Retinal Photoreceptors and Microvascular Changes in the Assessment of Diabetic Retinopathy Progression: A Two-Year Follow-Up Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Examination Protocol and Parameter Evaluation
2.3. Statistical Analyses
3. Results
3.1. Cone Parameters
3.2. Retinal Artery Parameters
3.3. Visual Acuity, Hba1c, FPG, CRT, Age, BMI Correlations
4. Discussion
Study Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Saeedi, P.; Petersohn, I.; Salpea, P.; Malanda, B.; Karuranga, S.; Unwin, N.; Colagiuri, S.; Guariguata, L.; Motala, A.A.; Ogurtsova, K.; et al. Global and regional diabetes prevalence estimates for 2019 and projections for 2030 and 2045: Results from the International Diabetes Federation Diabetes Atlas, 9th edition. Diabetes Res. Clin. Pract. 2019, 157, 107843. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pascolini, D.; Mariotti, S.P. Global estimates of visual impairment: 2010. Br. J. Ophthalmol. 2012, 96, 614–618. [Google Scholar] [CrossRef] [Green Version]
- Wilkinson, C.P.; Ferris, F.L.; Klein, R.E.; Lee, P.P.; Agardh, C.D.; Davis, M.; Dils, D.; Kmapik, A.; Pararajsegaram, R.; Verdaguer, J.T.; et al. Proposed international clinical diabetic retinopathy and diabetic macular oedema disease severity scales. Ophthalmology 2003, 110, 1677–1682. [Google Scholar] [CrossRef] [PubMed]
- Early Treatment Diabetic Retinopathy Study Research Group. Grading diabetic retinopathy from stereoscopic color fundus photographs—An extension of the modified Airlie House Classification. ETDRS report number 10. Ophthalmology 1991, 98, 786–806. [Google Scholar] [CrossRef]
- Simó, R.; Hernández, C.; European Consortium for the Early Treatment of Diabetic Retinopathy (EUROCONDOR). Neurodegeneration in the diabetic eye: New insights and therapeutic perspectives. Trends Endocrinol. Metab. 2014, 25, 23–33. [Google Scholar] [CrossRef]
- Lammer, J.; Prager, S.G.; Cheney, M.C.; Ahmed, A.; Radwan, S.H.; Burns, S.A.; Silva, P.S.; Sun, J.K. Cone photoreceptor irregularity on adaptive optics scanning laser ophthalmoscopy correlates with severity of diabetic retinopathy and macular edema. Investig. Ophthalmol. Vis. Sci. 2016, 57, 6624–6632. [Google Scholar] [CrossRef] [Green Version]
- Wojtkowski, M.; Leitgeb, R.; Kowalczyk, A.; Bajraszewski, T.; Fercher, A.F. In vivo human retinal imaging by Fourier domain optical coherence tomography. J. Biomed. Opt. 2002, 7, 457–463. [Google Scholar] [CrossRef]
- Lombardo, M.; Parravano, M.; Serrao, S.; Ducoli, P.; Stripe, M.; Lombardo, G. Analysis of retinal capillaries in patients with type 1 diabetes and non-proliferative diabetic retinopathy using adaptive optics imaging. Retina 2013, 33, 1630–1639. [Google Scholar] [CrossRef] [Green Version]
- Ueno, Y.; Iwase, T.; Goto, K.; Tomita, R.; Ra, E.; Yamamoto, K.; Terasaki, H. Association of changes of retinal vessels diameter with ocular blood flow in eyes with diabetic retinopathy. Sci. Rep. 2021, 11, 4653. [Google Scholar] [CrossRef]
- Zaleska-Żmijewska, A.; Wawrzyniak, Z.M.; Dąbrowska, A.; Szaflik, J.P. Adaptive Optics (rtx1) High-Resolution Imaging of Photoreceptors and Retinal Arteries in Patients with Diabetic Retinopathy. J. Diabetes Res. 2018, 2019, 9548324. [Google Scholar] [CrossRef] [Green Version]
- Ro-Mase, T.; Ishiko, S.; Omae, T.; Ishibazawa, A.; Shimouchi, A.; Yoshida, A. Association between Alterations of the Choriocapillaris Microcirculation and Visual Function and Cone Photoreceptors in Patients with Diabetes. Investig. Ophthalmol. Vis. Sci. 2020, 61, 1. [Google Scholar] [CrossRef] [PubMed]
- Zaleska-Żmijewska, A.; Wawrzyniak, Z.; Kupis, M.; Szaflik, J.P. The Relation between Body Mass Index and Retinal Photoreceptor Morphology and Microvascular Changes Measured with Adaptive Optics (rtx1) High-Resolution Imaging. J. Ophthalmol. 2020, 2021, 6642059. [Google Scholar] [CrossRef]
- Soliman, M.K.; Sadiq, M.A.; Agarwaletal, A. High-resolution imaging of parafoveal cones in different stages of diabetic retinopathy using adaptive optics fundus camera. PLoS ONE 2016, 11, e0152788. [Google Scholar] [CrossRef] [PubMed]
- Cristescu, I.E.; Baltă, F.; Zăgrean, L. Cone photoreceptor density in type I diabetic patients measured with an adaptive optics retinal camera. Rom. J. Ophthalmol. 2019, 63, 153–160. [Google Scholar] [CrossRef]
- Lombardo, M.; Parravano, M. Adaptive optics imaging of parafoveal cones in type 1 diabetes. Retina 2014, 34, 546–557. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tan, W.; Wright, T.; Rajendran, D. Cone–Photoreceptor Density in Adolescents with Type 1 Diabetes. Investig. Ophthalmol. Vis. Sci. 2015, 56, 6339–6343. [Google Scholar] [CrossRef] [Green Version]
- Park, S.P.; Chung, J.K.; Greenstein, V.; Tsang, S.H.; Chang, S. A study of factors affecting the human cone photoreceptor density measured by adaptive optics. Exp. Eye Res. 2013, 108, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Legras, R.; Gaudric, A.; Woog, K. Distribution of cone density, spacing and arrangement in adult healthy retinas with adaptive optics flood illumination. PLoS ONE 2018, 13, e0191141. [Google Scholar] [CrossRef]
- Zaleska-Zmijewska, A.; Wawrzyniak, Z.M.; Ulińska, M.; Szaflik, J.; Dabrowska, A.; Szaflik, J.P. Human photoreceptor cone density measured with adaptive optics technology (rtx-1). Medicine 2017, 96, e7300. [Google Scholar] [CrossRef]
- Murakami, T.; Yoshimura, N. Structural changes in individual retinal layers in diabetic macular edema. J. Diabetes Res. 2013, 2013, 920713. [Google Scholar] [CrossRef] [Green Version]
- Song, H.; Chui, T.; Zhong, Z.; Elsner, A.E.; Burns, S.A. Variation of cone photoreceptor. Investig. Ophthalmol. Vis. Sci. 2011, 52, 7376–7384. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Klein, R.; Klein, B.E.; Moss, S.E.; Wong, T.Y.; Sharrett, A.R. Retinal vascular caliber in persons with type 2 diabetes: The Wisconsin Epidemiological Study of Diabetic Retinopathy: XX. Ophthalmology 2008, 115, 1859–1868. [Google Scholar] [CrossRef] [Green Version]
- Arichika, S.; Uji, A.; Murakami, T.; Suzuma, K.; Gotoh, N.; Yoshimura, N. Correlation of retinal arterial wall thickness with atherosclerosis predictors in type 2 diabetes. Br. J. Ophthalmol. 2017, 101, 69–74. [Google Scholar] [CrossRef] [PubMed]
- Wilson, C.A.; Stefánsson, E.; Klombers, L.; Hubbard, L.D.; Kaufman, S.C.; Ferris, F.L. Optic disk neovascularisation and retinal vessel diameter in diabetic retinopathy. Am. J. Ophthalmol. 1988, 106, 131–134. [Google Scholar] [PubMed]
- Stefansson, E. Ocular oxygenation and the treatment of diabetic retinopathy. Surv. Ophthalmol. 2006, 51, 364–380. [Google Scholar] [CrossRef]
- Sugimoto, M.; Nunome, T.; Sakamoto, R.; Kobayashi, M.; Kondo, M. Effect of intravitreal ranibizumab on the ocular circulation of the untreated fellow eye. Graefes Arch. Clin. Exp. Ophthalmol. 2017, 255, 1543–1550. [Google Scholar] [CrossRef] [Green Version]
- De Jongh, R.T.; Serné, E.H.; IJzerman, R.G.; Vries, F.; Stehouwer, C.D.A. Impaired microvascular function in obesity. Circulation 2004, 109, 2529–2535. [Google Scholar] [CrossRef] [Green Version]
- Cheng, H.; Ciuffreda, K.J.; Jiang, H.; Zhou, K.; Lin, S.; Zheng, J.; Yu, X. Cone parameters in different vision levels from the adaptive optics imaging. Medicine 2020, 100, e25618. [Google Scholar] [CrossRef]
Characteristics | m ± SD DR | p-Value Wilcoxon Signed Rank Test | m ± SD Control | p-Value Wilcoxon Signed Rank Test | p-Value t-Test |
---|---|---|---|---|---|
Age (years) | 49.7 ± 11.1 | 41.6 ± 11.5 | 0.011 | ||
Initial Hypertension (%) | 23.3 | 0.043 | 0.0 | 0.135 † | |
Final Hypertension (%) | 34.9 | 0.0 | 0.033 † | ||
AL-R (mm) | 23.2 ± 1.0 | 0.416 ‡ | 23.0 ± 1.0 | 0.211 ‡ | 0.612 |
AL-L (mm) | 23.2 ± 1.0 | 22.8 ± 1.3 | 0.339 | ||
Initial BCVA | 0.866 ± 0.173 | 0.233 | 1.000 ± 0.000 | 0.109 | 0.002 † |
Final BCVA | 0.828 ± 0.203 | 0.983 ± 0.038 | 0.003 † | ||
Initial BMI (kg/m2) | 27.4 ± 4.9 | 0.200 | 24.2 ± 1.6 | 0.006 | 0.003 † |
Final BMI (kg/m2) | 27.1 ± 4.4 | 24.8 ± 1.7 | 0.026 † | ||
Initial Hba1c (%) | 8.3 ± 1.8 | 0.507 | 5.6 ± 0.6 | <0.001 † | |
Final Hba1c (%) | 8.1± 1.8 | 5.6 ± 0.6 | <0.001 † | ||
Initial FPG (mg/dL) | 168.5 ± 49.8 | 0.507 | 93.4 ± 7.0 | 0.276 | <0.001 † |
Final FPG (mg/dL) | 162.5 ± 44.7 | 94.0 ± 4.9 | <0.001 † |
Quadrants | Initial Visit | Final Visit | p-Value Paired t-Test DR | p-Value Paired t-Test Control | ||||
---|---|---|---|---|---|---|---|---|
MCD (± SD) (cone/mm2) DR | MCD (±SD) (cone/mm2) Control | p-Value t-Test | MCD (±SD) (cone/mm2) DR | MCD (±SD) (cone/mm2) Control | p-Value t-Test | |||
T | 20,380 *** ± 4652 | 25,652 *** ± 2513 | <0.001 | 19,412 ***± 5049 | 23,920 *** ±3037 | 0.001 | <0.001 | 0.002 |
N | 20,203 *** ± 4775 | 25,165 *** ± 3261 | <0.001 | 19,634 *** ± 4521 | 24,031 *** ±2902 | <0.001 | <0.001 | 0.037 |
S | 19,680 *** ± 4902 | 24,059 *** ± 2846 | <0.001 | 18,491 *** ± 4841 | 22,768 *** ± 2826 | 0.001 | <0.001 | 0.043 |
I | 19,980 ** ± 4652 | 23,481 ** ± 3959 | 0.007 | 19,047 *± 5270 | 21,885 * ± 3992 | 0.047 | <0.001 | <0.001 |
Quadrants | Initial Visit | Final Visit | p-Value Paired t-Test DR | p-Value Paired t-Test Control | ||||
---|---|---|---|---|---|---|---|---|
SM (±SD) (µm) DR | SM (±SD) (µm) Control | p-Value t-Test | SM (±SD) (µm) DR | SM (±SD) (µm) Control | p-Value t-Test | |||
T | 7.84 *** ± 0.90 | 6.96 *** ± 0.42 | <0.001 | 8.06 ** ± 1.11 | 7.25 ** ± 0.56 | 0.003 | <0.001 | 0.001 |
N | 7.88 *** ± 0.94 | 7.01 *** ± 0.48 | <0.001 | 7.95 ** ± 0.9 | 7.24 ** ± 0.63 | 0.006 | 0.002 | 0.160 |
S | 7.99 *** ± 0.98 | 7.14 *** ± 0.41 | 0.001 | 8.24 ** ± 1.1 | 7.35 ** ± 0.47 | 0.004 | <0.001 | 0.063 |
I | 7.91 * ± 0.92 | 7.28 * ± 0.64 | 0.012 | 8.11 ± 1.12 | 7.49 ± 0.71 | 0.063 | 0.002 | 0.010 |
Quadrants | Initial Visit | Final Visit | p-Value Paired t-Test DR | p-Value Paired t-Test Control | ||||
---|---|---|---|---|---|---|---|---|
Reg (±SD) (%) DR | Reg (±SD) (%) Control | p-Value t-Test | Reg (±SD) (%) DR | Reg (±SD) (%) Control | p-Value t-Test | |||
T | 91.2 * ± 3.6 | 93.3 * ± 3.3 | 0.042 | 89.4 ± 5.3 | 90.7 ± 4.1 | 0.343 | <0.001 | 0.032 |
N | 90.9 ± 3.8 | 92.4 ± 4.7 | 0.212 | 90.4 * ± 4.2 | 93.0 * ± 2.8 | 0.023 | 0.002 | 0.606 |
S | 82.3 ± 10.0 | 85.4 ± 7.0 | 0.244 | 91.5 ± 5.2 | 92.7 ± 4.4 | 0.419 | <0.001 | <0.001 |
I | 92.1 ± 4.0 | 93.8 ± 3.4 | 0.129 | 89.9 ± 5.0 | 92.5 ± 4.9 | 0.103 | 0.002 | 0.208 |
Quadrants | Initial Visit | Final Visit | p-Value Paired t-Test DR | p-Value Paired t-Test Control | ||||
---|---|---|---|---|---|---|---|---|
6-Voronoi (±SD) (%) DR | 6-Voronoi (±SD) (%) Control | p-Value t-Test | 6-Voronoi (±SD) (%) DR | 6-Voronoi (±SD) (%) Control | p-Value t-Test | |||
T | 42.8 * ± 5.1 | 46.8 * ± 6.9 | 0.013 | 40.9 ± 7.0 | 41.1 ± 6.7 | 0.946 | 0.073 | 0.011 |
N | 44.1 * ± 4.9 | 44.2 * ± 7.4 | 0.026 † | 39.8 *** ± 6.5 | 47.6 *** ± 7.8 | 0.001 † | <0.001 ‡ | 0.233 |
S | 43.8 * ± 6.9 | 49.0 * ± 13.4 | 0.020 † | 40.1 * ± 8.5 | 46.9 * ± 9.7 | 0.011 | <0.001 ‡ | 0.979 |
I | 44.0 ± 6.3 | 45.8 ± 7.1 | 0.340 | 41.1 ± 7.7 | 44.8 ± 9.4 | 0.160 | 0.002 | 0.743 |
Quadrants | Initial Visit | Final Visit | p-Value Paired t-Test DR | p-Value Paired t-Test Control | ||||
---|---|---|---|---|---|---|---|---|
M (±SD) DR | M (±SD) Control | p-Value t-Test | M (±SD) DR | M (±SD) Control | p-Value t-Test | |||
LD (±SD) (µm) | 92.6 ± 18.7 | 95.9 ± 10.4 | 0.495 | 90.4 ± 13.5 | 95.9 ± 13.2 | 0.155 | 0.180 | 0.495 |
VD (±SD) (µm) | 119.0 ± 17.4 | 120.0 ± 13.2 | 0.836 | 120.8 ± 17.2 | 120.5 ± 15.1 | 0.953 | 0.773 | 0.836 |
WALL1 (±SD) (µm) | 14.5 *** ± 2.5 | 12.0 *** ± 1.9 | <0.001 † | 15.1 *** ± 2.3 | 12.3 *** ± 1.8 | <0.001 | 0.009 ‡ | <0.001 |
WALL2 (±SD) (µm) | 14.6 *** ± 2.4 | 12.0 *** ± 1.5 | <0.001 † | 15.1 *** ± 2.3 | 12.6 *** ± 1.7 | <0.001 | 0.025 ‡ | <0.001 |
WCSA (±SD) (μm2) | 4938 * ± 1358 | 4122 * ± 979 | 0.033 † | 5081 * ± 1254 | 4268 * ± 978 | 0.017 | 0.480 ‡ | 0.033 |
WLR (±SD) | 0.342 *** ± 0.063 | 0.251 *** ± 0.015 | <0.001 † | 0.343 *** ± 0.048 | 0.262 *** ± 0.032 | <0.001 | 0.202 ‡ | <0.001 ‡ |
Change between Final and Initial Acquisition | BCVA | CRT | Hba1c | FPG | Age | BMI |
---|---|---|---|---|---|---|
MCD | 0.6200 | −0.0804 | 0.0804 | 0.1647 | −0.4639 | −0.1103 |
SM | −0.6779 | 0.1385 | −0.0113 | −0.0977 | 0.4014 | 0.0602 |
Reg | 0.1102 | 0.0860 | −0.0680 | −0.0599 | −0.3150 | −0.0986 |
6-Voronoi | 0.1894 | 0.0886 | 0.0752 | −0.0465 | −0.1154 | −0.0792 |
LD | −0.3572 | 0.1484 | 0.0040 | −0.1453 | 0.0978 | 0.2308 |
VD | −0.2344 | 0.1538 | 0.0189 | −0.1970 | 0.2123 | 0.2552 |
WALL1 | −0.1344 | 0.0681 | 0.1624 | −0.0692 | 0.2504 | 0.0162 |
WALL2 | 0.1387 | 0.1090 | 0.2105 | −0.1347 | 0.2309 | 0.1706 |
WCSA | −0.2022 | 0.1559 | 0.1507 | −0.1105 | 0.2363 | 0.0960 |
WLR | 0.3389 | −0.1664 | 0.1353 | 0.0941 | −0.0856 | −0.0150 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kupis, M.; Wawrzyniak, Z.M.; Szaflik, J.P.; Zaleska-Żmijewska, A. Retinal Photoreceptors and Microvascular Changes in the Assessment of Diabetic Retinopathy Progression: A Two-Year Follow-Up Study. Diagnostics 2023, 13, 2513. https://doi.org/10.3390/diagnostics13152513
Kupis M, Wawrzyniak ZM, Szaflik JP, Zaleska-Żmijewska A. Retinal Photoreceptors and Microvascular Changes in the Assessment of Diabetic Retinopathy Progression: A Two-Year Follow-Up Study. Diagnostics. 2023; 13(15):2513. https://doi.org/10.3390/diagnostics13152513
Chicago/Turabian StyleKupis, Magdalena, Zbigniew M. Wawrzyniak, Jacek P. Szaflik, and Anna Zaleska-Żmijewska. 2023. "Retinal Photoreceptors and Microvascular Changes in the Assessment of Diabetic Retinopathy Progression: A Two-Year Follow-Up Study" Diagnostics 13, no. 15: 2513. https://doi.org/10.3390/diagnostics13152513
APA StyleKupis, M., Wawrzyniak, Z. M., Szaflik, J. P., & Zaleska-Żmijewska, A. (2023). Retinal Photoreceptors and Microvascular Changes in the Assessment of Diabetic Retinopathy Progression: A Two-Year Follow-Up Study. Diagnostics, 13(15), 2513. https://doi.org/10.3390/diagnostics13152513