Classification of Parkinson’s Disease in Patch-Based MRI of Substantia Nigra
Abstract
:1. Introduction
Parkinson’s Classification Based on Machine Learning (ML) and Deep Learning (DL) Techniques
- Achieved the state-of-the-art mean accuracy, sensitivity, specificity, and area under the curve as 96, , , and percent, respectively.
- Dealing with limited data, this model was developed in such a manner that reduces the overfitting problem.
- Low-computational-power GPU was used and obtained satisfactory results as compared to other techniques.
- Specific patches were extracted from the samples.
2. Materials and Methods
2.1. Data Acquisition
2.2. Pre-Processing
2.3. Convolutional Neural Network Architecture
2.3.1. Weights Initialization
2.3.2. Convolution of Kernels
2.3.3. Activation Function
2.3.4. Pooling
2.3.5. Regularization
2.3.6. Fully Connected layers or Dense layers
2.3.7. Loss Function
2.4. Proposed Network Architecture
3. Results
3.1. Performance Measures
3.2. Experimental Setup
3.3. Experiments
3.4. First Experiment
3.5. Second Experiment
3.6. Third Experiment
3.7. Fourth Experiment
4. Discussion
5. Conclusions
5.1. Contribution
5.2. Future Work
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Dauer, W.; Przedborski, S. Parkinson’s disease: Mechanisms and models. Neuron 2003, 39, 889–909. [Google Scholar] [CrossRef] [PubMed]
- Shetty, S.; Rao, Y. SVM based machine learning approach to identify Parkinson’s disease using gait analysis. In Proceedings of the 2016 International Conference on Inventive Computation Technologies (ICICT), Coimbatore, India, 26–27 August 2016; Volume 2, pp. 1–5. [Google Scholar]
- Nackaerts, E.; Ginis, P.; Heremans, E.; Swinnen, S.P.; Vandenberghe, W.; Nieuwboer, A. Retention of touchscreen skills is compromised in Parkinson’s disease. Behav. Brain Res. 2020, 378, 112265. [Google Scholar] [CrossRef] [PubMed]
- Shah, P.M.; Zeb, A.; Shafi, U.; Zaidi, S.F.A.; Shah, M.A. Detection of Parkinson Disease in Brain MRI using Convolutional Neural Network. In Proceedings of the 2018 24th International Conference on Automation and Computing (ICAC), Newcastle Upon Tyne, UK, 6–7 September 2018; pp. 1–6. [Google Scholar]
- Khan, H.; Shah, P.M.; Shah, M.A.; ul Islam, S.; Rodrigues, J.J. Cascading handcrafted features and Convolutional Neural Network for IoT-enabled brain tumor segmentation. Comput. Commun. 2020, 153, 196–207. [Google Scholar] [CrossRef]
- Khan, M.; Shah, P.M.; Khan, I.A.; Islam, S.u.; Ahmad, Z.; Khan, F.; Lee, Y. IoMT-Enabled Computer-Aided Diagnosis of Pulmonary Embolism from Computed Tomography Scans Using Deep Learning. Sensors 2023, 23, 1471. [Google Scholar] [CrossRef]
- Shah, P.M.; Khan, H.; Shafi, U.; Islam, S.u.; Raza, M.; Son, T.T.; Le-Minh, H. 2d-cnn based segmentation of ischemic stroke lesions in mri scans. In Proceedings of the Advances in Computational Collective Intelligence: 12th International Conference, ICCCI 2020, Da Nang, Vietnam, 30 November–3 December 2020; Proceedings 12. Springer: Berlin/Heidelberg, Germany, 2020; pp. 276–286. [Google Scholar]
- Shah, P.M.; Ullah, F.; Shah, D.; Gani, A.; Maple, C.; Wang, Y.; Abrar, M.; Islam, S.U. Deep GRU-CNN model for COVID-19 detection from chest X-rays data. IEEE Access 2021, 10, 35094–35105. [Google Scholar] [CrossRef] [PubMed]
- Shah, P.M.; Ullah, H.; Ullah, R.; Shah, D.; Wang, Y.; Islam, S.u.; Gani, A.; Rodrigues, J.J. DC-GAN-based synthetic X-ray images augmentation for increasing the performance of EfficientNet for COVID-19 detection. Expert Syst. 2022, 39, e12823. [Google Scholar] [CrossRef] [PubMed]
- Thapa, S.; Adhikari, S.; Ghimire, A.; Aditya, A. Feature selection based twin-support vector machine for the diagnosis of Parkinson’s disease. In Proceedings of the 2020 IEEE 8th R10 Humanitarian Technology Conference (R10-HTC), Kuching, Malaysia, 1–3 December 2020; pp. 1–6. [Google Scholar]
- Zhao, H.; Cao, J.; Wang, R.; Lei, Y.; Liao, W.H.; Cao, H. Accurate identification of Parkinson’s disease by distinctive features and ensemble decision trees. Biomed. Signal Process. Control. 2021, 69, 102860. [Google Scholar] [CrossRef]
- Bind, S.; Tiwari, A.K.; Sahani, A.K.; Koulibaly, P.; Nobili, F.; Pagani, M.; Sabri, O.; Borght, T.; Laere, K.; Tatsch, K. A survey of machine learning based approaches for Parkinson disease prediction. Int. J. Comput. Sci. Inf. Technol. 2015, 6, 1648–1655. [Google Scholar]
- Joshi, S.; Shenoy, D.; Rrashmi, P.; Venugopal, K.; Patnaik, L. Classification of Alzheimer’s disease and Parkinson’s disease by using machine learning and neural network methods. In Proceedings of the 2010 Second International Conference on Machine Learning and Computing, Bangalore, India, 9–11 February 2010; pp. 218–222. [Google Scholar]
- El Maachi, I.; Bilodeau, G.A.; Bouachir, W. Deep 1D-Convnet for accurate Parkinson disease detection and severity prediction from gait. Expert Syst. Appl. 2020, 143, 113075. [Google Scholar] [CrossRef]
- Tuncer, T.; Dogan, S.; Acharya, U.R. Automated detection of Parkinson’s disease using minimum average maximum tree and singular value decomposition method with vowels. Biocybern. Biomed. Eng. 2020, 40, 211–220. [Google Scholar] [CrossRef]
- Shinde, S.; Prasad, S.; Saboo, Y.; Kaushick, R.; Saini, J.; Pal, P.K.; Ingalhalikar, M. Predictive markers for Parkinson’s disease using deep neural nets on neuromelanin sensitive MRI. Neuroimage: Clin. 2019, 22, 101748. [Google Scholar] [CrossRef] [PubMed]
- Amoroso, N.; La Rocca, M.; Monaco, A.; Bellotti, R.; Tangaro, S. Complex networks reveal early MRI markers of Parkinson’s disease. Med. Image Anal. 2018, 48, 12–24. [Google Scholar] [CrossRef]
- Olanrewaju, R.F.; Sahari, N.S.; Musa, A.A.; Hakiem, N. Application of neural networks in early detection and diagnosis of Parkinson’s disease. In Proceedings of the 2014 International Conference on Cyber and IT Service Management (CITSM), Washington, DC, USA, 27 June–2 July 2014; pp. 78–82. [Google Scholar]
- Ghanad, N.K.; Ahmadi, S. Combination of PSO algorithm and naive Bayesian classification for Parkinson disease diagnosis. Adv. Comput. Sci. Int. J. 2015, 4, 119–125. [Google Scholar]
- Prashanth, R.; Roy, S.D.; Mandal, P.K.; Ghosh, S. High-accuracy detection of early parkinson’s disease through multimodal features and machine learning. Int. J. Med. Inform. 2016, 90, 13–21. [Google Scholar] [CrossRef]
- Avci, D.; Dogantekin, A. An expert diagnosis system for parkinson disease based on genetic algorithm-wavelet kernel-extreme learning machine. Parkinson’s Dis. 2016, 2016. [Google Scholar] [CrossRef] [PubMed]
- Sivaranjini, S.; Sujatha, C. Deep learning based diagnosis of Parkinson’s disease using convolutional neural network. Multimed. Tools Appl. 2019, 79, 15467–15479. [Google Scholar] [CrossRef]
- Haller, S.; Badoud, S.; Nguyen, D.; Barnaure, I.; Montandon, M.; Lovblad, K.; Burkhard, P. Differentiation between Parkinson disease and other forms of Parkinsonism using support vector machine analysis of susceptibility-weighted imaging (SWI): Initial results. Eur. Radiol. 2013, 23, 12–19. [Google Scholar] [CrossRef]
- Salvatore, C.; Cerasa, A.; Castiglioni, I.; Gallivanone, F.; Augimeri, A.; Lopez, M.; Arabia, G.; Morelli, M.; Gilardi, M.; Quattrone, A. Machine learning on brain MRI data for differential diagnosis of Parkinson’s disease and Progressive Supranuclear Palsy. J. Neurosci. Methods 2014, 222, 230–237. [Google Scholar] [CrossRef]
- Long, D.; Wang, J.; Xuan, M.; Gu, Q.; Xu, X.; Kong, D.; Zhang, M. Automatic classification of early Parkinson’s disease with multi-modal MR imaging. PloS ONE 2012, 7, e47714. [Google Scholar] [CrossRef]
- Acton, P.D.; Newberg, A. Artificial neural network classifier for the diagnosis of Parkinson’s disease using [99mTc] TRODAT-1 and SPECT. Phys. Med. Biol. 2006, 51, 3057. [Google Scholar] [CrossRef]
- Cherubini, A.; Morelli, M.; Nisticó, R.; Salsone, M.; Arabia, G.; Vasta, R.; Augimeri, A.; Caligiuri, M.E.; Quattrone, A. Magnetic resonance support vector machine discriminates between Parkinson disease and progressive supranuclear palsy. Mov. Disord. 2014, 29, 266–269. [Google Scholar] [CrossRef] [PubMed]
- Singh, G.; Samavedham, L. Unsupervised learning based feature extraction for differential diagnosis of neurodegenerative diseases: A case study on early-stage diagnosis of Parkinson disease. J. Neurosci. Methods 2015, 256, 30–40. [Google Scholar] [CrossRef] [PubMed]
- Rana, B.; Juneja, A.; Saxena, M.; Gudwani, S.; Kumaran, S.S.; Agrawal, R.; Behari, M. Regions-of-interest based automated diagnosis of Parkinson’s disease using T1-weighted MRI. Expert Syst. Appl. 2015, 42, 4506–4516. [Google Scholar] [CrossRef]
- Huppertz, H.J.; Möller, L.; Südmeyer, M.; Hilker, R.; Hattingen, E.; Egger, K.; Amtage, F.; Respondek, G.; Stamelou, M.; Schnitzler, A.; et al. Differentiation of neurodegenerative parkinsonian syndromes by volumetric magnetic resonance imaging analysis and support vector machine classification. Mov. Disord. 2016, 31, 1506–1517. [Google Scholar] [CrossRef]
- Adeli, E.; Shi, F.; An, L.; Wee, C.Y.; Wu, G.; Wang, T.; Shen, D. Joint feature-sample selection and robust diagnosis of Parkinson’s disease from MRI data. NeuroImage 2016, 141, 206–219. [Google Scholar] [CrossRef] [PubMed]
- Abós, A.; Baggio, H.C.; Segura, B.; García-Díaz, A.I.; Compta, Y.; Martí, M.J.; Valldeoriola, F.; Junqué, C. Discriminating cognitive status in Parkinson’s disease through functional connectomics and machine learning. Sci. Rep. 2017, 7, 45347. [Google Scholar] [CrossRef] [PubMed]
- Péran, P.; Barbagallo, G.; Nemmi, F.; Sierra, M.; Galitzky, M.; Traon, A.P.L.; Payoux, P.; Meissner, W.G.; Rascol, O. MRI supervised and unsupervised classification of Parkinson’s disease and multiple system atrophy. Mov. Disord. 2018, 33, 600–608. [Google Scholar] [CrossRef]
- Ariz, M.; Abad, R.C.; Castellanos, G.; Martínez, M.; Muñoz-Barrutia, A.; Fernández-Seara, M.A.; Pastor, P.; Pastor, M.A.; Ortiz-de Solórzano, C. Dynamic atlas-based segmentation and quantification of Neuromelanin-rich brainstem structures in Parkinson disease. IEEE Trans. Med. Imaging 2018, 38, 813–823. [Google Scholar] [CrossRef]
- Billones, C.D.; Demetria, O.J.L.D.; Hostallero, D.E.D.; Naval, P.C. Demnet: A convolutional neural network for the detection of Alzheimer’s Disease and Mild Cognitive Impairment. In Proceedings of the 2016 IEEE Region 10 Conference (TENCON), Singapore, 22–25 November 2016; pp. 3724–3727. [Google Scholar]
- Dou, Q.; Chen, H.; Yu, L.; Zhao, L.; Qin, J.; Wang, D.; Mok, V.C.; Shi, L.; Heng, P.A. Automatic detection of cerebral microbleeds from MR images via 3D convolutional neural networks. IEEE Trans. Med. Imaging 2016, 35, 1182–1195. [Google Scholar] [CrossRef]
- Marek, K.; Jennings, D.; Lasch, S.; Siderowf, A.; Tanner, C.; Simuni, T.; Coffey, C.; Kieburtz, K.; Flagg, E.; Chowdhury, S.; et al. The Parkinson progression marker initiative (PPMI). Prog. Neurobiol. 2011, 95, 629–635. [Google Scholar] [CrossRef]
- Lella, K.K.; Pja, A. Automatic diagnosis of COVID-19 disease using deep convolutional neural network with multi-feature channel from respiratory sound data: Cough, voice, and breath. Alex. Eng. J. 2022, 61, 1319–1334. [Google Scholar] [CrossRef]
- Alshmrani, G.M.M.; Ni, Q.; Jiang, R.; Pervaiz, H.; Elshennawy, N.M. A deep learning architecture for multi-class lung diseases classification using chest X-ray (CXR) images. Alex. Eng. J. 2023, 64, 923–935. [Google Scholar] [CrossRef]
- Initializers—Keras Documentation. Available online: https://faroit.com/keras-docs/2.0.6/initializers/ (accessed on 25 August 2023).
- Glorot, X.; Bengio, Y. Understanding the difficulty of training deep feedforward neural networks. In Proceedings of the Aistats, Chia, Italy, 13–15 May 2010; Volume 9, pp. 249–256. [Google Scholar]
- Hinton, G.E.; Srivastava, N.; Krizhevsky, A.; Sutskever, I.; Salakhutdinov, R.R. Improving Neural Networks by Preventing Co-Adaptation of Feature Detectors 2012. Available online: http://xxx.lanl.gov/abs/1207.0580 (accessed on 25 August 2023).
- Bishop, C.M. Pattern recognition. Mach. Learn. 2006, 128, 1–736. [Google Scholar]
- Rana, B.; Juneja, A.; Saxena, M.; Gudwani, S.; Kumaran, S.S.; Behari, M.; Agrawal, R. Graph-theory-based spectral feature selection for computer aided diagnosis of Parkinson’s disease using T 1-weighted MRI. Int. J. Imaging Syst. Technol. 2015, 25, 245–255. [Google Scholar] [CrossRef]
- Cigdem, O.; Yilmaz, A.; Beheshti, I.; Demirel, H. Comparing the performances of PDF and PCA on Parkinson’s disease classification using structural MRI images. In Proceedings of the 2018 26th Signal Processing and Communications Applications Conference (SIU), Izmir, Turkey, 2–5 May 2018; pp. 1–4. [Google Scholar]
- Peng, B.; Zhou, Z.; Geng, C.; Tong, B.; Zhou, Z.; Zhang, T.; Dai, Y. Computer aided analysis of cognitive disorder in patients with Parkinsonism using machine learning method with multilevel ROI-based features. In Proceedings of the 2016 9th International Congress on Image and Signal Processing, BioMedical Engineering and Informatics (CISP-BMEI), Datong, China, 15–17 October 2016; pp. 1792–1796. [Google Scholar]
- Pahuja, G.; Nagabhushan, T. A novel GA-ELM approach for parkinson’s disease detection using brain structural T1-weighted MRI data. In Proceedings of the 2016 Second International Conference on Cognitive Computing and Information Processing (CCIP), Mysuru, India, 12–13 August 2016; pp. 1–6. [Google Scholar]
Reference | Data Type | Number of Subjects | Methods Used | Accuracy | Year |
---|---|---|---|---|---|
[24] | MRI Scans | PD (n = 28) | Voxel-based morphometry | PD vs. HC: 83.2 | 2014 |
HC (n = 28) | Principal component analysis | PSP vs. PD: 84.7 | |||
PSP (n = 28) | Support vector machine | PSP vs. HC: 86.2 | |||
[27] | MRI Scans | Tremor dominant PD (n = 15) | Voxel-based morphometry | 100 | 2014 |
ET with rest tremor (n = 15) | Diffusion tensor imaging | ||||
Support vector machine | |||||
[28] | MRI Scans | PD (n = 518) | Self-organizing maps | 99.9 | 2015 |
HC (n = 245) | Support vector machine | ||||
SWEDD (n = 68) | |||||
[29] | MRI Scans | PD (n = 30) | Region-of-interest-based | 86.67 | 2015 |
HC (n = 30) | Support vector machine | ||||
[30] | MRI Scans | PD (n = 204) | Volumetry | 80 | 2016 |
MSA-C (n = 21) | Support vector machine | ||||
PSP-RS (n = 106) | |||||
MSA-P (n = 60) | |||||
[31] | MRI Scans | PPMI cohort | Joint feature-sample selection | 81.9 | 2016 |
HC (n = 169) | |||||
PD (n = 374) | |||||
[32] | MRI Scans | HC (n = 38) | Functional connectome | 80 | 2017 |
PD (n = 27) | Support vector machine | ||||
[17] | MRI Scans | HC (n = 169) | Connectivity measures | 93 | 2018 |
PD (n = 374) | Support vector machine | ||||
[33] | MRI Scans | PD (n = 26) | Voxel-based morphometry | PD vs. MSA: 96 | 2018 |
HC (n = 26) | T2 relaxometry, DTI | ||||
MSA-P (n = 16) | Self-organizing maps | ||||
MSA-C (n = 13) | |||||
[34] | MRI Scans | HC (n = 39) | NM-MRI-based atlas of Substantia nigra | 79.9 | 2019 |
PD (n = 40) | |||||
[16] | MRI Scans | HC (n = 35) | NM-MRI-based atlas of Substantia nigra | 89 | 2019 |
PD (n = 25) | |||||
[22] | MRI Scans | PPMI | CNN model AlexNet | 88.9 | 2019 |
HC = 82 | Transfer learning | ||||
PD = 100 |
Total | Male | Female | Age (Years) | |
---|---|---|---|---|
PD | 250 | 173 | 77 | 60 ± 10 |
HC | 250 | 136 | 114 | 60 ± 10 |
Layer No. | Type | Filter Size | Stride | # Filters | FC Units | Input |
---|---|---|---|---|---|---|
Layer 1 | Conv. | 3 × 3 | 1 × 1 | 64 | - | 33 × 33 |
Layer 2 | Conv. | 3 × 3 | 1 × 1 | 64 | - | 64 × 33 × 33 |
Layer 3 | Conv. | 3 × 3 | 1 × 1 | 64 | - | 64 × 33 × 33 |
Layer 4 | Maxpool. | 3 × 3 | 2 × 2 | - | - | 64 × 33 × 33 |
Layer 5 | Conv. | 3 × 3 | 1 × 1 | 128 | - | 64 × 16 × 16 |
Layer 6 | Conv. | 3 × 3 | 1 × 1 | 128 | - | 128 × 16 × 16 |
Layer 7 | Conv. | 3 × 3 | 1 × 1 | 128 | - | 128 × 16 × 16 |
Layer 8 | Maxpool. | 3 × 3 | 2 × 2 | - | - | 128 × 16 × 16 |
Layer 9 | FC | - | - | - | 512 | 6272 |
Layer 10 | FC | - | - | - | 256 | 512 |
Layer 11 | FC | - | - | - | 2 | 256 |
Accuracy | Specificity | Sensitivity | AUC |
---|---|---|---|
96 ± 2 | 96.87 ± 3.13 | 95.83 ± 0 | 94.5 ± 0.5 |
Predicted | |||
---|---|---|---|
Yes | No | ||
Actual | Yes | 49 | 1 |
No | 3 | 47 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hussain, S.S.; Degang, X.; Shah, P.M.; Islam, S.U.; Alam, M.; Khan, I.A.; Awwad, F.A.; Ismail, E.A.A. Classification of Parkinson’s Disease in Patch-Based MRI of Substantia Nigra. Diagnostics 2023, 13, 2827. https://doi.org/10.3390/diagnostics13172827
Hussain SS, Degang X, Shah PM, Islam SU, Alam M, Khan IA, Awwad FA, Ismail EAA. Classification of Parkinson’s Disease in Patch-Based MRI of Substantia Nigra. Diagnostics. 2023; 13(17):2827. https://doi.org/10.3390/diagnostics13172827
Chicago/Turabian StyleHussain, Sayyed Shahid, Xu Degang, Pir Masoom Shah, Saif Ul Islam, Mahmood Alam, Izaz Ahmad Khan, Fuad A. Awwad, and Emad A. A. Ismail. 2023. "Classification of Parkinson’s Disease in Patch-Based MRI of Substantia Nigra" Diagnostics 13, no. 17: 2827. https://doi.org/10.3390/diagnostics13172827
APA StyleHussain, S. S., Degang, X., Shah, P. M., Islam, S. U., Alam, M., Khan, I. A., Awwad, F. A., & Ismail, E. A. A. (2023). Classification of Parkinson’s Disease in Patch-Based MRI of Substantia Nigra. Diagnostics, 13(17), 2827. https://doi.org/10.3390/diagnostics13172827