New Challenges for Anatomists in the Era of Omics
Abstract
:1. Introduction
2. Discussion
2.1. Omics Techniques
2.2. Genomics
2.3. Transcriptomics and Epigenomics
2.4. Proteomics, Metabolomics and Interactomics
2.5. Radiomics and Novel Imaging Technologies
2.6. Spatial Profiling and Pathomics
2.7. Cadaveric Dissections and Preservation, 3D Models and Bioprinting
2.8. Connectomics and Neural Networks
3. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Habbal, O. The Science of Anatomy: A Historical Timeline. Sultan Qaboos Univ. Med. J. 2017, 17, e18–e22. [Google Scholar] [CrossRef] [PubMed]
- Toledo-Pereyra, L.H. De Humani Corporis Fabrica Surgical Revolution. J. Investig. Surg. 2008, 21, 232–236. [Google Scholar] [CrossRef]
- Suárez-Escudero, J.C.; Posada-Jurado, M.C.; Bedoya-Muñoz, L.J.; Urbina-Sánchez, A.J.; Ferreira Morales, J.L.; Bohórquez-Gutiérrez, C.A. Enseñar y Aprender Anatomía: Modelos Pedagógicos, Historia, Presente y Tendencias. Acta Med. Col. 2020, 45, 232–236. [Google Scholar] [CrossRef]
- Mazzarini, M.; Falchi, M.; Bani, D.; Migliaccio, A.R. Evolution and New Frontiers of Histology in Bio-Medical Research. Microsc. Res. Tech. 2021, 84, 217–237. [Google Scholar] [CrossRef] [PubMed]
- Mitchell, P.D.; Boston, C.; Chamberlain, A.T.; Chaplin, S.; Chauhan, V.; Evans, J.; Fowler, L.; Powers, N.; Walker, D.; Webb, H.; et al. The Study of Anatomy in England from 1700 to the Early 20th Century: Anatomy in England from 1700. J. Anat. 2011, 219, 91–99. [Google Scholar] [CrossRef] [PubMed]
- Sanders, M.A. Historical Perspective: William Cheselden: Anatomist, Surgeon, and Medical Illustrator. Spine 1999, 24, 2282. [Google Scholar] [CrossRef]
- Ghosh, S.K. Human Cadaveric Dissection: A Historical Account from Ancient Greece to the Modern Era. Anat. Cell Biol. 2015, 48, 153. [Google Scholar] [CrossRef]
- Porzionato, A.; Macchi, V.; Stecco, C.; Parenti, A.; De Caro, R. The Anatomical School of Padua. Anat. Rec. 2012, 295, 902–916. [Google Scholar] [CrossRef]
- Zampieri, F.; Zanatta, A.; Thiene, G. An Etymological “Autopsy” of Morgagni’s Title: De Sedibus et Causis Morborum per Anatomen Indagatis (1761). Hum. Pathol. 2014, 45, 12–16. [Google Scholar] [CrossRef]
- Custers, E.J.F.M.; Cate, O.T. The History of Medical Education in Europe and the United States, With Respect to Time and Proficiency. Acad. Med. 2018, 93, S49–S54. [Google Scholar] [CrossRef]
- Laal, M. Innovation Process in Medical Imaging. Procedia-Soc. Behav. Sci. 2013, 81, 60–64. [Google Scholar] [CrossRef]
- Zhang, Z.; Sejdić, E. Radiological Images and Machine Learning: Trends, Perspectives, and Prospects. Comput. Biol. Med. 2019, 108, 354–370. [Google Scholar] [CrossRef]
- De Maria Marchiano, R.; Di Sante, G.; Piro, G.; Carbone, C.; Tortora, G.; Boldrini, L.; Pietragalla, A.; Daniele, G.; Tredicine, M.; Cesario, A.; et al. Translational Research in the Era of Precision Medicine: Where We Are and Where We Will Go. J. Pers. Med. 2021, 11, 216. [Google Scholar] [CrossRef]
- De Carlos, J.A.; Borrell, J. A Historical Reflection of the Contributions of Cajal and Golgi to the Foundations of Neuroscience. Brain Res. Rev. 2007, 55, 8–16. [Google Scholar] [CrossRef] [PubMed]
- Civelli, O. Novel Neurotransmitters as Natural Ligands of Orphan G-Protein-Coupled Receptors. Trends Neurosci. 2001, 24, 230–237. [Google Scholar] [CrossRef] [PubMed]
- Khan, A.F.; Adewale, Q.; Baumeister, T.R.; Carbonell, F.; Zilles, K.; Palomero-Gallagher, N.; Iturria-Medina, Y.; for the Alzheimer’s Disease Neuroimaging Initiative. Personalized Brain Models Identify Neurotransmitter Receptor Changes in Alzheimer’s Disease. Brain 2022, 145, 1785–1804. [Google Scholar] [CrossRef] [PubMed]
- Snyder, S.H.; Ferris, C.D. Novel Neurotransmitters and Their Neuropsychiatric Relevance. Am. J. Psychiatry 2000, 157, 1738–1751. [Google Scholar] [CrossRef]
- Kweon, H.; Aydogan, G.; Dagher, A.; Bzdok, D.; Ruff, C.C.; Nave, G.; Farah, M.J.; Koellinger, P.D. Human Brain Anatomy Reflects Separable Genetic and Environmental Components of Socioeconomic Status. Sci. Adv. 2022, 8, eabm2923. [Google Scholar] [CrossRef]
- Riederer, B.M. Body Donations Today and Tomorrow: What Is Best Practice and Why?: Body Donations Today and Tomorrow. Clin. Anat. 2016, 29, 11–18. [Google Scholar] [CrossRef]
- Bin, P.; Delbon, P.; Piras, M.; Paternoster, M.; Di Lorenzo, P.; Conti, A. Donation of the Body for Scientific Purposes in Italy: Ethical and Medico-Legal Considerations. Open Med. 2016, 11, 316–320. [Google Scholar] [CrossRef]
- Ghosh, S.K. The Practice of Ethics in the Context of Human Dissection: Setting Standards for Future Physicians. Ann. Anat.-Anat. Anz. 2020, 232, 151577. [Google Scholar] [CrossRef] [PubMed]
- Tesfaye, S.; Hamba, N.; Kebede, W.; Bajiro, M.; Debela, L.; Nigatu, T.A.; Gerbi, A. Assessment of Ethical Compliance of Handling and Usage of the Human Body in Anatomical Facilities of Ethiopian Medical Schools. Pragmatic Obs. Res. 2021, 12, 65–80. [Google Scholar] [CrossRef] [PubMed]
- Sreenivasan, S.; Sreenivasan, V. Ethics of the Use of Dead Human Bodies in Anatomy Teaching in India. Indian J. Med. Ethics 2023, 8, 128–133. [Google Scholar] [CrossRef] [PubMed]
- Aramesh, K. The Ownership of Human Body: An Islamic Perspective. J. Med. Ethics Hist. Med. 2009, 2, 4. [Google Scholar]
- Møllgård, K.; Beinlich, F.R.M.; Kusk, P.; Miyakoshi, L.M.; Delle, C.; Plá, V.; Hauglund, N.L.; Esmail, T.; Rasmussen, M.K.; Gomolka, R.S.; et al. A Mesothelium Divides the Subarachnoid Space into Functional Compartments. Science 2023, 379, 84–88. [Google Scholar] [CrossRef]
- Hibar, D.P.; Stein, J.L.; Renteria, M.E.; Arias-Vasquez, A.; Desrivières, S.; Jahanshad, N.; Toro, R.; Wittfeld, K.; Abramovic, L.; Andersson, M.; et al. Common Genetic Variants Influence Human Subcortical Brain Structures. Nature 2015, 520, 224–229. [Google Scholar] [CrossRef] [PubMed]
- Duperron, M.-G.; Knol, M.J.; Le Grand, Q.; Evans, T.E.; Mishra, A.; Tsuchida, A.; Roshchupkin, G.; Konuma, T.; Trégouët, D.-A.; Romero, J.R.; et al. Genomics of Perivascular Space Burden Unravels Early Mechanisms of Cerebral Small Vessel Disease. Nat. Med. 2023, 29, 950–962. [Google Scholar] [CrossRef]
- Brouwer, R.M.; Panizzon, M.S.; Glahn, D.C.; Hibar, D.P.; Hua, X.; Jahanshad, N.; Abramovic, L.; De Zubicaray, G.I.; Franz, C.E.; Hansell, N.K.; et al. Genetic Influences on Individual Differences in Longitudinal Changes in Global and Subcortical Brain Volumes: Results of the ENIGMA Plasticity Working Group: Heritability Estimates of Brain Changes. Hum. Brain Mapp. 2017, 38, 4444–4458. [Google Scholar] [CrossRef]
- Brouwer, R.M.; Klein, M.; Grasby, K.L.; Schnack, H.G.; Jahanshad, N.; Teeuw, J.; Thomopoulos, S.I.; Sprooten, E.; Franz, C.E.; Gogtay, N.; et al. Genetic Variants Associated with Longitudinal Changes in Brain Structure across the Lifespan. Nat. Neurosci. 2022, 25, 421–432. [Google Scholar] [CrossRef]
- Grasby, K.L.; Jahanshad, N.; Painter, J.N.; Colodro-Conde, L.; Bralten, J.; Hibar, D.P.; Lind, P.A.; Pizzagalli, F.; Ching, C.R.K.; McMahon, M.A.B.; et al. The Genetic Architecture of the Human Cerebral Cortex. Science 2020, 367, eaay6690. [Google Scholar] [CrossRef]
- Stuart, T.; Butler, A.; Hoffman, P.; Hafemeister, C.; Papalexi, E.; Mauck, W.M.; Hao, Y.; Stoeckius, M.; Smibert, P.; Satija, R. Comprehensive Integration of Single-Cell Data. Cell 2019, 177, 1888–1902.e21. [Google Scholar] [CrossRef] [PubMed]
- Ghaemi, M.S.; DiGiulio, D.B.; Contrepois, K.; Callahan, B.; Ngo, T.T.M.; Lee-McMullen, B.; Lehallier, B.; Robaczewska, A.; Mcilwain, D.; Rosenberg-Hasson, Y.; et al. Multiomics Modeling of the Immunome, Transcriptome, Microbiome, Proteome and Metabolome Adaptations during Human Pregnancy. Bioinformatics 2019, 35, 95–103. [Google Scholar] [CrossRef] [PubMed]
- Karlsson, M.; Zhang, C.; Méar, L.; Zhong, W.; Digre, A.; Katona, B.; Sjöstedt, E.; Butler, L.; Odeberg, J.; Dusart, P.; et al. A Single–Cell Type Transcriptomics Map of Human Tissues. Sci. Adv. 2021, 7, eabh2169. [Google Scholar] [CrossRef]
- Butler, A.; Hoffman, P.; Smibert, P.; Papalexi, E.; Satija, R. Integrating Single-Cell Transcriptomic Data across Different Conditions, Technologies, and Species. Nat. Biotechnol. 2018, 36, 411–420. [Google Scholar] [CrossRef] [PubMed]
- van Ineveld, R.L.; Collot, R.; Román, M.B.; Pagliaro, A.; Bessler, N.; Ariese, H.C.R.; Kleinnijenhuis, M.; Kool, M.; Alieva, M.; Chuva de Sousa Lopes, S.M.; et al. Multispectral Confocal 3D Imaging of Intact Healthy and Tumor Tissue Using MLSR-3D. Nat. Protoc. 2022, 17, 3028–3055. [Google Scholar] [CrossRef] [PubMed]
- van den Heuvel, O.A.; Boedhoe, P.S.W.; Bertolin, S.; Bruin, W.B.; Francks, C.; Ivanov, I.; Jahanshad, N.; Kong, X.-Z.; Kwon, J.S.; O’Neill, J.; et al. An Overview of the First 5 Years of the ENIGMA Obsessive-Compulsive Disorder Working Group: The Power of Worldwide Collaboration. Hum. Brain Mapp. 2022, 43, 23–36. [Google Scholar] [CrossRef]
- Babu, M.; Snyder, M. Multi-Omics Profiling for Health. Mol. Cell. Proteomics 2023, 22, 100561. [Google Scholar] [CrossRef]
- Liebner, S.; Dijkhuizen, R.M.; Reiss, Y.; Plate, K.H.; Agalliu, D.; Constantin, G. Functional Morphology of the Blood-Brain Barrier in Health and Disease. Acta Neuropathol. 2018, 135, 311–336. [Google Scholar] [CrossRef]
- Wu, C.; Ferreira, F.; Fox, M.; Harel, N.; Hattangadi-Gluth, J.; Horn, A.; Jbabdi, S.; Kahan, J.; Oswal, A.; Sheth, S.A.; et al. Clinical Applications of Magnetic Resonance Imaging Based Functional and Structural Connectivity. Neuroimage 2021, 244, 118649. [Google Scholar] [CrossRef]
- Liu, Z.; Wang, S.; Dong, D.; Wei, J.; Fang, C.; Zhou, X.; Sun, K.; Li, L.; Li, B.; Wang, M.; et al. The Applications of Radiomics in Precision Diagnosis and Treatment of Oncology: Opportunities and Challenges. Theranostics 2019, 9, 1303–1322. [Google Scholar] [CrossRef]
- Kondylakis, H.; Ciarrocchi, E.; Cerda-Alberich, L.; Chouvarda, I.; Fromont, L.A.; Garcia-Aznar, J.M.; Kalokyri, V.; Kosvyra, A.; Walker, D.; Yang, G.; et al. Position of the AI for Health Imaging (AI4HI) Network on Metadata Models for Imaging Biobanks. Eur. Radiol. Exp. 2022, 6, 29. [Google Scholar] [CrossRef] [PubMed]
- Rogers, W.; Thulasi Seetha, S.; Refaee, T.A.G.; Lieverse, R.I.Y.; Granzier, R.W.Y.; Ibrahim, A.; Keek, S.A.; Sanduleanu, S.; Primakov, S.P.; Beuque, M.P.L.; et al. Radiomics: From Qualitative to Quantitative Imaging. Br. J. Radiol. 2020, 93, 20190948. [Google Scholar] [CrossRef] [PubMed]
- Thompson, P.M.; Jahanshad, N.; Schmaal, L.; Turner, J.A.; Winkler, A.M.; Thomopoulos, S.I.; Egan, G.F.; Kochunov, P. The Enhancing NeuroImaging Genetics through Meta-Analysis Consortium: 10 Years of Global Collaborations in Human Brain Mapping. Hum. Brain Mapp. 2022, 43, 15–22. [Google Scholar] [CrossRef] [PubMed]
- Thompson, P.M.; Stein, J.L.; Medland, S.E.; Hibar, D.P.; Vasquez, A.A.; Renteria, M.E.; Toro, R.; Jahanshad, N.; Schumann, G.; Franke, B.; et al. The ENIGMA Consortium: Large-Scale Collaborative Analyses of Neuroimaging and Genetic Data. Brain Imaging Behav. 2014, 8, 153–182. [Google Scholar] [CrossRef] [PubMed]
- Vadakkumpadan, F.; Arevalo, H.; Prassl, A.J.; Chen, J.; Kickinger, F.; Kohl, P.; Plank, G.; Trayanova, N. Image-Based Models of Cardiac Structure in Health and Disease. Wiley Interdiscip. Rev. Syst. Biol. Med. 2010, 2, 489–506. [Google Scholar] [CrossRef]
- Hölscher, D.L.; Bouteldja, N.; Joodaki, M.; Russo, M.L.; Lan, Y.-C.; Sadr, A.V.; Cheng, M.; Tesar, V.; Stillfried, S.V.; Klinkhammer, B.M.; et al. Next-Generation Morphometry for Pathomics-Data Mining in Histopathology. Nat. Commun. 2023, 14, 470. [Google Scholar] [CrossRef]
- Gonçalves, J.P.L.; Bollwein, C.; Schwamborn, K. Mass Spectrometry Imaging Spatial Tissue Analysis toward Personalized Medicine. Life 2022, 12, 1037. [Google Scholar] [CrossRef]
- Luecken, M.D.; Zaragosi, L.-E.; Madissoon, E.; Sikkema, L.; Firsova, A.B.; De Domenico, E.; Kümmerle, L.; Saglam, A.; Berg, M.; Gay, A.C.A.; et al. The DiscovAIR Project: A Roadmap towards the Human Lung Cell Atlas. Eur. Respir. J. 2022, 60, 2102057. [Google Scholar] [CrossRef]
- Jakab, M.; Augustin, H.G. Understanding Angiodiversity: Insights from Single Cell Biology. Development 2020, 147, dev146621. [Google Scholar] [CrossRef]
- Taylor, D.M.; Aronow, B.J.; Tan, K.; Bernt, K.; Salomonis, N.; Greene, C.S.; Frolova, A.; Henrickson, S.E.; Wells, A.; Pei, L.; et al. The Pediatric Cell Atlas: Defining the Growth Phase of Human Development at Single-Cell Resolution. Dev. Cell 2019, 49, 10–29. [Google Scholar] [CrossRef]
- Gulsuner, S.; Walsh, T.; Watts, A.C.; Lee, M.K.; Thornton, A.M.; Casadei, S.; Rippey, C.; Shahin, H.; Consortium on the Genetics of Schizophrenia (COGS); PAARTNERS Study Group; et al. Spatial and Temporal Mapping of de Novo Mutations in Schizophrenia to a Fetal Prefrontal Cortical Network. Cell 2013, 154, 518–529. [Google Scholar] [CrossRef]
- Fan, Q.; Witzel, T.; Nummenmaa, A.; Van Dijk, K.R.A.; Van Horn, J.D.; Drews, M.K.; Somerville, L.H.; Sheridan, M.A.; Santillana, R.M.; Snyder, J.; et al. MGH-USC Human Connectome Project Datasets with Ultra-High b-Value Diffusion MRI. Neuroimage 2016, 124, 1108–1114. [Google Scholar] [CrossRef]
- Elam, J.S.; Glasser, M.F.; Harms, M.P.; Sotiropoulos, S.N.; Andersson, J.L.R.; Burgess, G.C.; Curtiss, S.W.; Oostenveld, R.; Larson-Prior, L.J.; Schoffelen, J.-M.; et al. The Human Connectome Project: A Retrospective. Neuroimage 2021, 244, 118543. [Google Scholar] [CrossRef]
- Nowinski, W.L. Human Brain Atlasing: Past, Present and Future. Neuroradiol. J. 2017, 30, 504–519. [Google Scholar] [CrossRef]
- Van Essen, D.C.; Ugurbil, K.; Auerbach, E.; Barch, D.; Behrens, T.E.J.; Bucholz, R.; Chang, A.; Chen, L.; Corbetta, M.; Curtiss, S.W.; et al. The Human Connectome Project: A Data Acquisition Perspective. Neuroimage 2012, 62, 2222–2231. [Google Scholar] [CrossRef]
- Abdellatif, H.; Al Mushaiqri, M.; Albalushi, H.; Al-Zaabi, A.A.; Roychoudhury, S.; Das, S. Teaching, Learning and Assessing Anatomy with Artificial Intelligence: The Road to a Better Future. Int. J. Environ. Res. Public Health 2022, 19, 14209. [Google Scholar] [CrossRef]
- Nogovitsyn, N.; Souza, R.; Muller, M.; Srajer, A.; Hassel, S.; Arnott, S.R.; Davis, A.D.; Hall, G.B.; Harris, J.K.; Zamyadi, M.; et al. Testing a Deep Convolutional Neural Network for Automated Hippocampus Segmentation in a Longitudinal Sample of Healthy Participants. Neuroimage 2019, 197, 589–597. [Google Scholar] [CrossRef]
- Karczewski, K.J.; Snyder, M.P. Integrative Omics for Health and Disease. Nat. Rev. Genet. 2018, 19, 299–310. [Google Scholar] [CrossRef]
- Zwanenburg, A.; Vallières, M.; Abdalah, M.A.; Aerts, H.J.W.L.; Andrearczyk, V.; Apte, A.; Ashrafinia, S.; Bakas, S.; Beukinga, R.J.; Boellaard, R.; et al. The Image Biomarker Standardization Initiative: Standardized Quantitative Radiomics for High-Throughput Image-Based Phenotyping. Radiology 2020, 295, 328–338. [Google Scholar] [CrossRef]
- Kent, W.J.; Sugnet, C.W.; Furey, T.S.; Roskin, K.M.; Pringle, T.H.; Zahler, A.M.; Haussler, A.D. The Human Genome Browser at UCSC. Genome Res. 2002, 12, 996–1006. [Google Scholar] [CrossRef]
- Naidoo, N.; Pawitan, Y.; Soong, R.; Cooper, D.N.; Ku, C.-S. Human Genetics and Genomics a Decade after the Release of the Draft Sequence of the Human Genome. Hum. Genomics 2011, 5, 577. [Google Scholar] [CrossRef] [PubMed]
- Lappalainen, T.; Scott, A.J.; Brandt, M.; Hall, I.M. Genomic Analysis in the Age of Human Genome Sequencing. Cell 2019, 177, 70–84. [Google Scholar] [CrossRef] [PubMed]
- Pollen, A.A.; Kilik, U.; Lowe, C.B.; Camp, J.G. Human-Specific Genetics: New Tools to Explore the Molecular and Cellular Basis of Human Evolution. Nat. Rev. Genet. 2023, 24, 687–711. [Google Scholar] [CrossRef] [PubMed]
- O’Bleness, M.; Searles, V.B.; Varki, A.; Gagneux, P.; Sikela, J.M. Evolution of Genetic and Genomic Features Unique to the Human Lineage. Nat. Rev. Genet. 2012, 13, 853–866. [Google Scholar] [CrossRef] [PubMed]
- Vallender, E.J.; Mekel-Bobrov, N.; Lahn, B.T. Genetic Basis of Human Brain Evolution. Trends Neurosci. 2008, 31, 637–644. [Google Scholar] [CrossRef]
- Sella, G.; Barton, N.H. Thinking About the Evolution of Complex Traits in the Era of Genome-Wide Association Studies. Annu. Rev. Genomics Hum. Genet. 2019, 20, 461–493. [Google Scholar] [CrossRef]
- Muffato, M.; Louis, A.; Nguyen, N.T.T.; Lucas, J.; Berthelot, C.; Roest Crollius, H. Reconstruction of Hundreds of Reference Ancestral Genomes across the Eukaryotic Kingdom. Nat. Ecol. Evol. 2023, 7, 355–366. [Google Scholar] [CrossRef]
- Wang, Y.; Zhao, B.; Choi, J.; Lee, E.A. Genomic Approaches to Trace the History of Human Brain Evolution with an Emerging Opportunity for Transposon Profiling of Ancient Humans. Mob. DNA 2021, 12, 22. [Google Scholar] [CrossRef]
- Bradley, B.J. Reconstructing Phylogenies and Phenotypes: A Molecular View of Human Evolution: Molecular Analyses of Human Evolution. J. Anat. 2008, 212, 337–353. [Google Scholar] [CrossRef]
- Thornton, J.W.; DeSalle, R. Gene Family Evolution and Homology: Genomics Meets Phylogenetics. Annu. Rev. Genomics Hum. Genet. 2000, 1, 41–73. [Google Scholar] [CrossRef]
- Mulder, N.; Adebamowo, C.A.; Adebamowo, S.N.; Adebayo, O.; Adeleye, O.; Alibi, M.; Baichoo, S.; Benkahla, A.; Fadlelmola, F.M.; Ghazal, H.; et al. Genomic Research Data Generation, Analysis and Sharing—Challenges in the African Setting. Data Sci. J. 2017, 16, 49. [Google Scholar] [CrossRef]
- He, K.Y.; Ge, D.; He, M.M. Big Data Analytics for Genomic Medicine. Int. J. Mol. Sci. 2017, 18, 412. [Google Scholar] [CrossRef] [PubMed]
- Amarasinghe, S.L.; Su, S.; Dong, X.; Zappia, L.; Ritchie, M.E.; Gouil, Q. Opportunities and Challenges in Long-Read Sequencing Data Analysis. Genome Biol. 2020, 21, 30. [Google Scholar] [CrossRef] [PubMed]
- Zerbino, D.R.; Frankish, A.; Flicek, P. Progress, Challenges, and Surprises in Annotating the Human Genome. Annu. Rev. Genomics Hum. Genet. 2020, 21, 55–79. [Google Scholar] [CrossRef] [PubMed]
- Schickhardt, C.; Fleischer, H.; Winkler, E.C. Do Patients and Research Subjects Have a Right to Receive Their Genomic Raw Data? An Ethical and Legal Analysis. BMC Med. Ethics 2020, 21, 7. [Google Scholar] [CrossRef]
- Walker, R.L.; Juengst, E.T.; Whipple, W.; Davis, A.M. Genomic Research with the Newly Dead: A Crossroads for Ethics and Policy. J. Law Med. Ethics 2014, 42, 220–231. [Google Scholar] [CrossRef]
- Weil, C.J. Ethical, Legal, and Policy Issues Surrounding Biospecimen Research Conducted or Supported in the USA. Biopreservation Biobanking 2022, 21, 14–22. [Google Scholar] [CrossRef]
- O’Donoghue, S.I. Grand Challenges in Bioinformatics Data Visualization. Front. Bioinform. 2021, 1, 669186. [Google Scholar] [CrossRef]
- Nusrat, S.; Harbig, T.; Gehlenborg, N. Tasks, Techniques, and Tools for Genomic Data Visualization. Comput. Graph. Forum 2019, 38, 781–805. [Google Scholar] [CrossRef]
- Berger, M.F.; Mardis, E.R. The Emerging Clinical Relevance of Genomics in Cancer Medicine. Nat. Rev. Clin. Oncol. 2018, 15, 353–365. [Google Scholar] [CrossRef]
- Jensen, T.L.; Gøtzsche, C.R.; Woldbye, D.P.D. Current and Future Prospects for Gene Therapy for Rare Genetic Diseases Affecting the Brain and Spinal Cord. Front. Mol. Neurosci. 2021, 14, 695937. [Google Scholar] [CrossRef] [PubMed]
- Marwaha, S.; Knowles, J.W.; Ashley, E.A. A Guide for the Diagnosis of Rare and Undiagnosed Disease: Beyond the Exome. Genome Med. 2022, 14, 23. [Google Scholar] [CrossRef] [PubMed]
- Breton, C.V.; Landon, R.; Kahn, L.G.; Enlow, M.B.; Peterson, A.K.; Bastain, T.; Braun, J.; Comstock, S.S.; Duarte, C.S.; Hipwell, A.; et al. Exploring the Evidence for Epigenetic Regulation of Environmental Influences on Child Health across Generations. Commun. Biol. 2021, 4, 769. [Google Scholar] [CrossRef]
- Wattacheril, J.J.; Raj, S.; Knowles, D.A.; Greally, J.M. Using Epigenomics to Understand Cellular Responses to Environmental Influences in Diseases. PLoS Genet. 2023, 19, e1010567. [Google Scholar] [CrossRef] [PubMed]
- Rozek, L.S.; Dolinoy, D.C.; Sartor, M.A.; Omenn, G.S. Epigenetics: Relevance and Implications for Public Health. Annu. Rev. Public Health 2014, 35, 105–122. [Google Scholar] [CrossRef]
- Kagohara, L.T.; Stein-O’Brien, G.L.; Kelley, D.; Flam, E.; Wick, H.C.; Danilova, L.V.; Easwaran, H.; Favorov, A.V.; Qian, J.; Gaykalova, D.A.; et al. Epigenetic Regulation of Gene Expression in Cancer: Techniques, Resources and Analysis. Brief. Funct. Genomics 2018, 17, 49–63. [Google Scholar] [CrossRef]
- Keverne, E.B.; Pfaff, D.W.; Tabansky, I. Epigenetic Changes in the Developing Brain: Effects on Behavior. Proc. Natl. Acad. Sci. USA 2015, 112, 6789–6795. [Google Scholar] [CrossRef]
- Fardi, M.; Solali, S.; Farshdousti Hagh, M. Epigenetic Mechanisms as a New Approach in Cancer Treatment: An Updated Review. Genes Dis. 2018, 5, 304–311. [Google Scholar] [CrossRef]
- Mazzone, R.; Zwergel, C.; Artico, M.; Taurone, S.; Ralli, M.; Greco, A.; Mai, A. The Emerging Role of Epigenetics in Human Autoimmune Disorders. Clin. Epigenet. 2019, 11, 34. [Google Scholar] [CrossRef]
- Pandolfi, F.; Cianci, R.; Casciano, F.; Pagliari, D.; De Pasquale, T.; Landolfi, R.; Di Sante, G.; Kurnick, J.T.; Ria, F. Skewed T-Cell Receptor Repertoire: More than a Marker of Malignancy, a Tool to Dissect the Immunopathology of Inflammatory Diseases. J. Biol. Regul. Homeost. Agents 2011, 25, 153–161. [Google Scholar]
- Alivernini, S.; Tolusso, B.; Petricca, L.; Bui, L.; Di Mario, C.; Gigante, M.R.; Di Sante, G.; Benvenuto, R.; Fedele, A.L.; Federico, F.; et al. Synovial Predictors of Differentiation to Definite Arthritis in Patients With Seronegative Undifferentiated Peripheral Inflammatory Arthritis: MicroRNA Signature, Histological, and Ultrasound Features. Front. Med. 2018, 5, 186. [Google Scholar] [CrossRef] [PubMed]
- Alivernini, S.; MacDonald, L.; Elmesmari, A.; Finlay, S.; Tolusso, B.; Gigante, M.R.; Petricca, L.; Di Mario, C.; Bui, L.; Perniola, S.; et al. Distinct Synovial Tissue Macrophage Subsets Regulate Inflammation and Remission in Rheumatoid Arthritis. Nat. Med. 2020, 26, 1295–1306. [Google Scholar] [CrossRef] [PubMed]
- Mehrmohamadi, M.; Sepehri, M.H.; Nazer, N.; Norouzi, M.R. A Comparative Overview of Epigenomic Profiling Methods. Front. Cell Dev. Biol. 2021, 9, 714687. [Google Scholar] [CrossRef] [PubMed]
- Mazan-Mamczarz, K.; Ha, J.; De, S.; Sen, P. Single-Cell Analysis of the Transcriptome and Epigenome. In Computational Systems Biology in Medicine and Biotechnology; Cortassa, S., Aon, M.A., Eds.; Methods in Molecular Biology; Springer: New York, NY, USA, 2022; Volume 2399, pp. 21–60. ISBN 978-1-07-161830-1. [Google Scholar]
- van Hoof, D.; Krijgsveld, J.; Mummery, C. Proteomic Analysis of Stem Cell Differentiation and Early Development. Cold Spring Harb. Perspect. Biol. 2012, 4, a008177. [Google Scholar] [CrossRef] [PubMed]
- Al-Amrani, S.; Al-Jabri, Z.; Al-Zaabi, A.; Alshekaili, J.; Al-Khabori, M. Proteomics: Concepts and Applications in Human Medicine. World J. Biol. Chem. 2021, 12, 57–69. [Google Scholar] [CrossRef]
- Uhlén, M.; Fagerberg, L.; Hallström, B.M.; Lindskog, C.; Oksvold, P.; Mardinoglu, A.; Sivertsson, Å.; Kampf, C.; Sjöstedt, E.; Asplund, A.; et al. Tissue-Based Map of the Human Proteome. Science 2015, 347, 1260419. [Google Scholar] [CrossRef]
- Uhlén, M.; Karlsson, M.J.; Hober, A.; Svensson, A.-S.; Scheffel, J.; Kotol, D.; Zhong, W.; Tebani, A.; Strandberg, L.; Edfors, F.; et al. The Human Secretome. Sci. Signal. 2019, 12, eaaz0274. [Google Scholar] [CrossRef]
- Thul, P.J.; Åkesson, L.; Wiking, M.; Mahdessian, D.; Geladaki, A.; Ait Blal, H.; Alm, T.; Asplund, A.; Björk, L.; Breckels, L.M.; et al. A Subcellular Map of the Human Proteome. Science 2017, 356, eaal3321. [Google Scholar] [CrossRef]
- Chu, X.; Zhang, B.; Koeken, V.A.C.M.; Gupta, M.K.; Li, Y. Multi-Omics Approaches in Immunological Research. Front. Immunol. 2021, 12, 668045. [Google Scholar] [CrossRef]
- Dolatmoradi, M.; Samarah, L.Z.; Vertes, A. Single-Cell Metabolomics by Mass Spectrometry: Opportunities and Challenges. Anal. Sens. 2022, 2, e202100032. [Google Scholar] [CrossRef]
- Kang, C.Y.; Duarte, S.E.; Kim, H.S.; Kim, E.; Park, J.; Lee, A.D.; Kim, Y.; Kim, L.; Cho, S.; Oh, Y.; et al. Artificial Intelligence-Based Radiomics in the Era of Immuno-Oncology. Oncologist 2022, 27, e471–e483. [Google Scholar] [CrossRef] [PubMed]
- Leu, S.C.; Huang, Z.; Lin, Z. Generation of Pseudo-CT Using High-Degree Polynomial Regression on Dual-Contrast Pelvic MRI Data. Sci. Rep. 2020, 10, 8118. [Google Scholar] [CrossRef] [PubMed]
- Hussain, S.; Mubeen, I.; Ullah, N.; Shah, S.S.U.D.; Khan, B.A.; Zahoor, M.; Ullah, R.; Khan, F.A.; Sultan, M.A. Modern Diagnostic Imaging Technique Applications and Risk Factors in the Medical Field: A Review. BioMed Res. Int. 2022, 2022, 1–19. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Li, M.; Liu, Y.; Zhou, Q. Combining Optical Coherence Tomography with Magnetic Resonance Angiography and Doppler Ultrasonography for Clinical Detection of Scleroderma. Anat. Rec. 2020, 303, 3108–3116. [Google Scholar] [CrossRef]
- Weissleder, R.; Nahrendorf, M. Advancing Biomedical Imaging. Proc. Natl. Acad. Sci. USA 2015, 112, 14424–14428. [Google Scholar] [CrossRef]
- Lubeck, E.; Coskun, A.F.; Zhiyentayev, T.; Ahmad, M.; Cai, L. Single-Cell in Situ RNA Profiling by Sequential Hybridization. Nat. Methods 2014, 11, 360–361. [Google Scholar] [CrossRef]
- Eng, C.-H.L.; Lawson, M.; Zhu, Q.; Dries, R.; Koulena, N.; Takei, Y.; Yun, J.; Cronin, C.; Karp, C.; Yuan, G.-C.; et al. Transcriptome-Scale Super-Resolved Imaging in Tissues by RNA SeqFISH+. Nature 2019, 568, 235–239. [Google Scholar] [CrossRef]
- Chen, K.H.; Boettiger, A.N.; Moffitt, J.R.; Wang, S.; Zhuang, X. Spatially Resolved, Highly Multiplexed RNA Profiling in Single Cells. Science 2015, 348, aaa6090. [Google Scholar] [CrossRef]
- Codeluppi, S.; Borm, L.E.; Zeisel, A.; La Manno, G.; van Lunteren, J.A.; Svensson, C.I.; Linnarsson, S. Spatial Organization of the Somatosensory Cortex Revealed by OsmFISH. Nat. Methods 2018, 15, 932–935. [Google Scholar] [CrossRef]
- Wang, X.; Allen, W.E.; Wright, M.A.; Sylwestrak, E.L.; Samusik, N.; Vesuna, S.; Evans, K.; Liu, C.; Ramakrishnan, C.; Liu, J.; et al. Three-Dimensional Intact-Tissue Sequencing of Single-Cell Transcriptional States. Science 2018, 361, eaat5691. [Google Scholar] [CrossRef]
- Merritt, C.R.; Ong, G.T.; Church, S.E.; Barker, K.; Danaher, P.; Geiss, G.; Hoang, M.; Jung, J.; Liang, Y.; McKay-Fleisch, J.; et al. Multiplex Digital Spatial Profiling of Proteins and RNA in Fixed Tissue. Nat. Biotechnol. 2020, 38, 586–599. [Google Scholar] [CrossRef] [PubMed]
- Giesen, C.; Wang, H.A.O.; Schapiro, D.; Zivanovic, N.; Jacobs, A.; Hattendorf, B.; Schüffler, P.J.; Grolimund, D.; Buhmann, J.M.; Brandt, S.; et al. Highly Multiplexed Imaging of Tumor Tissues with Subcellular Resolution by Mass Cytometry. Nat. Methods 2014, 11, 417–422. [Google Scholar] [CrossRef] [PubMed]
- Angelo, M.; Bendall, S.C.; Finck, R.; Hale, M.B.; Hitzman, C.; Borowsky, A.D.; Levenson, R.M.; Lowe, J.B.; Liu, S.D.; Zhao, S.; et al. Multiplexed Ion Beam Imaging of Human Breast Tumors. Nat. Med. 2014, 20, 436–442. [Google Scholar] [CrossRef]
- Ståhl, P.L.; Salmén, F.; Vickovic, S.; Lundmark, A.; Navarro, J.F.; Magnusson, J.; Giacomello, S.; Asp, M.; Westholm, J.O.; Huss, M.; et al. Visualization and Analysis of Gene Expression in Tissue Sections by Spatial Transcriptomics. Science 2016, 353, 78–82. [Google Scholar] [CrossRef]
- Macosko, E.Z.; Basu, A.; Satija, R.; Nemesh, J.; Shekhar, K.; Goldman, M.; Tirosh, I.; Bialas, A.R.; Kamitaki, N.; Martersteck, E.M.; et al. Highly Parallel Genome-Wide Expression Profiling of Individual Cells Using Nanoliter Droplets. Cell 2015, 161, 1202–1214. [Google Scholar] [CrossRef] [PubMed]
- Rodriques, S.G.; Stickels, R.R.; Goeva, A.; Martin, C.A.; Murray, E.; Vanderburg, C.R.; Welch, J.; Chen, L.M.; Chen, F.; Macosko, E.Z. Slide-Seq: A Scalable Technology for Measuring Genome-Wide Expression at High Spatial Resolution. Science 2019, 363, 1463–1467. [Google Scholar] [CrossRef] [PubMed]
- Vickovic, S.; Eraslan, G.; Salmén, F.; Klughammer, J.; Stenbeck, L.; Schapiro, D.; Äijö, T.; Bonneau, R.; Bergenstråhle, L.; Navarro, J.F.; et al. High-Definition Spatial Transcriptomics for in Situ Tissue Profiling. Nat. Methods 2019, 16, 987–990. [Google Scholar] [CrossRef] [PubMed]
- Digre, A.; Lindskog, C. The Human Protein Atlas-Integrated Omics for Single Cell Mapping of the Human Proteome. Protein Sci. 2023, 32, e4562. [Google Scholar] [CrossRef]
- Zeng, H.; Huang, J.; Zhou, H.; Meilandt, W.J.; Dejanovic, B.; Zhou, Y.; Bohlen, C.J.; Lee, S.-H.; Ren, J.; Liu, A.; et al. Integrative in Situ Mapping of Single-Cell Transcriptional States and Tissue Histopathology in a Mouse Model of Alzheimer’s Disease. Nat. Neurosci. 2023, 26, 430–446. [Google Scholar] [CrossRef]
- Garg, T.; Weiss, C.R.; Sheth, R.A. Techniques for Profiling the Cellular Immune Response and Their Implications for Interventional Oncology. Cancers 2022, 14, 3628. [Google Scholar] [CrossRef]
- Roelands, J.; van der Ploeg, M.; Ijsselsteijn, M.E.; Dang, H.; Boonstra, J.J.; Hardwick, J.C.H.; Hawinkels, L.J.A.C.; Morreau, H.; de Miranda, N.F.C.C. Transcriptomic and Immunophenotypic Profiling Reveals Molecular and Immunological Hallmarks of Colorectal Cancer Tumourigenesis. Gut 2022, 72, 1326–1339. [Google Scholar] [CrossRef] [PubMed]
- Srivatsan, S.R.; Regier, M.C.; Barkan, E.; Franks, J.M.; Packer, J.S.; Grosjean, P.; Duran, M.; Saxton, S.; Ladd, J.J.; Spielmann, M.; et al. Embryo-Scale, Single-Cell Spatial Transcriptomics. Science 2021, 373, 111–117. [Google Scholar] [CrossRef] [PubMed]
- Nieto, P.; Elosua-Bayes, M.; Trincado, J.L.; Marchese, D.; Massoni-Badosa, R.; Salvany, M.; Henriques, A.; Nieto, J.; Aguilar-Fernández, S.; Mereu, E.; et al. A Single-Cell Tumor Immune Atlas for Precision Oncology. Genome Res. 2021, 31, 1913–1926. [Google Scholar] [CrossRef]
- Fornito, A.; Arnatkevičiūtė, A.; Fulcher, B.D. Bridging the Gap between Connectome and Transcriptome. Trends Cogn. Sci. 2019, 23, 34–50. [Google Scholar] [CrossRef] [PubMed]
- Arnatkeviciute, A.; Fulcher, B.D.; Bellgrove, M.A.; Fornito, A. Imaging Transcriptomics of Brain Disorders. Biol. Psychiatry Glob. Open Sci. 2022, 2, 319–331. [Google Scholar] [CrossRef] [PubMed]
- Licata, M.; Bonsignore, A.; Boano, R.; Monza, F.; Fulcheri, E.; Ciliberti, R. Study, Conservation and Exhibition of Human Remains: The Need of a Bioethical Perspective. Acta Biomed. Atenei Parm. 2020, 91, e2020110. [Google Scholar] [CrossRef]
- Brenner, E. Human Body Preservation-Old and New Techniques. J. Anat. 2014, 224, 316–344. [Google Scholar] [CrossRef]
- Freitas-Ribeiro, S.; Reis, R.L.; Pirraco, R.P. Long-Term and Short-Term Preservation Strategies for Tissue Engineering and Regenerative Medicine Products: State of the Art and Emerging Trends. PNAS Nexus 2022, 1, pgac212. [Google Scholar] [CrossRef]
- Topoleski, J.J.; Christensen, A.M. Use of a Gelatin-based Consolidant to Preserve Thermally-Altered Skeletal Remains. J. Forensic Sci. 2019, 64, 1135–1138. [Google Scholar] [CrossRef]
- Veloso-Giménez, V.; Escamilla, R.; Necuñir, D.; Corrales-Orovio, R.; Riveros, S.; Marino, C.; Ehrenfeld, C.; Guzmán, C.D.; Boric, M.P.; Rebolledo, R.; et al. Development of a Novel Perfusable Solution for Ex Vivo Preservation: Towards Photosynthetic Oxygenation for Organ Transplantation. Front. Bioeng. Biotechnol. 2021, 9, 796157. [Google Scholar] [CrossRef]
- Naresh, V.; Lee, N. A Review on Biosensors and Recent Development of Nanostructured Materials-Enabled Biosensors. Sensors 2021, 21, 1109. [Google Scholar] [CrossRef] [PubMed]
- Maiese, A.; Manetti, A.C.; Ciallella, C.; Fineschi, V. The Introduction of a New Diagnostic Tool in Forensic Pathology: LiDAR Sensor for 3D Autopsy Documentation. Biosensors 2022, 12, 132. [Google Scholar] [CrossRef] [PubMed]
- Jain, P.; Kathuria, H.; Dubey, N. Advances in 3D Bioprinting of Tissues/Organs for Regenerative Medicine and in-Vitro Models. Biomaterials 2022, 287, 121639. [Google Scholar] [CrossRef] [PubMed]
- Moliterni, C.; Tredicine, M.; Pistilli, A.; Falcicchia, R.; Bartolini, D.; Stabile, A.M.; Rende, M.; Ria, F.; Di Sante, G. In Vitro and Ex Vivo Methodologies for T-Cell Trafficking Through Blood–Brain Barrier After TLR Activation. In Toll-Like Receptors; Fallarino, F., Gargaro, M., Manni, G., Eds.; Methods in Molecular Biology; Springer: New York, NY, USA, 2023; Volume 2700, pp. 199–219. ISBN 978-1-07-163365-6. [Google Scholar]
- Tredicine, M.; Camponeschi, C.; Pirolli, D.; Lucchini, M.; Valentini, M.; Geloso, M.C.; Mirabella, M.; Fidaleo, M.; Righino, B.; Moliterni, C.; et al. A TLR/CD44 Axis Regulates T Cell Trafficking in Experimental and Human Multiple Sclerosis. iScience 2022, 25, 103763. [Google Scholar] [CrossRef] [PubMed]
- Bassi, G.; Grimaudo, M.A.; Panseri, S.; Montesi, M. Advanced Multi-Dimensional Cellular Models as Emerging Reality to Reproduce In Vitro the Human Body Complexity. Int. J. Mol. Sci. 2021, 22, 1195. [Google Scholar] [CrossRef] [PubMed]
- Knight, E.; Przyborski, S. Advances in 3D Cell Culture Technologies Enabling Tissue-like Structures to Be Created in Vitro. J. Anat. 2015, 227, 746–756. [Google Scholar] [CrossRef]
- Kaliappan, A.; Motwani, R.; Gupta, T.; Chandrupatla, M. Innovative Cadaver Preservation Techniques: A Systematic Review. Maedica 2023, 18, 127–135. [Google Scholar] [CrossRef]
- Chen, F.-M.; Liu, X. Advancing Biomaterials of Human Origin for Tissue Engineering. Prog. Polym. Sci. 2016, 53, 86–168. [Google Scholar] [CrossRef]
- Hallett, M.; de Haan, W.; Deco, G.; Dengler, R.; Di Iorio, R.; Gallea, C.; Gerloff, C.; Grefkes, C.; Helmich, R.C.; Kringelbach, M.L.; et al. Human Brain Connectivity: Clinical Applications for Clinical Neurophysiology. Clin. Neurophysiol. 2020, 131, 1621–1651. [Google Scholar] [CrossRef]
- Rossini, P.M.; Di Iorio, R.; Bentivoglio, M.; Bertini, G.; Ferreri, F.; Gerloff, C.; Ilmoniemi, R.J.; Miraglia, F.; Nitsche, M.A.; Pestilli, F.; et al. Methods for Analysis of Brain Connectivity: An IFCN-Sponsored Review. Clin. Neurophysiol. 2019, 130, 1833–1858. [Google Scholar] [CrossRef]
- Dipietro, L.; Gonzalez-Mego, P.; Ramos-Estebanez, C.; Zukowski, L.H.; Mikkilineni, R.; Rushmore, R.J.; Wagner, T. The Evolution of Big Data in Neuroscience and Neurology. J. Big Data 2023, 10, 116. [Google Scholar] [CrossRef] [PubMed]
- Haber, S.N.; Liu, H.; Seidlitz, J.; Bullmore, E. Prefrontal Connectomics: From Anatomy to Human Imaging. Neuropsychopharmacology 2022, 47, 20–40. [Google Scholar] [CrossRef]
- Vezoli, J.; Magrou, L.; Goebel, R.; Wang, X.-J.; Knoblauch, K.; Vinck, M.; Kennedy, H. Cortical Hierarchy, Dual Counterstream Architecture and the Importance of Top-down Generative Networks. Neuroimage 2021, 225, 117479. [Google Scholar] [CrossRef] [PubMed]
- Beul, S.F.; Barbas, H.; Hilgetag, C.C. A Predictive Structural Model of the Primate Connectome. Sci. Rep. 2017, 7, 43176. [Google Scholar] [CrossRef] [PubMed]
- Pirolli, D.; Righino, B.; Camponeschi, C.; Ria, F.; Di Sante, G.; De Rosa, M.C. Virtual Screening and Molecular Dynamics Simulations Provide Insight into Repurposing Drugs against SARS-CoV-2 Variants Spike Protein/ACE2 Interface. Sci. Rep. 2023, 13, 1494. [Google Scholar] [CrossRef] [PubMed]
- De Rosa, M.C.; Ria, F.; Giardina, B.; Pirolli, D.; Nicolò, C.; Ferraccioli, G. TCR/MHCII-Collagen Interaction Inhibitors Useful for the Treatment of Rheumatoid Arthritis. U.S. Patent 9,994,524, 12 June 2018. [Google Scholar]
- Shin, W.-H.; Kumazawa, K.; Imai, K.; Hirokawa, T.; Kihara, D. Current Challenges and Opportunities in Designing Protein–Protein Interaction Targeted Drugs. Adv. Appl. Bioinform. Chem. 2020, 13, 11–25. [Google Scholar] [CrossRef]
- Banks, J.L.; Beard, H.S.; Cao, Y.; Cho, A.E.; Damm, W.; Farid, R.; Felts, A.K.; Halgren, T.A.; Mainz, D.T.; Maple, J.R.; et al. Integrated Modeling Program, Applied Chemical Theory (IMPACT). J. Comput. Chem. 2005, 26, 1752–1780. [Google Scholar] [CrossRef]
- De Rosa, M.C.; Giardina, B.; Bianchi, C.; Carelli Alinovi, C.; Pirolli, D.; Ferraccioli, G.; De Santis, M.; Di Sante, G.; Ria, F. Modeling the Ternary Complex TCR-Vbeta/CollagenII(261-273)/HLA-DR4 Associated with Rheumatoid Arthritis. PLoS ONE 2010, 5, e11550. [Google Scholar] [CrossRef]
- Suárez, L.E.; Markello, R.D.; Betzel, R.F.; Misic, B. Linking Structure and Function in Macroscale Brain Networks. Trends Cogn. Sci. 2020, 24, 302–315. [Google Scholar] [CrossRef]
- Marimpis, A.D.; Dimitriadis, S.I.; Goebel, R. Dyconnmap: Dynamic Connectome Mapping-A Neuroimaging Python Module. Hum. Brain Mapp. 2021, 42, 4909–4939. [Google Scholar] [CrossRef]
- Borst, A.; Leibold, C. Connecting Connectomes to Physiology. J. Neurosci. 2023, 43, 3599–3610. [Google Scholar] [CrossRef] [PubMed]
- Ouyang, M.; Kang, H.; Detre, J.A.; Roberts, T.P.L.; Huang, H. Short-Range Connections in the Developmental Connectome during Typical and Atypical Brain Maturation. Neurosci. Biobehav. Rev. 2017, 83, 109–122. [Google Scholar] [CrossRef] [PubMed]
- Cao, M.; Huang, H.; He, Y. Developmental Connectomics from Infancy through Early Childhood. Trends Neurosci. 2017, 40, 494–506. [Google Scholar] [CrossRef] [PubMed]
- Lanciego, J.L.; Wouterlood, F.G. Neuroanatomical Tract-Tracing Techniques That Did Go Viral. Brain Struct. Funct. 2020, 225, 1193–1224. [Google Scholar] [CrossRef] [PubMed]
- Schmued, L.C. Development and Application of Novel Histochemical Tracers for Localizing Brain Connectivity and Pathology. Brain Res. 2016, 1645, 31–35. [Google Scholar] [CrossRef] [PubMed]
- Lanciego, J.L.; Wouterlood, F.G. A Half Century of Experimental Neuroanatomical Tracing. J. Chem. Neuroanat. 2011, 42, 157–183. [Google Scholar] [CrossRef]
- Adinolfi, A.; Di Sante, G.; Rivignani Vaccari, L.; Tredicine, M.; Ria, F.; Bonvissuto, D.; Corvino, V.; Sette, C.; Geloso, M.C. Regionally Restricted Modulation of Sam68 Expression and Arhgef9 Alternative Splicing in the Hippocampus of a Murine Model of Multiple Sclerosis. Front. Mol. Neurosci. 2022, 15, 1073627. [Google Scholar] [CrossRef]
- Marchese, E.; Valentini, M.; Sante, G.D.; Cesari, E.; Adinolfi, A.; Corvino, V.; Ria, F.; Sette, C.; Geloso, M.C. Alternative Splicing of Neurexins 1-3 Is Modulated by Neuroinflammation in the Prefrontal Cortex of a Murine Model of Multiple Sclerosis. Exp. Neurol. 2020, 335, 113497. [Google Scholar] [CrossRef]
- Martinez-Sanchez, N.; Sweeney, O.; Sidarta-Oliveira, D.; Caron, A.; Stanley, S.A.; Domingos, A.I. The Sympathetic Nervous System in the 21st Century: Neuroimmune Interactions in Metabolic Homeostasis and Obesity. Neuron 2022, 110, 3597–3626. [Google Scholar] [CrossRef]
- Sarnat, H.B. Immunocytochemical Markers of Neuronal Maturation in Human Diagnostic Neuropathology. Cell Tissue Res. 2015, 359, 279–294. [Google Scholar] [CrossRef]
- Palay, S.L. Synapses in the Central Nervous System. J. Cell Biol. 1956, 2, 193–202. [Google Scholar] [CrossRef] [PubMed]
Omics | Examples of Large-Scale Research Efforts | Utility and Advantages in Science | Utility and Advantages for Anatomical Studies | Major Caveat | References |
---|---|---|---|---|---|
Genomics | 1000 Genomes, GWAS * consortia, etc. | Gene-based disease source and direct inference of causality with morbidity/diagnostic/prognosis | Genetic basis of anatomical structures, functions and variations/diversity. Very useful for paleoanthropology. | Still quite expensive and difficult to manage the data. Ethical problems to be considered. | [27,28,29,30,31] |
Transcriptomics and Epigenomics | ENCODE * and Roadmap Epigenomics Project, Fantom consortium, MoTrPAC *, COSMIC * | Impact on genotype-phenotype and physiology/patho-physiology and inference of causality | Organ development, differentiation, and function useful for embryology. | Not applicable for all phenotypes | [32,33,34,35] |
Proteomics, Metabolomics and Interactomics | CPTAC *, EDRN * and Common Fund | Likely to be very close to the phenotype. Very useful for pathologic studies | Molecular and functional diversity, complex regulatory mechanisms of development; Human Protein Atlas | High costs and difficulty to scale | [36,37,38] |
Radiomics and Novel Imaging technologies | AI for health imaging, Enigma consortium | Likely to be very close to the phenotype and measures a combination of genetic and environmental influences. Functional impact and typically easy to infer causality | High-resolution non-invasive more comprehensive understanding of biological structures and tissues | Expensive purchasing of equipment; high complexity | [39,40,41,42,43,44,45,46] |
Spatial Profiling and Pathomics | Human Cell Atlas (HCA) consortium | Inexpensive assay for an intermediate step towards the phenotype | Gene expression patterns, high-resolution tissue maps, tissue development, organ/systems homeostasis and structures and functional organization | Very expensive purchasing of equipment; difficult to scale; high complexity | [47,48,49,50,51,52] |
Connectomics and neural networks | Human Connectome Project (HCP), Human brain project, MGH/Harvard-UCLA consortium, Human Connectome Project Young Adult | Potential diagnostic, prognostic, and therapeutic interventions in the optic of a personalized and precision medicine | Neurodevelopmental disorders, brain plasticity, and anatomical organization of the brain’s neural networks, including the arrangement of different brain regions, pathways, and synaptic connections | Combination of genetic and environmental influences makes it difficult to infer the direction of causality | [53,54,55,56,57,58,59] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Stabile, A.M.; Pistilli, A.; Mariangela, R.; Rende, M.; Bartolini, D.; Di Sante, G. New Challenges for Anatomists in the Era of Omics. Diagnostics 2023, 13, 2963. https://doi.org/10.3390/diagnostics13182963
Stabile AM, Pistilli A, Mariangela R, Rende M, Bartolini D, Di Sante G. New Challenges for Anatomists in the Era of Omics. Diagnostics. 2023; 13(18):2963. https://doi.org/10.3390/diagnostics13182963
Chicago/Turabian StyleStabile, Anna Maria, Alessandra Pistilli, Ruggirello Mariangela, Mario Rende, Desirée Bartolini, and Gabriele Di Sante. 2023. "New Challenges for Anatomists in the Era of Omics" Diagnostics 13, no. 18: 2963. https://doi.org/10.3390/diagnostics13182963
APA StyleStabile, A. M., Pistilli, A., Mariangela, R., Rende, M., Bartolini, D., & Di Sante, G. (2023). New Challenges for Anatomists in the Era of Omics. Diagnostics, 13(18), 2963. https://doi.org/10.3390/diagnostics13182963