Infection: Immunopathogenesis and Possible Therapeutic Perspective. Viral Immunol. 2021, 34, 679–688. [Google Scholar] [CrossRef] [PubMed]
- Declercq, J.; De Leeuw, E.; Lambrecht, B.N. Inflammasomes and IL-1 family cytokines in SARS-CoV-2 infection: From prognostic marker to therapeutic agent. Cytokine 2022, 157, 155934. [Google Scholar] [CrossRef] [PubMed]
- Lu, Z.; Van Eeckhoutte, H.P.; Liu, G.; Nair, P.M.; Jones, B.; Gillis, C.M.; Nalkurthi, B.C.; Verhamme, F.; Buyle-Huybrecht, T.; Vandenabeele, P.; et al. Necroptosis Signaling Promotes Inflammation, Airway Remodeling, and Emphysema in Chronic Obstructive Pulmonary Disease. Am. J. Respir. Crit. Care Med. 2021, 204, 667–681. [Google Scholar] [CrossRef]
- Xuan, W.; Jiang, X.; Huang, L.; Pan, S.; Chen, C.; Zhang, X.; Zhu, H.; Zhang, S.; Yu, W.; Peng, Z.; et al. Predictive Value of Eosinophil Count on COVID-19 Disease Progression and Outcomes, a Retrospective Study of Leishenshan Hospital in Wuhan, China. J. Intensive Care Med. 2021, 37, 359–365. [Google Scholar] [CrossRef]
- Cortés-Vieyra, R.; Gutiérrez-Castellanos, S.; Álvarez-Aguilar, C.; Baizabal-Aguirre, V.M.; Nuñez-Anita, R.E.; Rocha-López, A.G.; Gomez-Garcia, A. Behavior of eo-sinophil counts in recovered and deceased COVID-19 patients over the course of the disease. Viruses 2021, 13, 1675. [Google Scholar] [CrossRef]
- Barnes, B.J.; Adrover, J.M.; Baxter-Stoltzfus, A.; Borczuk, A.; Cools-Lartigue, J.; Crawford, J.M.; Egeblad, M. Targeting potential drivers of COVID-19: Neutrophil extracellular traps. J. Exp. Med. 2020, 217, e20200652. [Google Scholar] [CrossRef]
- Wang, D.; Hu, B.; Hu, C.; Zhu, F.; Liu, X.; Zhang, J.; Peng, Z. Clinicalcharacteristics of 138 hospitalized patients with 2019 novelcorona-virus–infected pneumonia in Wuhan, China. JAMA 2020, 323, 1061–1069. [Google Scholar] [CrossRef]
- Mahdieh, M. Hematological Abnormalities in Patients With COVID-19: An EmergingApproach to Differentiate Between Severe COVID-19; Compared with NonSevere Forms of the Disease. Acta Medica Iran. 2021, 59, 126–132. [Google Scholar]
- Guan, W.J.; Ni, Z.Y.; Hu, Y.; Liang, W.H.; Ou, C.Q.; He, J.X.; Liu, L.; Shan, H.; Lei, C.L.; Hui, D.S.C.; et al. Clinical Characteristics of coronavirus disease 2019 in China. N. Engl. J. Med. 2020, 382, 1708–1720. [Google Scholar] [CrossRef] [PubMed]
- Kluge, H.H.P.; Wickramasinghe, K.; Rippin, H.L.; Mendes, R.; Peters, D.H.; Kontsevaya, A.; Breda, J. Prevention and control of non-communicable diseases in the COVID-19 response. Lancet 2020, 395, 1678–1680. [Google Scholar] [CrossRef] [PubMed]
- Zeigler, Z. COVID-19 Self-quarantine and Weight Gain Risk Factors in Adults. Curr. Obes. Rep. 2021, 10, 423–433. [Google Scholar] [CrossRef] [PubMed]
- Devonport, T.J.; Nicholls, W.; Fullerton, C. A systematic review of the association between emotions and eating behaviour in normal and overweight adult populations. J. Health Psychol. 2017, 24, 3–24. [Google Scholar] [CrossRef]
- Coulthard, H.; Sharps, M.; Cunliffe, L.; van den Tol, A. Eating in the lockdown during the COVID 19 pandemic; self-reported changes in eating behaviour, and associations with BMI, eating style, coping and health anxiety. Appetite 2021, 161, 105082. [Google Scholar] [CrossRef]
- Leung, P.S.; Chan, Y.C.; Chvanov, M.; Huang, W.; Jin, T.; Wen, L.; Armstrong, J.; Elliot, V.; Alston, B.; Burdyga, A.; et al. Role of Oxidative Stress in Pancreatic Inflammation. Antioxid. Redox Signal. 2009, 11, 135–166. [Google Scholar] [CrossRef]
- Memba, R.; Duggan, S.N.; Ni Chonchubhair, H.M.; Griffin, O.M.; Bashir, Y.; O’Connor, D.B.; Murphy, A.; McMahon, J.; Volcov, Y.; Ryan, B.; et al. The potential role of gut microbiota in pancreatic disease: A systematic review. Pancreatology 2017, 17, 867–874. [Google Scholar] [CrossRef]
- Tan, C.; Ling, Z.; Huang, Y.; Cao, Y.; Liu, Q.; Cai, T.; Yuan, H.; Liu, C.; Li, Y.; Xu, K. Dysbiosis of Intestinal Microbiota Associated With Inflammation Involved in the Progression of Acute Pancreatitis. Pancreas 2015, 44, 868–875. [Google Scholar] [CrossRef]
- Huizar, M.I.; Arena, R.; Laddu, D.R. The global food syndemic: The impact of food insecurity, Malnutrition and obesity on the healthspan amid the COVID-19 pandemic. Prog. Cardiovasc. Dis. 2020, 64, 105–107. [Google Scholar] [CrossRef] [PubMed]
- Schaible, U.E.; Kaufmann, S.H.E. Malnutrition and Infection: Complex Mechanisms and Global Impacts. PLoS Med. 2007, 4, e115. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Correia, M.I.T.D.; Waitzberg, D.L. The impact of malnutrition on morbidity, mortality, length of hospital stay and costs evaluated through a multivariate model analysis. Clin. Nutr. 2003, 22, 235–239. [Google Scholar] [CrossRef] [PubMed]
Primay Results | Secondary Results |
---|---|
| Is there an increased risk of death for patients with AP during the COVID-19 pandemic and, if so, can this be quantified? Did COVID-19 infection have an impact on the clinical outcomes and survival rate of patients with AP? Can COVID-19 infection exacerbate the risk of death in patients with AP and, if so, can this be numerically evaluated? |
Variable | AP Pre-COVID-19 a (n = 56) | AP during-COVID-19 b (n = 56) | AP with COVID-19 c (n = 28) | p a,b | p a–c | p b,c |
---|---|---|---|---|---|---|
Area | 0.705 † | 0.277 † | 0.434 † | |||
Urban | 27 (8.2%) | 25 (46.6%) | 10 (35.7%) | |||
Rural | 29 (51.8%) | 31 (55.4%) | 18 (64.3%) | |||
Age | 49 (38–63) | 50 (44–64) | 49 (41–63) | 0.305 | 0.887 | 0.475 |
Sex | 1 † | 1 † | 1 † | |||
M | 38 (67.9%) | 38 (67.9%) | 19 (67.9%) | |||
W | 18 (32.1%) | 18 (32.1%) | 9 (32.1%) | |||
AP Severity | 1 † | 1 † | 1 † | |||
Mild | 6 (10.7%) | 6 (10.7%) | 3 (10.7%) | |||
Moderately_s | 26 (46.4%) | 26 (46.4%) | 13 (46.4%) | |||
Severe | 24 (42.9%) | 24 (42.9%) | 12 (42.9%) | |||
Hours onset | 24 (12–35) | 36 (24–48) | 24 (12–72) | 0.002 * | 0.161 | 0.785 |
Hospital stay | 12 (8–19) | 9 (7–12) | 9 (7–15) | 0.029 * | 0.110 | 0.696 |
Palpation | 0.064 † | 0.008 *† | 0.462 † | |||
Pain | 30 (53.6%) | 20 (35.7%) | 7 (25.0%) | |||
Tenderness | 14 (25.0%) | 13 (23.2%) | 6 (21.4%) | |||
Guarding | 12 (21.4%) | 23 (41.1%) | 15 (53.6%) | |||
HTN | 0.403 † | 0.306 † | 0.685 † | |||
Yes | 21 (37.5) | 13 (23.2%) | 6 (21.4%) | |||
No | 35 (62.5%) | 43 (76.8%) | 22 (78.6%) | |||
Diabetes | 0.809 † | 0.848 † | 0.723 † | |||
Yes | 11 (19.6%) | 10 (17.9%) | 6 (21.4%) | |||
No | 45 (80.4%) | 46 (82.1%) | 22 (78.6%) | |||
Complications | 0.547 † | 0.746 † | 0.774 † | |||
Yes | 20 (32.15%) | 17 (30.4%) | 9 (32.1%) | |||
No | 36 (64.3%) | 39 (69.6%) | 19 (67.9%) | |||
MSOF | 0.468 † | 0.179 † | 0.380 † | |||
Yes | 8 (14.3%) | 12 (21.4%) | 8 (28.6%) | |||
No | 48 (85.7%) | 44 (78.6%) | 20 (71.4%) | |||
HAPS | 0.541 † | 0.317 † | 0.642 † | |||
0 | 26 (46.4%) | 21 (37.5%) | 8 (28.6%) | |||
1 | 22 (39.3%) | 23 (41.1%) | 12 (42.9%) | |||
2 | 5 (8.9%) | 5 (8.9%) | 5 (17.9%) | |||
3 | 3 (5.4%) | 7 (12.5%) | 3 (10.7%) | |||
Surgery | 0.508 † | 0.264 † | 0.514 † | |||
Yes | 6 (10.7%) | 4 (7.1%) | 1 (3.6%) | |||
No | 50 (89.3%) | 52 (92.9%) | 27 (96.4%) | |||
Mortality | 0.031 *† | <0.001 *† | 0.028 *† | |||
Yes | 4 (7.1%) | 12 (21.4%) | 12 (42.9%) | |||
No | 52 (92.9%) | 44 (78.6%) | 16 (57.1%) |
Variable | AP Pre-COVID-19 a (n = 56) | AP during-COVID-19 b (n = 56) | AP with COVID-19 c (n = 28) | p a,b | p a–c | p b,c |
---|---|---|---|---|---|---|
Leucocytes (×103/µL) | 11.9 (7.2–16.3) | 9.2 (7.6–13.3) | 12.6 (9.4–19.8) | 0.192 | 0.044 * | 0.002 * |
Neutrophile (×103/µL) | 8.2 (11.9–13.8) | 8.0 (5.5–10.2) | 9.1 (6.5–16.1) | 0.658 | 0.133 | 0.021 * |
Lymphocyte (×103/µL) | 1.5 (0.9–2.0) | 1.4 (1.0–2.0) | 2 (1.0–2.5) | 0.658 | 0.220 | 0.074 |
Monocyte (×103/µL) | 0.8 (0.5–1.2) | 0.6 (0.5–0.8) | 0.9 (0.5–1.4) | 0.085 | 0.287 | 0.015 * |
Platelets (×103/µL) | 195.9 (176.4–271.5) | 183.0 (148.0–284.8) | 237.0 (189.0–253.0) | 0.254 | 0.453 | 0.323 |
Hb (g/dL) | 13.6 (12.1–14.5) | 12.5 (11.7–14.5) | 14.0 (10.8–15.9) | 0.073 | 0.790 | 0.414 |
Ht (%) | 38.6 (36.4–44.6) | 38.2 (34.5–43.6) | 35.6 (33.3–43.4) | 0.159 | 0.178 | 0.857 |
RDW | 12.8 (11.1–14.4) | 13.2 (12.4–14.4) | 14 (13.7–14.7) | 0.311 | 0.001 * | 0.004 * |
MCV (fL) | 88.5 (85.2–95.8) | 93.6 (88.7–99.0) | 95.6 (88.4–102.6) | 0.002 * | 0.002 * | 0.362 |
Proteins (g/dL) | 6.5 (6.0–7.2) | 6.0 (5.4–7.0) | 6.4 (5.1–7.3) | 0.001 * | 0.342 | 0.543 |
Amylase (U/L) | 320 (81.3–495.5) | 248.0 (172.0–515.0) | 323.5 (186.0–1114.3) | 1 | 0.288 | 0.384 |
Na (mmol/L) | 134 (129.0–140.0) | 137.6 (131.0–140.0) | 136.5 (132.0–140.0) | 0.218 | 0.565 | 0.610 |
K (mmol/L) | 4.5 (3.8–5.0) | 3.9 (3.7–4.8) | 4.1 (3.5–4.8) | 0.064 | 0.207 | 0.917 |
Glycemia (mg/dL) | 136 (85.0–158.0) | 111 (95.0–212.0) | 99 (93.0–134.8) | 0.691 | 0.102 | 0.035 * |
AST (U/L) | 42 (26.3–110.0) | 88 (37.5–184.0) | 58.0 (33.0–117.0) | 0.019 * | 0.314 | 0.333 |
ALT (U/L) | 48.5 (20.0–172.0) | 87 (52.5–226.5) | 58.0 (24.0–159.0) | 0.001 * | 0.393 | 0.144 |
Urea (mg/dL) | 33 (30.0–49.0) | 32 (24.3–69.0) | 35.5 (26.0–59.0) | 0.550 | 0.932 | 0.930 |
Creatinine (mg/dL) | 0.9 (0.7–1.1) | 0.7 (0.67–1.0) | 0.7 (0.6–1.4) | 0.022 * | 0.305 | 0.887 |
INR | 1.1 (1.1–1.3) | 1.2 (1.0–1.4) | 1.0 (1.0–1.1) | 0.554 | 0.000 * | 0.002 * |
NLR | 6.5 (3.0–12.9) | 5.8 (3.4–12.2) | 5.3 (3.3–11.2) | 0.852 | 0.776 | 0.955 |
IIC | 7.7 (3.2–15.7) | 7.6 (3.9–17.4) | 9.9 (4.2–18.7) | 0.376 | 0.352 | 0.556 |
MCVL | 63.6 (41.5–98.8) | 61.2 (46.3–105.5) | 43.4 (36.9–101.3) | 0.306 | 0.494 | 0.051 |
AP Pre-COVID-19 | AP during-COVID-19 | AP with COVID-19 | |||||||
---|---|---|---|---|---|---|---|---|---|
Variable | Alive (n = 52) | Deceased (n = 4) | p | Alive (n = 44) | Deceased (n = 12) | p | Alive (n = 16) | Deceased (n = 12) | p |
Area | 0.266 † | 0.282 † | 0.069 † | ||||||
Urban | 24 (46.2%) | 3 (75%) | 18 (40.9%) | 7 (58.3%) | 8 (50%) | 1 (8.3%) | |||
Rural | 48 (53.8%) | 1 (25%) | 26 (59.1%) | 5 (41.7%) | 8 (50%) | 11 (91.7%) | |||
Age | 46.5 (35–61) | 57 (51–63) | 0.251 | 47 (44–62) | 61 (44–64) | 0.179 | 45.50 (37–61) | 57.5 (42–77) | 0.377 |
Sex | 0.153 † | 0.382 † | 0.129 † | ||||||
M | 34 (65.4%) | 4 (100%) | 29 (65.9%) | 9 (75%) | 9 (56.2%) | 10 (83.3%) | |||
W | 18 (34.6%) | 0 | 15 (34.1%) | 3 (25%) | 7 (43.8%) | 2 (16.7%) | |||
AP Severity | 0.057 † | 0.001 *† | 0.000 *† | ||||||
Mild | 6 (11.5%) | 0 | 6 (13.6%) | 0 | 3 (18.8%) | 0 | |||
Moderately_s | 26 (50%) | 0 | 25 (56.8%) | 1 (8.3%) | 13 (81.2%) | 0 | |||
Severe | 20 (38.5%) | 4 (100%) | 13 (29.5%) | 11 (91.7%) | 0 | 12 (100%) | |||
Hours onset | 24 (12–30) | 39 (6.00–72) | 0.844 | 24 (24–48) | 48 (36–66) | 0.004 * | 12 (12–24) | 71.5 (39–72) | 0.002 * |
Hospital stay | 12 (8–19) | 13.50 (5–22) | 0.798 | 9 (6–10) | 12.5 (9–25) | 0.004 * | 8 (7–10) | 15 (14–32) | 0.003 * |
Palpation | 0.081 † | 0.002 *† | 0.001 *† | ||||||
Pain | 30 (57.7%) | 0 | 20 (45.5%) | 0 | 7 (43.8%) | 0 | |||
Tenderness | 12 (23.1%) | 2 (50%) | 11 (25.0%) | 2 (16.7%) | 0 | 6 (50%) | |||
Guarding | 10 (19.2%) | 2 (50%) | 13 (29.5%) | 10 (83.3%) | 9 (56.2%) | 6 (50%) | |||
HTN | 0.751 † | 1 † | 0.184 † | ||||||
Yes | 17 (32.7%) | 1 (25%) | 11 (25.0%) | 3 (25.0%) | 2 (12.5%) | 4 (33.3%) | |||
No | 35 (67.3%) | 3 (75%) | 33 (75.0%) | 9 (75.0%) | 14 (87.5%) | 8 (66.7%) | |||
Diabetes | 0.113 † | 0.903 † | 0.690 † | ||||||
Yes | 9 (17.3%) | 2 (50%) | 8 (18.2%) | 2 (16.7%) | 3 (18.8%) | 3 (25%) | |||
No | 43 (82.7%) | 2 (50%) | 36 (81.8%) | 10 (83.3%) | 13 (81.2%) | 9 (75%) | |||
Complications | 0.536 † | <0.001 *† | 0.005 *† | ||||||
Yes | 18 (34.6%) | 2 (50%) | 7 (15.9%) | 10 (83.3%) | 2 (12.5%) | 8 (66.7%) | |||
No | 34 (65.4%) | 2 (50%) | 37 (84.1%) | 2 (16.7%) | 14 (87.5%) | 4 (33.3%) | |||
MSOF | 0.001 *† | 0.000 *† | <0.001 *† | ||||||
Yes | 6 (11.5%) | 3 (75%) | 2 (4.5%) | 10 (83.3%) | 2 (12.5%) | 8 (66.7%) | |||
No | 46 (88.5%) | 1 (25%) | 42 (95.5%) | 2 (16.7%) | 14 (87.5%) | 4 (33.3%) | |||
HAPS | 0.000 *† | 0.020 *† | 0.103 † | ||||||
0 | 26 (50%) | 0 | 20 (45.5%) | 1 (8.3%) | 7 (43.8%) | 1 (8.3%) | |||
1 | 20 (38.5%) | 2 (50%) | 18 (40.9%) | 5 (41.7%) | 5 (31.2%) | 7 (58.4%) | |||
2 | 5 (9.6%) | 0 | 3 (6.8%) | 2 (16.7%) | 1 (6.2%) | 4 (33.3%) | |||
3 | 1 (1.9%) | 2 (50%) | 3 (6.8%) | 4 (33.3%) | 3 (18.8%) | 0 | |||
Surgery | 0.472 † | 0.278 † | 0.240 † | ||||||
Yes | 6 (11.5%) | 0 | 4 (9.1%) | 0 | 0 | 1 (8.3%) | |||
No | 46 (88.5%) | 4 (100%) | 40 (90.9%) | 12 (100%) | 16 (100%) | 11 (91.7%) |
AP Pre-COVID-19 | AP during-COVID-19 | AP with COVID-19 | |||||||
---|---|---|---|---|---|---|---|---|---|
Variable | Alive N (%) | Deceased N (%) | p | Alive N (%) | Deceased N (%) | p | Alive N (%) | Deceased N (%) | p |
Leucocyte (×103/µL) | 11.7 (7.2–16.3) | 21.4 (16.5–26.0) | 0.005 * | 9.2 (7.5–13.3) | 7.8 (7.1–19.9) | 0.952 | 16.4 (10.2–19.8) | 10.7 (7.7–31.1) | 0.456 |
Neutrophil (×103/µL) | 7.0 (5.2–12.9) | 18.5 (14.0–22.9) | 0.005 * | 8.2 (4.5–10.2) | 6.1 (5.7–17.6) | 0.535 | 9.1 (6.7–16.1) | 9.2 (5.7–27.1) | 0.544 |
Lymfocyte (×103/µL) | 1.6 (0.9–2.2) | 1.1 (1.0–1.1) | 0.372 | 1.6 (1.1–2.0) | 1.0 (0.7–1.0) | 0.000 * | 2.4 (2.0–16.1) | 1.1 (0.9–1.3) | 0.018 * |
Monocyte (×103/µL) | 0.7 (0.5–1.1) | 1.5 (1.5–1.6) | 0.006 * | 0.6 (0.4–0.8) | 0.7 (0.5–1.2) | 0.810 | 1.0 (0.6–1.7) | 0.8 (0.3–1.3) | 0.124 |
Platelet (×103/µL) | 193.6 (170.7–222.8) | 377 (362.0–391.3) | 0.005 * | 191.0 (148.0–284.0) | 148.0 (95.5–299.4) | 0.105 | 237.0 (189.8–287.2) | 207.0 (51.9–249.3) | 0.167 |
Hb (g/dL) | 13.7 (12.2–14.5) | 12.4 (11.3–13.4) | 0.143 | 12.4 (11.7–14.3) | 9.0 (8.5–17.1) | 0.222 | 14.0 (11.2–16.0) | 13.2 (10.1–15.6) | 0.208 |
Ht (%) | 38.6 (36.9–45.0) | 37.1 (34.3–39.8) | 0.339 | 38.6 (35.6–43.3) | 26.4 (25.7–44.3) | 0.271 | 35.6 (34.2–43.4) | 38.7 (29.5–44.2) | 0.327 |
RDW | 12.8 (11.9–13.7) | 14.7 (13.9–23.8) | 0.022 * | 12.5 (11.7–14.3) | 14.9 (12.4–15.6) | 0.254 | 13.8 (13.7–14.0) | 14.7 (14.2–15.2) | 0.004 * |
MCV | 89.1 (85.4–96.3) | 82.4 (79.9–84.9) | 0.011 * | 89.9 (88.3–97.3) | 105.0 (100.1–107.2) | 0.000 * | 90.3 (88.1–93.8) | 102.6 (98.6–102.8) | 0.000 * |
Proteins (g/dL) | 6.6 (6.1–7.2) | 6.1 (5.7–6.5) | 0.097 | 6.0 (5.5–7.3) | 6.3 (5.4–5.6) | 0.457 | 6.9 (6.4–7.4) | 5.1 (4.5–5.12) | 0.000 * |
Amylase (U/L) | 319 (80.5–492.5) | 480.5 (456.0–503.9) | 0.161 | 213.5 (112.8–414.5) | 515.0 (344.0–1196.5) | 0.002 * | 192.0 (186.0–1294.0) | 342.0 (215.0–1144.3) | 0.816 |
Na (mmol/L) | 137.0 (129.0–140.0) | 129.5 (125.0–133.8) | 0.222 | 138.0 (135.2–142.5) | 131.0 (128.0–135.0) | 0.056 | 137.0 (135.0–141.5) | 131.0 (123.0–139.0) | 0.022 * |
K (mmol/L) | 4.5 (3.8–5.0) | 5.1 (4.0–6.1) | 0.315 | 3.9 (3.7–4.5) | 4.8 (3.5–5.2) | 0.475 | 3.9 (3.8–4.2) | 4.2 (3.4–6.9) | 0.133 |
Glycemia (mg/dL) | 136 (84.0–158.0) | 125.5 (95.0–125.5) | 1 | 104.0 (94.3–189.0) | 203.0 (111.0–465.0) | 0.027 | 99.0 (93.0–129.3) | 99.0 (86.8–150.5) | 0.675 |
AST (U/L) | 42.5 (28.8–119.0) | 29.5 (21.0–37.6) | 0.056 | 66.0 (36.0–169.0) | 105.0 (95.0–906.0) | 0.043 * | 40.0 (27.0–102.3) | 90.0 (40.0–372.0) | 0.015 * |
ALT (U/L) | 48.5 (19.0–172.0) | 42.5 (33.0–51.6) | 0.949 | 87.0 (33.0–230.0) | 58.0 (57.5–26.0) | 0.327 | 44.0 (24.0–277.0) | 99.0 (14.3–159.0) | 0.576 |
Urea (mg/dL) | 33.0 (30.0–49.0) | 78.5 (26.0–128.6) | 0.610 | 32.0 (18.5–57.0) | 69.0 (30.0–125.5) | 0.004 * | 31.0 (18.0–52.0) | 59.0 (29.5–182.0) | 0.004 * |
Creatinine (mg/dL) | 0.9 (0.7–1.0) | 2.8 (2.7–4.7) | 0.702 | 0.7 (0.6–0.9) | 4.2 (0.7–6.1) | 0.002 * | 0.7 (0.6–1.2) | 1.7 (0.7–3.3) | 0.032 * |
INR | 1.1 (1.1–1.2) | 6.1 (1.4–10.5) | 0.003 * | 1.1 (0.1–1.4) | 1.4 (0.4–1.6) | 0.001 * | 1.0 (0.9–1.0) | 1.1 (1.0–1.2) | 0.000 * |
NLR | 6.3 (2.6–11.5) | 16.6 (13–21.0) | 0.007 * | 5.1 (2.2–8.5) | 16.4 (6.6–18.0) | 0.000 * | 3.7 (2.6–3.9) | 8.8 (6.9–18.0) | 0.001 * |
IIC | 6.5 (2.8–13.9) | 21.7 (19.3–23.9) | 0.003 * | 6.7 (2.6–14.4) | 22.2 (14.6–27.2) | 0.000 * | 4.6 (36.7–43.4) | 13.9 (11.7–21.3) | 0.002 * |
MCVL | 55.9 (39.9–100.6) | 77.2 (74.6–79.8) | 0.445 | 54.8 (45.4–80.7) | 106.9 (98.6–245.1) | 0.000 * | 37.7 (36.7–43.4) | 96.7 (74.7–112.8) | 0.001 * |
Compared Groups | Odd Ratio CI 95% | Relative Risk (RR) of Death | X2 | Df | p Value |
---|---|---|---|---|---|
AP pre-COVID-19 vs. AP during-COVID-19 | 3.54 (1.06–11.77) | 3.00 (1.03–8.74) | 4.667 | 1 | 0.031 * |
AP pre-COVID-19 vs. AP with COVID-19 | 9.75 (2.75–34.46) | 6.00 (2.12–16.91) | 15.441 | 1 | <0.001 * |
AP during-COVID-19 vs. AP with COVID-19 | 2.75 (1.02–7.35) | 2.00 (1.03–3.86) | 4.200 | 1 | 0.040 * |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rădulescu, P.M.; Căluianu, E.I.; Traşcă, E.T.; Mercuţ, D.; Georgescu, I.; Georgescu, E.F.; Ciupeanu-Călugăru, E.D.; Mercuţ, M.F.; Mercuţ, R.; Padureanu, V.; et al. The Impact of the COVID-19 Pandemic on Outcomes in Acute Pancreatitis: A Propensity Score Matched Study Comparing before and during the Pandemic. Diagnostics 2023, 13, 2446. https://doi.org/10.3390/diagnostics13142446
Rădulescu PM, Căluianu EI, Traşcă ET, Mercuţ D, Georgescu I, Georgescu EF, Ciupeanu-Călugăru ED, Mercuţ MF, Mercuţ R, Padureanu V, et al. The Impact of the COVID-19 Pandemic on Outcomes in Acute Pancreatitis: A Propensity Score Matched Study Comparing before and during the Pandemic. Diagnostics. 2023; 13(14):2446. https://doi.org/10.3390/diagnostics13142446
Chicago/Turabian StyleRădulescu, Patricia Mihaela, Elena Irina Căluianu, Emil Tiberius Traşcă, Dorin Mercuţ, Ion Georgescu, Eugen Florin Georgescu, Eleonora Daniela Ciupeanu-Călugăru, Maria Filoftea Mercuţ, Răzvan Mercuţ, Vlad Padureanu, and et al. 2023. "The Impact of the COVID-19 Pandemic on Outcomes in Acute Pancreatitis: A Propensity Score Matched Study Comparing before and during the Pandemic" Diagnostics 13, no. 14: 2446. https://doi.org/10.3390/diagnostics13142446
APA StyleRădulescu, P. M., Căluianu, E. I., Traşcă, E. T., Mercuţ, D., Georgescu, I., Georgescu, E. F., Ciupeanu-Călugăru, E. D., Mercuţ, M. F., Mercuţ, R., Padureanu, V., Streba, C. T., Călăraşu, C., & Rădulescu, D. (2023). The Impact of the COVID-19 Pandemic on Outcomes in Acute Pancreatitis: A Propensity Score Matched Study Comparing before and during the Pandemic. Diagnostics, 13(14), 2446. https://doi.org/10.3390/diagnostics13142446