Radiomics and Hybrid Models Based on Machine Learning to Predict Levodopa-Induced Dyskinesia of Parkinson’s Disease in the First 6 Years of Levodopa Treatment
Abstract
:1. Introduction
2. Materials and Methods
2.1. Patient Information
2.2. MRI Data Information
2.3. Image Preprocessing and ROI Segmentation
2.4. Feature Extraction and Selection
2.5. Classifiers Construction and Validation
3. Results
3.1. Clinical Information
3.2. Feature Extraction and Selection
3.3. Model Validation
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Tysnes, O.B.; Storstein, A. Epidemiology of Parkinson’s disease. J. Neural Transm. 2017, 124, 901–905. [Google Scholar] [CrossRef] [PubMed]
- Tolosa, E.; Garrido, A.; Scholz, S.W.; Poewe, W. Challenges in the diagnosis of Parkinson’s disease. Lancet Neurol. 2021, 20, 385–397. [Google Scholar] [CrossRef] [PubMed]
- Bloem, B.R.; Okun, M.S.; Klein, C. Parkinson’s disease. Lancet 2021, 397, 2284–2303. [Google Scholar] [CrossRef] [PubMed]
- Beitz, J.M. Parkinson’s disease: A review. Front. Biosci. (Schol. Ed.) 2014, 6, 65–74. [Google Scholar] [CrossRef]
- Armstrong, M.J.; Okun, M.S. Diagnosis and Treatment of Parkinson Disease: A Review. JAMA 2020, 323, 548–560. [Google Scholar] [CrossRef]
- You, H.; Mariani, L.L.; Mangone, G.; Le Febvre de Nailly, D.; Charbonnier-Beaupel, F.; Corvol, J.C. Molecular basis of dopamine replacement therapy and its side effects in Parkinson’s disease. Cell. Tissue Res. 2018, 373, 111–135. [Google Scholar] [CrossRef]
- Heumann, R.; Moratalla, R.; Herrero, M.T.; Chakrabarty, K.; Drucker-Colin, R.; Garcia-Montes, J.R.; Simola, N.; Morelli, M. Dyskinesia in Parkinson’s disease: Mechanisms and current non-pharmacological interventions. J. Neurochem. 2014, 130, 472–489. [Google Scholar] [CrossRef]
- Cenci, M.A.; Riggare, S.; Pahwa, R.; Eidelberg, D.; Hauser, R.A. Dyskinesia matters. Mov. Disord. 2020, 35, 392–396. [Google Scholar] [CrossRef]
- Ahlskog, J.E.; Muenter, M.D. Frequency of levodopa-related dyskinesias and motor fluctuations as estimated from the cumulative literature. Mov. Disord. 2001, 16, 448–458. [Google Scholar] [CrossRef]
- Heim, B.; Krismer, F.; De Marzi, R.; Seppi, K. Magnetic resonance imaging for the diagnosis of Parkinson’s disease. J. Neural Transm. 2017, 124, 915–964. [Google Scholar] [CrossRef]
- Hayes, M.T. Parkinson’s Disease and Parkinsonism. Am. J. Med. 2019, 132, 802–807. [Google Scholar] [CrossRef] [PubMed]
- Filippi, M.; Elisabetta, S.; Piramide, N.; Agosta, F. Functional MRI in Idiopathic Parkinson’s Disease. Int. Rev. Neurobiol. 2018, 141, 439–467. [Google Scholar] [CrossRef] [PubMed]
- Schocke, M.F.; Seppi, K.; Esterhammer, R.; Kremser, C.; Jaschke, W.; Poewe, W.; Wenning, G.K. Diffusion-weighted MRI differentiates the Parkinson variant of multiple system atrophy from PD. Neurology 2002, 58, 575–580. [Google Scholar] [CrossRef]
- Prasuhn, J.; Neumann, A.; Strautz, R.; Dreischmeier, S.; Lemmer, F.; Hanssen, H.; Heldmann, M.; Schramm, P.; Bruggemann, N. Clinical MR imaging in Parkinson’s disease: How useful is the swallow tail sign? Brain Behav. 2021, 11, e02202. [Google Scholar] [CrossRef] [PubMed]
- Al-Bachari, S.; Parkes, L.M.; Vidyasagar, R.; Hanby, M.F.; Tharaken, V.; Leroi, I.; Emsley, H.C. Arterial spin labelling reveals prolonged arterial arrival time in idiopathic Parkinson’s disease. Neuroimage Clin. 2014, 6, 1–8. [Google Scholar] [CrossRef]
- Uzuegbunam, B.C.; Librizzi, D.; Hooshyar Yousefi, B. PET Radiopharmaceuticals for Alzheimer’s Disease and Parkinson’s Disease Diagnosis, the Current and Future Landscape. Molecules 2020, 25, 977. [Google Scholar] [CrossRef] [Green Version]
- Mayerhoefer, M.E.; Materka, A.; Langs, G.; Haggstrom, I.; Szczypinski, P.; Gibbs, P.; Cook, G. Introduction to Radiomics. J. Nucl. Med. 2020, 61, 488–495. [Google Scholar] [CrossRef]
- Yip, S.S.; Aerts, H.J. Applications and limitations of radiomics. Phys. Med. Biol. 2016, 61, R150–R166. [Google Scholar] [CrossRef] [Green Version]
- Salvatore, C.; Castiglioni, I.; Cerasa, A. Radiomics approach in the neurodegenerative brain. Aging Clin. Exp. Res. 2021, 33, 1709–1711. [Google Scholar] [CrossRef]
- Cao, X.; Wang, X.; Xue, C.; Zhang, S.; Huang, Q.; Liu, W. A Radiomics Approach to Predicting Parkinson’s Disease by Incorporating Whole-Brain Functional Activity and Gray Matter Structure. Front. Neurosci. 2020, 14, 751. [Google Scholar] [CrossRef]
- Chakraborty, S.; Aich, S.; Kim, H.C. Detection of Parkinson’s Disease from 3T T1 Weighted MRI Scans Using 3D Convolutional Neural Network. Diagnostics 2020, 10, 402. [Google Scholar] [CrossRef]
- Shu, Z.Y.; Cui, S.J.; Wu, X.; Xu, Y.; Huang, P.; Pang, P.P.; Zhang, M. Predicting the progression of Parkinson’s disease using conventional MRI and machine learning: An application of radiomic biomarkers in whole-brain white matter. Magn. Reson. Med. 2021, 85, 1611–1624. [Google Scholar] [CrossRef] [PubMed]
- Wolters, A.F.; van de Weijer, S.C.F.; Leentjens, A.F.G.; Duits, A.A.; Jacobs, H.I.L.; Kuijf, M.L. Resting-state fMRI in Parkinson’s disease patients with cognitive impairment: A meta-analysis. Park. Relat. Disord. 2019, 62, 16–27. [Google Scholar] [CrossRef]
- Aradi, S.D.; Hauser, R.A. Medical Management and Prevention of Motor Complications in Parkinson’s Disease. Neurotherapeutics 2020, 17, 1339–1365. [Google Scholar] [CrossRef]
- Carta, A.R.; Frau, L.; Pinna, A.; Pontis, S.; Simola, N.; Schintu, N.; Morelli, M. Behavioral and biochemical correlates of the dyskinetic potential of dopaminergic agonists in the 6-OHDA lesioned rat. Synapse 2008, 62, 524–533. [Google Scholar] [CrossRef] [PubMed]
- Bandopadhyay, R.; Mishra, N.; Rana, R.; Kaur, G.; Ghoneim, M.M.; Alshehri, S.; Mustafa, G.; Ahmad, J.; Alhakamy, N.A.; Mishra, A. Molecular Mechanisms and Therapeutic Strategies for Levodopa-Induced Dyskinesia in Parkinson’s Disease: A Perspective Through Preclinical and Clinical Evidence. Front. Pharmacol. 2022, 13, 805388. [Google Scholar] [CrossRef]
- Obeso, J.A.; Rodriguez-Oroz, M.C.; Rodriguez, M.; Lanciego, J.L.; Artieda, J.; Gonzalo, N.; Olanow, C.W. Pathophysiology of the basal ganglia in Parkinson’s disease. Trends Neurosci. 2000, 23, S8–S19. [Google Scholar] [CrossRef] [PubMed]
- Paz, R.M.; Murer, M.G. Mechanisms of Antiparkinsonian Anticholinergic Therapy Revisited. Neuroscience 2021, 467, 201–217. [Google Scholar] [CrossRef] [PubMed]
- Su, D.; Gan, Y.; Zhang, Z.; Cui, Y.; Zhang, Z.; Liu, Z.; Wang, Z.; Zhou, J.; Sossi, V.; Stoessl, A.J.; et al. Multimodal Imaging of Substantia Nigra in Parkinson’s Disease with Levodopa-Induced Dyskinesia. Mov. Disord. 2023, 38, 616–625. [Google Scholar] [CrossRef]
- Leta, V.; Jenner, P.; Chaudhuri, K.R.; Antonini, A. Can therapeutic strategies prevent and manage dyskinesia in Parkinson’s disease? An update. Expert Opin. Drug. Saf. 2019, 18, 1203–1218. [Google Scholar] [CrossRef]
- Wickremaratchi, M.M.; Ben-Shlomo, Y.; Morris, H.R. The effect of onset age on the clinical features of Parkinson’s disease. Eur. J. Neurol. 2009, 16, 450–456. [Google Scholar] [CrossRef] [PubMed]
- Marek, K.; Jennings, D.; Lasch, S.; Siderowf, A.; Tanner, C.; Simuni, T.; Coffey, C.; Kieburtz, K.; Flagg, E.; Chowdhury, S.; et al. The Parkinson Progression Marker Initiative (PPMI). Prog. Neurobiol. 2011, 95, 629–635. [Google Scholar] [CrossRef] [PubMed]
- Ashburner, J.; Friston, K.J. Unified segmentation. Neuroimage 2005, 26, 839–851. [Google Scholar] [CrossRef] [PubMed]
- Foffani, G.; Obeso, J.A. A Cortical Pathogenic Theory of Parkinson’s Disease. Neuron 2018, 99, 1116–1128. [Google Scholar] [CrossRef] [Green Version]
- McCarter, S.J.; Savica, R. Autopallidotomy: From Colloquial Term to Scientific Theory. J. Parkinsons Dis. 2022, 12, 2009–2013. [Google Scholar] [CrossRef]
- Rolls, E.T.; Huang, C.C.; Lin, C.P.; Feng, J.; Joliot, M. Automated anatomical labelling atlas 3. Neuroimage 2020, 206, 116189. [Google Scholar] [CrossRef]
- van Griethuysen, J.J.M.; Fedorov, A.; Parmar, C.; Hosny, A.; Aucoin, N.; Narayan, V.; Beets-Tan, R.G.H.; Fillion-Robin, J.C.; Pieper, S.; Aerts, H. Computational Radiomics System to Decode the Radiographic Phenotype. Cancer Res. 2017, 77, e104–e107. [Google Scholar] [CrossRef] [Green Version]
- Cenci, M.A.; Crossman, A.R. Animal models of l-dopa-induced dyskinesia in Parkinson’s disease. Mov. Disord. 2018, 33, 889–899. [Google Scholar] [CrossRef]
- Kurmi, A.; Biswas, S.; Sen, S.; Sinitca, A.; Kaplun, D.; Sarkar, R. An Ensemble of CNN Models for Parkinson’s Disease Detection Using DaTscan Images. Diagnostics 2022, 12, 1173. [Google Scholar] [CrossRef]
- Haddad, F.; Sawalha, M.; Khawaja, Y.; Najjar, A.; Karaman, R. Dopamine and Levodopa Prodrugs for the Treatment of Parkinson’s Disease. Molecules 2017, 23, 40. [Google Scholar] [CrossRef] [Green Version]
- Pagonabarraga, J.; Kulisevsky, J.; Strafella, A.P.; Krack, P. Apathy in Parkinson’s disease: Clinical features, neural substrates, diagnosis, and treatment. Lancet Neurol. 2015, 14, 518–531. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Salat, D.; Tolosa, E. Levodopa in the treatment of Parkinson’s disease: Current status and new developments. J. Park. Dis. 2013, 3, 255–269. [Google Scholar] [CrossRef] [Green Version]
- Iravani, M.M.; McCreary, A.C.; Jenner, P. Striatal plasticity in Parkinson’s disease and L-DOPA induced dyskinesia. Park. Relat. Disord. 2012, 18, S123–S125. [Google Scholar] [CrossRef]
- Espay, A.J.; Morgante, F.; Merola, A.; Fasano, A.; Marsili, L.; Fox, S.H.; Bezard, E.; Picconi, B.; Calabresi, P.; Lang, A.E. Levodopa-induced dyskinesia in Parkinson disease: Current and evolving concepts. Ann. Neurol. 2018, 84, 797–811. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Palermo, S.; Lopiano, L.; Morese, R.; Zibetti, M.; Romagnolo, A.; Stanziano, M.; Rizzone, M.G.; Geminiani, G.C.; Valentini, M.C.; Amanzio, M. Role of the Cingulate Cortex in Dyskinesias-Reduced-Self-Awareness: An fMRI Study on Parkinson’s Disease Patients. Front. Psychol. 2018, 9, 1765. [Google Scholar] [CrossRef] [PubMed]
- Marin, C.; Aguilar, E.; Obeso, J.A. Coadministration of entacapone with levodopa attenuates the severity of dyskinesias in hemiparkinsonian rats. Mov. Disord. 2006, 21, 646–653. [Google Scholar] [CrossRef] [PubMed]
- Tupe-Waghmare, P.; Rajan, A.; Prasad, S.; Saini, J.; Pal, P.K.; Ingalhalikar, M. Radiomics on routine T1-weighted MRI can delineate Parkinson’s disease from multiple system atrophy and progressive supranuclear palsy. Eur. Radiol. 2021, 31, 8218–8227. [Google Scholar] [CrossRef] [PubMed]
- Tran, T.N.; Vo, T.N.N.; Frei, K.; Truong, D.D. Levodopa-induced dyskinesia: Clinical features, incidence, and risk factors. J. Neural Transm. 2018, 125, 1109–1117. [Google Scholar] [CrossRef]
- Cubo, E.; Goetz, C.G.; Stebbins, G.T.; LaPelle, N.R.; Tilley, B.C.; Wang, L.; Luo, S. Independent Spanish Validation of the Unified Dyskinesia Rating Scale. Mov. Disord. Clin. Pract. 2014, 1, 213–218. [Google Scholar] [CrossRef] [Green Version]
- Olanow, C.W. Levodopa/dopamine replacement strategies in Parkinson’s disease--future directions. Mov. Disord. 2008, 23 (Suppl. S3), S613–S622. [Google Scholar] [CrossRef]
- Fox, S.H.; Katzenschlager, R.; Lim, S.Y.; Barton, B.; de Bie, R.M.A.; Seppi, K.; Coelho, M.; Sampaio, C.; on behalf of the Movement Disorder Society Evidence-Based Medicine Committee. International Parkinson and movement disorder society evidence-based medicine review: Update on treatments for the motor symptoms of Parkinson’s disease. Mov. Disord. 2018, 33, 1248–1266. [Google Scholar] [CrossRef] [PubMed]
Statistical Items (Mean ± SD) | PD Control (n = 49) | PD with LID (n = 54) | p-Value |
---|---|---|---|
age | 65.81 ± 8.51 | 65.27 ± 9.46 | 0.762 |
Edu | 12.14 ± 6.54 | 13.41 ± 6.17 | 0.315 |
Sex | 33/16 | 34/20 | 0.641 |
MoCA | 26.61 ± 3.64 | 27.04 ± 4.30 | 0.592 |
DP | 5.69 ± 1.62 | 5.93 ± 1.80 | 0.495 |
H-Y stage | 1.71 ± 0.54 | 1.70 ± 0.5 | 0.918 |
duration of PD before levodopa therapy | 2.14 ± 1.73 | 1.57 ± 1.73 | 0.099 |
duration of levodopa therapy before LID | - | 3.8 ± 1.7 | - |
LEDD (mg) | 167.92 ± 128.12 | 175 ± 128.35 | 0.754 |
REF assessment | 6.10 ± 3.52 | 7.15 ± 2.82 | 0.098 |
RBD score | 5.61 ± 3.26 | 5.57 ± 2.97 | 0.951 |
UPDRS III | 23.37 ± 8.29 | 22.48 ± 10.04 | 0.628 |
Features (Mean ± SD) | PD Control | PD LID | ANOVA (p-Value) | Weight |
---|---|---|---|---|
CAU_wavelet-HLH_glszm_HGLZE | 6.437 ± 2.362 | 5.510 ± 1.376 | 0.0155 | −0.0187 |
PAL_log-sigma-5-0-mm-3D_glcm_Idmn | 0.993 ± 0.182 | 0.994 ± 0.113 | 0.0498 | 0.0306 |
PAL_wavelet-HLL_glszm_HGLZE | 12.753 ± 4.513 | 11.164 ± 3.593 | 0.0497 | −0.0018 |
PAL_wavelet-HHL_glcm_ClusterShade | 0.445 ± 0.625 | 0.173 ± 0.470 | 0.0138 | 0.0743 |
PAL_wavelet-HHL_gldm_DE | 5.402 ± 0.398 | 5.241 ± 0.344 | 0.0297 | −0.1143 |
PAL_wavelet-LLL_firstorder_Skewness | 0.997 ± 0.301 | 0.868 ± 0.283 | 0.0283 | 0.0426 |
PAL_wavelet-LLL_glcm_Correlation | 0.803 ± 0.201 | 0.813 ± 0.261 | 0.0388 | 0.0303 |
PUT_wavelet-LLH_glszm_SAE | 0.425 ± 0.458 | 0.441 ± 0.331 | 0.0472 | 0.0087 |
PUT_wavelet-LHL_glszm_LAHGLE | 2.02 × 107 ± 6.27 × 106 | 2.31 × 107 ± 7.15 × 106 | 0.0332 | 0.0234 |
PUT_wavelet-LHH_glszm_SAE | 0.603 ± 0.656 | 0.576 ± 0.523 | 0.0218 | −0.0368 |
PUT_wavelet-HLL_firstorder_Kurtosis | 5.736 ± 0.839 | 5.316 ± 0.741 | 0.0081 | −0.0546 |
PUT_wavelet-HHH_glszm_HGLZE | 2.602 ± 0.239 | 2.495 ± 0.295 | 0.0480 | −0.0328 |
PUT_wavelet-LLL_glcm_Correlation | 0.876 ± 0.189 | 0.883 ± 0.177 | 0.0380 | 0.0354 |
SNpc_wavelet-LHH_firstorder_Skewness | 0.774 ± 0.579 | 0.178 ± 0.465 | 0.0145 | −0.0597 |
SNpc_wavelet-LHH_ngtdm_Busyness | 65.723 ± 36.200 | 81.908 ± 30.580 | 0.0120 | 0.0378 |
SNpc_wavelet-HHH_glcm_InverseVariance | 0.498 ± 0.121 | 0.493 ± 0.128 | 0.0404 | −0.0324 |
SNpr_original_firstorder_Minimum | 92.899 ± 18.883 | 80.306 ± 19.247 | 0.0011 | −0.0186 |
SNpr_original_glszm_SALGLE | 0.250 ± 0.100 | 0.213 ± 0.847 | 0.0465 | −0.0823 |
SNpr_log-sigma-3-0-mm-3D_glszm_GLNU | 5.498 ± 0.904 | 4.957 ± 0.799 | 0.0017 | −0.0134 |
SNpr_log-sigma-3-0-mm-3D_glszm_SAE | 0.318 ± 0.613 | 0.284 ± 0.722 | 0.0114 | −0.0391 |
SNpr_wavelet-LHH_firstorder_Skewness | 0.303 ± 0.389 | 0.118 ± 0.385 | 0.0175 | −0.0581 |
SNpr_wavelet-HHL_firstorder_90Percentile | 6.529 ± 1.476 | 6.160 ± 1.674 | 0.0445 | 0.0085 |
SNpr_wavelet-HHL_glcm_InverseVariance | 0.445 ± 0.156 | 0.439 ± 0.150 | 0.0375 | −0.0183 |
SNpr_wavelet-HHL_glszm_LALGLE | 1200.777 ± 649.864 | 1555.148 ± 610.757 | 0.0052 | 0.0591 |
SNpr_wavelet-HHL_glszm_ZoneVariance | 2245.971 ± 477.783 | 2445.259 ± 520.106 | 0.0462 | 0.0077 |
SNpr_wavelet-HHL_gldm_SDE | 0.521 ± 0.350 | 0.499 ± 0.359 | 0.0021 | −0.0264 |
VTA_wavelet-LHL_ngtdm_Strength | 0.319 ± 0.277 | 0.228 ± 0.159 | 0.0428 | −0.0154 |
VTA_wavelet-HHL_glcm_Idn | 0.840 ± 0.141 | 0.846 ± 0.163 | 0.0498 | 0.0509 |
VTA_wavelet-HHL_glrlm_GLNUN | 0.505 ± 0.999 | 0.510 ± 0.134 | 0.0300 | 0.0190 |
VTA_wavelet-HHL_glszm_SALGLE | 0.137 ± 0.925 | 0.176 ± 0.103 | 0.0455 | 0.0679 |
VTA_wavelet-HHH_glcm_ClusterProminence | 0.431 ± 0.478 | 0.456 ± 0.401 | 0.0046 | 0.0089 |
VTA_wavelet-HHH_glcm_JointEntropy | 1.844 ± 0.805 | 1.871 ± 0.548 | 0.0474 | 0.0366 |
VTA_wavelet-LLL_ngtdm_Contrast | 0.528 ± 0.185 | 0.685 ± 0.484 | 0.0356 | 0.0597 |
Model | Method | Specificity | Sensitivity | Accuracy | AUC |
---|---|---|---|---|---|
radiomics model | SVM | 0.923 | 0.778 | 0.839 | 0.905 |
Random Forest | 0.769 | 0.722 | 0.742 | 0.808 | |
AdaBoost | 0.692 | 0.722 | 0.710 | 0.778 | |
hybrid models | SVM | 0.928 | 0.882 | 0.903 | 0.958 |
Random Forest | 0.714 | 0.882 | 0.806 | 0.861 | |
AdaBoost | 0.786 | 0.765 | 0.774 | 0.832 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Luo, Y.; Chen, H.; Gui, M. Radiomics and Hybrid Models Based on Machine Learning to Predict Levodopa-Induced Dyskinesia of Parkinson’s Disease in the First 6 Years of Levodopa Treatment. Diagnostics 2023, 13, 2511. https://doi.org/10.3390/diagnostics13152511
Luo Y, Chen H, Gui M. Radiomics and Hybrid Models Based on Machine Learning to Predict Levodopa-Induced Dyskinesia of Parkinson’s Disease in the First 6 Years of Levodopa Treatment. Diagnostics. 2023; 13(15):2511. https://doi.org/10.3390/diagnostics13152511
Chicago/Turabian StyleLuo, Yang, Huiqin Chen, and Mingzhen Gui. 2023. "Radiomics and Hybrid Models Based on Machine Learning to Predict Levodopa-Induced Dyskinesia of Parkinson’s Disease in the First 6 Years of Levodopa Treatment" Diagnostics 13, no. 15: 2511. https://doi.org/10.3390/diagnostics13152511
APA StyleLuo, Y., Chen, H., & Gui, M. (2023). Radiomics and Hybrid Models Based on Machine Learning to Predict Levodopa-Induced Dyskinesia of Parkinson’s Disease in the First 6 Years of Levodopa Treatment. Diagnostics, 13(15), 2511. https://doi.org/10.3390/diagnostics13152511