An Exploratory Review on the Potential of Artificial Intelligence for Early Detection of Acute Kidney Injury in Preterm Neonates
Abstract
:1. Introduction
2. Methods and Materials
3. Results
3.1. Non-Invasive Assessment of Renal Function
3.1.1. Renal Artery Doppler Ultrasound
3.1.2. Near-Infrared Spectroscopy (NIRS)
3.2. Artificial Intelligence for AKI Prediction
3.3. Outcomes for Clinical Practice
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Walani, S.R. Global burden of preterm birth. Int. J. Gynaecol. Obstet. 2020, 150, 31–33. [Google Scholar] [CrossRef]
- Luyckx, V.A.; Bertram, J.F.; Brenner, B.M.; Fall, C.; Hoy, W.E.; Ozanne, S.E.; Vikse, E.B. Effect of fetal and child health on kidney development and long-term risk of hypertension and kidney disease. Lancet 2013, 382, 273–283. [Google Scholar] [CrossRef] [PubMed]
- Pasala, S.; Carmody, J.B. How to use… serum creatinine, cystatin C and GFR. Arch. Dis. Child. 2017, 102, 37. [Google Scholar] [CrossRef]
- Go, H.; Momoi, N.; Kashiwabara, N.; Haneda, K.; Chishiki, M.; Imamura, T.; Sato, M.; Goto, A.; Kawasaki, Y.; Hosoya, M. Neonatal and maternal serum creatinine levels during the early postnatal period in preterm and term infants. PLoS ONE 2018, 13, e0196721. [Google Scholar] [CrossRef] [PubMed]
- Filler, G.; Bhayana, V.; Schott, C.; Díaz-González de Ferris, M.E. How should we assess renal function in neonates and infants? Acta Paediatr. 2021, 110, 773–780. [Google Scholar] [CrossRef] [PubMed]
- Kandasamy, Y.; Rudd, D.; Smith, R. The relationship between body weight, cystatin C and serum creatinine in neonates. J. Neonatal Perinat. Med. 2017, 10, 419–423. [Google Scholar] [CrossRef] [PubMed]
- Kellum, J.A.; Lameire, N.; KDIGO AKI Guideline Work Group. Diagnosis, evaluation, and management of acute kidney injury: A KDIGO summary (Part 1). Crit. Care 2013, 17, 204. [Google Scholar] [CrossRef] [PubMed]
- Jetton, J.G.; Boohaker, L.J.; Sethi, S.K.; Wazir, S.; Rohatgi, S.; Soranno, D.E.; Chishti, A.S.; Woroniecki, R.; Mammen, C.; Swanson, J.R.; et al. Incidence and outcomes of neonatal acute kidney injury (AWAKEN): A multicentre, multinational, observational cohort study. Lancet Child Adolesc. Health 2017, 1, 184–194. [Google Scholar] [CrossRef]
- Harer, M.W.; Adegboro, C.O.; Richard, L.J.; McAdams, R.M. Non-invasive continuous renal tissue oxygenation monitoring to identify preterm neonates at risk for acute kidney injury. Pediatr. Nephrol. 2021, 36, 1617–1625. [Google Scholar] [CrossRef]
- Coleman, C.; Tambay Perez, A.; Selewski, D.T.; Steflik, H.J. Neonatal Acute Kidney Injury. Front. Pediatr. 2022, 10, 842544. [Google Scholar] [CrossRef]
- Starr, M.C.; Charlton, J.R.; Guillet, R.; Reidy, K.; Tipple, T.E.; Jetton, J.G.; Kent, A.L.; Abitbol, C.L.; Ambalavanan, N.; Mhanna, M.J.; et al. Advances in Neonatal Acute Kidney Injury. Pediatrics 2021, 148, e2021051220. [Google Scholar] [CrossRef] [PubMed]
- Murphy, H.J.; Thomas, B.; Van Wyk, B.; Tierney, S.B.; Selewski, D.T.; Jetton, J.G. Nephrotoxic medications and acute kidney injury risk factors in the neonatal intensive care unit: Clinical challenges for neonatologists and nephrologists. Pediatr. Nephrol. 2020, 35, 2077–2088. [Google Scholar] [CrossRef]
- Kent, A.L.; Koina, M.E.; Gubhaju, L.; Cullen-McEwen, L.A.; Bertram, J.F.; Lynnhtun, J.; Shadbolt, B.; Falk, M.C.; Dahlstrom, J.E. Indomethacin administered early in the postnatal period results in reduced glomerular number in the adult rat. Am. J. Physiol. Renal. Physiol. 2014, 307, F1105–F1110. [Google Scholar] [CrossRef] [PubMed]
- Gilbert, T.; Gaonach, S.; Moreau, E.; Merlet-Benichou, C. Defect of nephrogenesis induced by gentamicin in rat metanephric organ culture. Lab. Investig. 1994, 70, 656–666. [Google Scholar]
- Gilbert, T.; Lelievre-Pegorier, M.; Malienou, R.; Meulemans, A.; Merlet-Benichou, C. Effects of prenatal and postnatal exposure to gentamicin on renal differentiation in the rat. Toxicology 1987, 43, 301–313. [Google Scholar] [CrossRef] [PubMed]
- Lumbers, E.R.; Kandasamy, Y.; Delforce, S.J.; Boyce, A.C.; Gibson, K.J.; Pringle, K.G. Programming of Renal Development and Chronic Disease in Adult Life. Front. Physiol. 2020, 11, 757. [Google Scholar] [CrossRef]
- Sangla, A.; Kandasamy, Y. Effects of prematurity on long-term renal health: A systematic review. BMJ Open 2021, 11, e047770. [Google Scholar] [CrossRef]
- Kandasamy, Y.; Rudd, D.; Smith, R.; Lumbers, E.R.; Wright, I.M. Extra uterine development of preterm kidneys. Pediatr. Nephrol. 2018, 33, 1007–1012. [Google Scholar] [CrossRef]
- Kandasamy, Y.; Smith, R.; Wright, I.M.R.; Lumbers, E.R. Extra-uterine renal growth in preterm infants: Oligonephropathy and prematurity. Pediatr. Nephrol. 2013, 28, 1791–1796. [Google Scholar] [CrossRef]
- Farris, A.B.; Vizcarra, J.; Amgad, M.; Cooper, L.A.D.; Gutman, D.; Hogan, J. Artificial intelligence and algorithmic computational pathology: An introduction with renal allograft examples. Histopathology 2021, 78, 791–804. [Google Scholar] [CrossRef]
- Girolami, I.; Pantanowitz, L.; Marletta, S.; Hermsen, M.; van der Laak, J.; Munari, E.; Furian, L.; Vistoli, F.; Zaza, G.; Cardillo, M.; et al. Artificial intelligence applications for pre-implantation kidney biopsy pathology practice: A systematic review. J. Nephrol. 2022, 35, 1801–1808. [Google Scholar] [CrossRef]
- Becker, J.U.; Mayerich, D.; Padmanabhan, M.; Barratt, J.; Ernst, A.; Boor, P.; Cicalese, P.A.; Mohan, C.; Nguyen, H.V.; Roysam, B. Artificial intelligence and machine learning in nephropathology. Kidney Int. 2020, 98, 65–75. [Google Scholar] [CrossRef]
- Cvitković Kuzmić, A.; Brkljačić, B.; Ivanković, D.; Galešić, K. Doppler sonographic renal resistance index in healthy children. Eur. Radiol. 2000, 10, 1644–1648. [Google Scholar] [CrossRef] [PubMed]
- Stritzke, A.; Murthy, P.; Kaur, S.; Kuret, V.; Liang, Z.; Howell, S.; Tyberg, J.V. Arterial flow patterns in healthy transitioning near-term neonates. BMJ Paediatr. Open 2019, 3, e000333. [Google Scholar] [CrossRef]
- Akaishi, T.; Abe, M.; Miki, T.; Miki, M.; Funamizu, Y.; Ito, S.; Abe, T.; Ishii, T. Ratio of diastolic to systolic blood pressure represents renal resistive index. J. Hum. Hypertens. 2020, 34, 512–519. [Google Scholar] [CrossRef]
- El-sadek, A.E.; El-Gamasy, M.A.; Behiry, E.G.; Torky, A.A.; Fathy, M.A. Plasma cystatin C versus renal resistive index as early predictors of acute kidney injury in critically ill neonates. J. Pediatr. Urol. 2020, 16, 206.e1–206.e8. [Google Scholar] [CrossRef] [PubMed]
- Neunhoeffer, F.; Wiest, M.; Sandner, K.; Renk, H.; Heimberg, E.; Haller, C.; Kumpf, M.; Schlensak, C.; Hofbeck, M. Non-invasive measurement of renal perfusion and oxygen metabolism to predict postoperative acute kidney injury in neonates and infants after cardiopulmonary bypass surgery. Br. J. Anaesth. 2016, 117, 623–634. [Google Scholar] [CrossRef] [PubMed]
- Sood, B.G.; McLaughlin, K.; Cortez, J. Near-infrared spectroscopy: Applications in neonates. Semin. Fetal Neonatal Med. 2015, 20, 164–172. [Google Scholar] [CrossRef]
- Marin, T.; Williams, B.L. Renal Oxygenation Measured by Near-Infrared Spectroscopy in Neonates. Adv. Neonatal Care 2021, 21, 256–266. [Google Scholar] [CrossRef] [PubMed]
- Harer, M.W.; Chock, V.Y. Renal Tissue Oxygenation Monitoring-An Opportunity to Improve Kidney Outcomes in the Vulnerable Neonatal Population. Front. Pediatr. 2020, 8, 241. [Google Scholar] [CrossRef]
- Naulaers, G.; Meyns, B.; Miserez, M.; Leunens, V.; Sabine Van, H.; Casaer, P.; Weindling, M.; Devlieger, H. Use of Tissue Oxygenation Index and Fractional Tissue Oxygen Extraction as Non-Invasive Parameters for Cerebral Oxygenation: A Validation Study in Piglets. Neonatology 2007, 92, 120–126. [Google Scholar] [CrossRef]
- Rumpel, J.A.; Spray, B.J.; Frymoyer, A.; Rogers, S.; Cho, S.H.; Ranabothu, S.; Blaszak, R.; Courtney, S.E.; Chock, V.Y. Renal oximetry for early acute kidney injury detection in neonates with hypoxic ischemic encephalopathy receiving therapeutic hypothermia. Pediatr. Nephrol. 2023, 38, 2839–2849. [Google Scholar] [CrossRef] [PubMed]
- Baker, S.; Xiang, W. Artificial Intelligence of Things for Smarter Healthcare: A Survey of Advancements, Challenges, and Opportunities. IEEE Commun. Surv. Tutor. 2023, 25, 1261–1293. [Google Scholar] [CrossRef]
- Dong, J.; Feng, T.; Thapa-Chhetry, B.; Cho, B.G.; Shum, T.; Inwald, D.P.; Newth, C.J.L.; Vaidya, V.U. Machine learning model for early prediction of acute kidney injury (AKI) in pediatric critical care. Crit. Care 2021, 25, 288. [Google Scholar] [CrossRef]
- Fechner, P.; König, F.; Kratsch, W.; Lockl, J.; Röglinger, M. Near-Infrared Spectroscopy for Bladder Monitoring: A Machine Learning Approach. ACM Trans. Manag. Inf. Syst. 2023, 14, 16. [Google Scholar] [CrossRef]
- Baker, S.; Xiang, W.; Atkinson, I. A hybrid neural network for continuous and non-invasive estimation of blood pressure from raw electrocardiogram and photoplethysmogram waveforms. Comput. Methods Programs Biomed. 2021, 207, 106191. [Google Scholar] [CrossRef] [PubMed]
- Rashed-Al-Mahfuz, M.; Haque, A.; Azad, A.; Alyami, S.A.; Quinn, J.M.W.; Moni, M.A. Clinically Applicable Machine Learning Approaches to Identify Attributes of Chronic Kidney Disease (CKD) for Use in Low-Cost Diagnostic Screening. IEEE J. Transl. Eng. Health Med. 2021, 9, 4900511. [Google Scholar] [CrossRef] [PubMed]
- Lundberg, S.; Lee, S.-I. A Unified Approach to Interpreting Model Predictions. In Proceedings of the 31st International Conference on Neural Information Processing Systems (NIPS’17), Long Beach, CA, USA, 4–9 December 2017; Curran Associates Inc.: Red Hook, NY, USA, 2017; pp. 4768–4777. [Google Scholar]
- Ribeiro, M.T.; Singh, S.; Guestrin, C. “Why Should I Trust You?”: Explaining the Predictions of Any Classifier. In Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, San Francisco, CA, USA, 13–17 August 2016; Association for Computing Machinery: New York, NY, USA, 2016; pp. 1135–1144. [Google Scholar]
- Baker, S.; Xiang, W.; Atkinson, I. Hybridized neural networks for non-invasive and continuous mortality risk assessment in neonates. Comput. Biol. Med. 2021, 134, 104521. [Google Scholar] [CrossRef] [PubMed]
- Cruz, H.; Schneider, F.; Schapranow, M.-P. Prediction of Acute Kidney Injury in Cardiac Surgery Patients: Interpretation using Local Interpretable Model-agnostic Explanations. In Proceedings of the HEALTHINF, Prague, Czech Republic, 22–24 February 2019; pp. 380–387. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kandasamy, Y.; Baker, S. An Exploratory Review on the Potential of Artificial Intelligence for Early Detection of Acute Kidney Injury in Preterm Neonates. Diagnostics 2023, 13, 2865. https://doi.org/10.3390/diagnostics13182865
Kandasamy Y, Baker S. An Exploratory Review on the Potential of Artificial Intelligence for Early Detection of Acute Kidney Injury in Preterm Neonates. Diagnostics. 2023; 13(18):2865. https://doi.org/10.3390/diagnostics13182865
Chicago/Turabian StyleKandasamy, Yogavijayan, and Stephanie Baker. 2023. "An Exploratory Review on the Potential of Artificial Intelligence for Early Detection of Acute Kidney Injury in Preterm Neonates" Diagnostics 13, no. 18: 2865. https://doi.org/10.3390/diagnostics13182865
APA StyleKandasamy, Y., & Baker, S. (2023). An Exploratory Review on the Potential of Artificial Intelligence for Early Detection of Acute Kidney Injury in Preterm Neonates. Diagnostics, 13(18), 2865. https://doi.org/10.3390/diagnostics13182865